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Lecture 3: Equilibrium refinements and selection



• Theory cannot provide clear guesses about with equilibrium will occur in
games with multiple equilibria.

• A major concern of game theorists is to understand which equilibria are
selected.

• In order to restrict the set of equilibria, game theorists use a number of
refinements.

• Learn about the empirical properties of the refinements that are widely
used in game theory.



• The use of market-generated data for this purpose is problematic (many
crucial parameters and variables are unobserved).

• In the laboratory, by contrast, we can control all the relevant parameters.

• Our objective is to confront the theory with some experimental data and
visa versa.

• Any attempt to use theory to explain experimental data must answer a
number of questions:



— Do we assume that all subjects are identical or do we allow for hetero-
geneity?

— Do we assume a single equilibrium is played in each repetition of a
game?

— Do we allow for mistakes or behavioral biases from the outset or assume
full rationality?

Provide a parsimonious account of the data (Occam’s Razor), and maxi-
mize our chance of falsifying the theory (Popper’s sense).



Monotone games

• A monotone game is an extensive-form game with simultaneous moves and
an irreversibility structure on strategies.

• It captures a variety of situations in which players make partial commit-
ments.

• We characterize conditions under which equilibria result in efficient out-
comes.

• The game has many equilibrium outcomes so the theory lacks predictive
power.



• To produce stronger predictions, we restrict attention to sequential, or
Markov, or symmetric equilibria.

— Whether any of these refinements is reasonable in practice is an em-
pirical question.

• Multiple equilibria cannot be avoided in general and the theory cannot tell
us which equilibrium is most likely to be played.

— Identify the important factors in creating the “salience” of certain equi-
libria.



The game

• An indivisible public project with cost K and N players, each of whom has
an endowment of E tokens.

• The players simultaneously make irreversible contributions to the project
at a sequence of dates t = 1, ..., T .

• The project is carried out if and only if the sum of the contributions is
large enough to meet its cost.

• If the project is completed, each player receives A tokens plus to the
number of tokens retained from his endowment.



[1] The aggregate endowment is greater than the cost of the project (com-
pletion is feasible)

NE > K.

[2] The aggregate value of the project is greater than the cost (completion
is efficient)

NA > K.

[3] The project is not completed by a single player (either it is not feasible
or it is not rational)

min {A,E} < K.



The one-shot game

In the static (one-shot) game, all players make simultaneous binding deci-
sions.

Proposition (one-shot) ( i) There exists a pure-strategy Nash equilib-
rium with no completion. Conversely, there exists at least one pure-
strategy equilibrium in which the project is completed with probability
one. ( ii) The game also possesses mixed-strategy equilibria in which
the project is completed with positive probability.

The indivisibility of the public project makes each contributing player “piv-
otal” (Bagnoli and Lipman (1992)).



The dynamic game

The sharpest result is obtained for the case of pure-strategy sequential
equilibria.

Proposition (pure strategy) Suppose that A > E and T ≥ K. Then, under
the maintained assumptions, in any pure strategy sequential equilibrium of
the game, the public project is completed with probability one.

In any pure strategy equilibrium, the probability of completion is either
zero or one, so it is enough to show that the no-completion equilibrium is
not sequential.



Mixed strategies expand the set of parameters for which there exists a
no-completion equilibrium.

Proposition (mixed strategy) Suppose that A > E and T ≥ K. Then
there exists a number A∗(E,K,N, T ) such that, for any E < A < A∗

there exists a mixed strategy equilibrium in which the project is completed
with probability zero.

The use of mixed strategies in the continuation game can discourage an
initial contribution and support an equilibrium with no completion.



The games in which K = NE provide a useful benchmark (no possibility
of taking a free ride on the contributions of other players).

Proposition (no-free-riding) Suppose that K = NE, A > E and T ≥
K. Then the project is completed with probability one in any sequential
equilibrium of the game.

The result does not rule out the use of mixed strategies, even along the
equilibrium path.



Taking K = NE as a benchmark for the absence of free riding, the
free-rider problem must be worse when the total endowment exceeds this
level.

Proposition (free-riding) Suppose that E > A and T ≥ K. Then under the
maintained assumptions, there exists a pure strategy sequential equilibrium
of the game in which the public project is completed with probability zero.

The essential ingredient in the construction of this equilibrium is the self-
punishing strategy employed by Gale (2001).



Symmetric Markov perfect equilibrium (SMPE)

The class of SMPE takes a relatively simple form. The main predictions
from SMPE can be summarized by four facts:

— There are no pure strategy SMPE, although mixed strategies may only
be used off the equilibrium path.

— There is no completion of the public project in early periods when A
“high” and no completion at all when A “low.”

— The contribution probability at each state when A is “high” is at least
as high as when A is “low.”

— A game with horizon T < T 0 is isomorphic to a continuation game
starting in period T 0 − T of the game with horizon T 0.



Example 1

A = 3, E = 1,K = 2, N = 3, T = 5

τ/n 0 1

4 0.00 −−
3 0.00 0.00
2 0.00 0.00
1 0.56| 0.55| 0.00 0.00
0 0.00| 0.21| 0.79 0.67

where n is the total number of contributions and τ is the number of periods
remaining after the current period.



Example 2

A = 1.5, E = 1,K = 2, N = 3, T = 5

τ/n 0 1

4 0.00 −−
3 0.00 0.00
2 0.00 0.00
1 0.00 0.00
0 0.00 0.33



Example 3

A = 3, E = 2,K = 2, N = 3, T = 5

τ/(n, ni) 0 (1, 0) (0, 1)

4 0.00 −− −−
3 0.00 0.00 0.00
2 0.00 0.00 0.00
1 0.50| 0.48| 0.00 0.00 0.00
0 0.00| 0.21| 0.79 0.42 0.42

where ni is the total number of contributions to date by player i.



Example 4

A = 1.5, E = 2,K = 2, N = 3, T = 5

τ/(n, ni) 0 (1, 0) (0, 1)

4 0.00 −− −−
3 0.00 0.00 0.00
2 0.00 0.00 0.00
1 0.00 0.00 0.00
0 0.00 0.21 0.21

The Markov property reduces the set of sequential equilibria, sometimes
substantially.



E , K, N T A Pure Mixed SMPE
1.5 N Y 0
3 N N .62, .62, .89

1.5 N Y 0
3 N N .62, .62, .89

1.5 Y Y 0, 1
3 Y Y 1

1.5 N N 0, 1
3 N N 1

1.5 Y Y 0
3 N N .63, .62, .89

1.5 Y Y 0
3 N N .63, .62, .89

1.5 Y N 0
3 Y N 0, .511, 2, 3 1

Summary of the equilibrium properties in the complete network

1, 3, 3
2

5

2, 2, 3
2

5

1, 2, 3
2

5



Equilibrium outcomes

• The SMPE explains the qualitative patterns of contributions in the com-
plete network.

• The other results on provision rates are all consistent with the qualitative
predictions of the SMPE.

• The deviations from the SMPE contribution probabilities at earlier and
later periods go in opposite directions.

• QRE replicates the tendency of early contributions in games, which could
not be captured by the SMPE.



τ / n 0 1 2
4 0.09 (270)
3 0.08 (207) 0.11 (38) 0 (2)
2 0.11 (165) 0.07 (54) 0.25 (8)
1 0.37 (117) 0.07 (76) 0.10 (10)
0 0.36 (36) 0.60 (94) 0.08 (24)

τ / n 0 1 2
1 0.18 (270)
0 0.62 (159) 0.54 (54) 0 (9)

( ) - # of obs.

A =3, E =1, K =2, N =3

Frequencies of contribution in the complete network



τ / n 0 1 2
4 0.09 (270)
3 0.05 (207) 0.03 (36) 0 (3)
2 0.06 (177) 0.06 (54) 0.25 (4)
1 0.26 (144) 0.19 (70) 0.17 (6)
0 0.20 (57) 0.48 (88) 0.09 (23)

τ / n 0 1 2
1 0.18 (270)
0 0.35 (150) 0.33 (64) 0 (7)

( ) - # of obs.

A =1.5, E =1, K =2, N =3



τ / n (0,0) (1,0) (1,1)
4 0.14 (270)
3 0.03 (165) 0.02 (52) 0.12 (26)
2 0.07 (153) 0.04 (50) 0.08 (25)
1 0.3 (126) 0.08 (60) 0 (30)
0 0.53 (45) 0.46 (84) 0.26 (42)

τ / n 0 1 2
1 0.34 (270)
0 0.44 (75) 0.34 (70) 0.11 (35)

( ) - # of obs.

A =3, E =2, K =2, N =3



τ / n (0,0) (1,0) (1,1)
4 0.06 (270)
3 0.05 (228) 0.09 (22) 0.00 (11)
2 0.13 (195) 0.05 (40) 0.15 (20)
1 0.21 (126) 0.07 (70) 0.00 (35)
0 0.04 (63) 0.39 (92) 0.07 (46)

τ / n (0,0) (1,0) (1,1)
1 0.26 (270)
0 0.13 (111) 0.38 (70) 0.00 (35)

( ) - # of obs.

A =1.5, E =2, K =2, N =3



A (n,τ ) h (1) h (2) h (3) h (4) p -value
(1,2) 0.03 (34) 0.10 (20) – – 0.63

1.5 (1,1) 0.06 (32) 0.25 (16) 0.32 (22) – 0.05
(1,0) 0.54 (28) 0.25 (8) 0.30 (10) 0.52 (42) 0.30
(1,2) 0.00 (30) 0.17 (24) – – 0.07

3 (1,1) 0.00 (30) 0.06 (18) 0.14 (28) – 0.21
(1,0) 0.47 (30) 0.75 (18) 0.60 (20) 0.64 (28) 0.27

A (n,τ ) h (1) h (2) h (3) h (4) p -value
(1,2) 0.56 (18) 0.45 (22) – – 0.25

1.5 (1,1) 0.00 (10) 0.05 (20) 0.10 (40) – 0.50
(1,0) 0.50 (10) 0.33 (18) 0.47 (32) 0.31 (32) 0.12
(1,2) 0.05 (44) 0.00 (6) – – 0.10

3 (1,1) 0.11 (38) 0.00 (6) 0.06 (16) – 0.60
(1,0) 0.43 (30) 0.67 (6) 0.57 (14) 0.41 (34) 0.53

The relative frequencies of contributions from the different histories

E =2, K= 2, N =3, T =5

E =1, K= 2, N =3, T =5



Quantal Response Equilibrium (QRE)

For simplicity, suppose that each player has an endowment of one token
(E = 1).

The contribution behavior of each uncommitted player at state (n, τ) fol-
lows a binomial logit distribution:

λ(n,τ) =
1

1 + exp(−β(n,τ)∆(n,τ))
,

where ∆(n,τ) is the difference between the expected payoffs from con-
tributing and not contributing, and β(n,τ) is a coefficient.

The calculation of QRE proceeds by backward induction, beginning with
the final period.



τ / n 0 1 2
4 0.11
3 0.14 0.07 0.00
2 0.18 0.10 0.00
1 0.20 0.17 0.00
0 0.75 0.65 0.00

τ / n 0 1 2
1 0.19
0 0.76 0.65 0

β = 10.51 (1.27), Log_lik = -278.55

QRE estimation results and the probability of contribution
A =3, E =1, K =2, N =3

β=10.05 (0.78), Log_lik =-472.52



τ / n 0 1 2
4 0.08
3 0.09 0.06 0.00
2 0.12 0.08 0.00
1 0.19 0.13 0.00
0 0.00 0.36 0.00

τ / n 0 1 2
1 0.4
0 0.3 0.42 0.09

β = 2.26 (0.20), Log_lik = -296.41

A =1.5, E =1, K =2, N =3

β=12.34 (0.83), Log_lik =-475.01



The predicted (QRE) and empirical contribution probabilities
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The predicted (QRE) and empirical contribution probabilities
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Imperfect information

• Perfect information makes it easier for players to coordinate their actions,
if they are so inclined.

• In the absence of perfect information, players beliefs play a larger role in
supporting (possibly inefficient) equilibria.

• Asymmetry of the information structure may have an impact on the “se-
lection” of equilibria.

• To complete the description of the game, we have to specify the informa-
tion available to each player.



• The information structure is represented by a directed graph (or network).

• Each player is located at a node of the graph and player i can observe
player j if there is an edge leading from node i to node j.

• The experiments involve all three-person networks (N = 3) with zero, one
or two edges.

• Each network has a different architecture, a different set of equilibria, and
different implications for the play of the game.



Asymmetric networks 
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Salience

• The notion of salience was introduced into game theory by Schelling (1960),
as part of his theory of focal equilibria.

• In Schelling’s account, what makes an equilibrium focal is its psychological
frame.

• Crawford et al. (AER 2008) provide a test of Schelling’s notion of salience
in the context of one-shot coordination games.

• Our concept of salience is different from “psychological” salience (based
on structural properties of the game).



The one-link network

Adding one link to the empty network creates a simple asymmetry among
the three players.

Proposition (one link) Suppose that A > E = 1 and T ≥ K = 2. Then,
under the maintained assumptions, every pure-strategy sequential equilib-
rium completes the public project with probability one.

Equilibria in which B contributes first and A contributes after observing
B contribute seem “salient.”



The line, star-out, star-in and pair networks

The remaining networks can each be obtained by adding a single link to
the one-link network.

Proposition (networks) Suppose that A > E = 1 and T ≥ K = 2. Then,
sequential rationality implies completion of the public project (with positive
probability) in all of the networks except the empty network.

Our focus in the sequel is to identify the impact of network architecture
on efficiency and dynamics.



Equilibrium selection

• Uninformed players make a contribution early in the game to encourage
other players to contribute.

• Informed players delay their contributions until they have observed another
player contribute.

• Players who are symmetrically situated in a network have difficulty coordi-
nating on an efficient outcome.

• Players who are otherwise similarly situated behave differently in different
networks.



B C
n i -- --

0.570 0.163
(135) (135)

n i 0 1 -- --
0.039 0.500 0.345 0.035
(51) (70) (58) (113)

n i 0 1 -- --
0.222 0.583 0.158 0.046
(36) (48) (38) (109)

( ) - # of obs.

3 Freq.

--

Freq. 0.104
(135)

1

The frequencies of contributions in the one-link network
A =2, E =1, K =2, N =3, T =3

2 Freq.

A



C
n i --

0.900
(180)

n i 0 1 0 1 --
0.007 0.161 0.077 0.632 0.167
(148) (31) (13) (136) (18)

n i 0 1 0 1 --
0.115 0.045 0.182 0.686 0.200
(61) (112) (11) (51) (15)

( ) - # of obs.

(180)

A

2 Freq.

3 Freq.

The frequencies of contributions in the line network
A =2, E =1, K =2, N =3, T =3

1

B
--

0.172
(180)

--

Freq. 0.006



B,C
n i --

0.318
(330)

n i 0 1 2 --
0.027 0.195 0.071 0.187
(73) (77) (14) (225)

n i 0 1 2 --
0.089 0.922 0.000 0.044
(45) (77) (24) (183)

( ) - # of obs.

2 Freq.

3 Freq.

The frequencies of contributions in the star-out network
A =2, E =1, K =2, N =3, T =3

A

1
--

Freq. 0.006
(165)



A
n i --

0.620
(150)

n i -- 0 1
0.439 0.080 0.229
(57) (100) (153)

n i -- 0 1
0.094 0.173 0.215
(32) (52) (158)

( ) - # of obs.

The frequencies of contributions in the star-in network
A =2, E =1, K =2, N =3, T =3

1 Freq.

B,C
--

0.157
(300)

2 Freq.

3 Freq.



C
n i --

0.100
(150)

n i 0 1 --
0.327 0.426 0.022
(156) (54) (135)

n i 0 1 --
0.333 0.419 0.053
(105) (31) (132)

( ) - # of obs.

3 Freq.

The frequencies of contributions in the pair network
A =2, E =1, K =2, N =3, T =3

2 Freq.

A , B

1
--

Freq. 0.300
(300)



Strategic commitment
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Strategic delay
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Behavior in the star-out network
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Behavior in the star-in network
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