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Abstract

This paper reports the results of an experimental investigation of

dynamic games in networks. In each period, the subjects simultane-

ously choose whether or not to make an irreversible contribution to the

provision of an indivisible public good. Subjects observe the past ac-

tions of other subjects if and only if they are connected by the network.

Networks may be incomplete so subjects are asymmetrically informed

about the actions of other subjects in the same network, which is typ-

ically an obstacle to the attainment of an efficient outcome. For all

networks, the game has a large set of (possibly inefficient) equilibrium

outcomes. Nonetheless, the network architecture makes certain strate-

gies salient and this in turn facilitates coordination on efficient out-

comes. In particular, asymmetries in the network architecture encour-

age two salient behaviors, strategic delay and strategic commitment.

By contrast, we find that symmetries in the network architecture can

lead to mis-coordination and inefficient outcomes.
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1 Introduction

A perennial question in economics concerns the conditions under which in-

dividuals coordinate to achieve an efficient outcome. One of the obstacles

to efficiency is the presence of asymmetric information, which typically pre-

vents the attainment of the first best. In this paper, by contrast, we find

that a particular type of asymmetric information can improve efficiency by

allowing subjects in an experimental setting to coordinate on a salient out-

come. In the experimental design, subjects are part of a network and can

only observe the actions of subjects to whom they are connected through

the network. Our goal is to identify the impact of network architecture on

the efficiency and dynamics of behavior.

We study a simplemonotone game that is naturally interpreted as a step-

level, or threshold, public good game. Players make voluntary contributions

to the provision of an indivisible public good, which is provided if and only

if the contributions equal or exceed the cost. The players’ contributions

are irreversible and, in particular, are not returned to the players even if

the public good is not provided. A player’s payoff equals the sum of his

consumption of the public good and his consumption of the private good.1

More specifically, in the game we study there are three players. Each

player is endowed with a single indivisible token. The game is divided into

three periods. In each period, the uncommitted players simultaneously

choose whether or not to contribute to the provision of the public good.

The cost of the public good is assumed to be two tokens. If the public good

is provided, each player receives two tokens in addition to the number of

tokens retained from his endowment. Since the value of the public good is

two tokens, it is always efficient for the good to be provided but each player

has an incentive to be a free rider.

To complete the description of the game, we need to specify the infor-

mation structure, which is represented by a network or directed graph. Each

player is located at a node of the graph and player  can observe player

’s past actions if there is an edge leading from node  to node . The

games that make up the various treatments in our experiments differ only

with respect to their network architecture. The experiments reported here

involve the benchmark three-person empty and complete networks, and all

1A monotone game is like a repeated game except that actions are irreversible: players

are constrained to choose stage-game strategies that are non-decreasing over time. Gale

(1995, 2001) demonstrated that this irreversibility structure allows players to make com-

mitments. Every time a player makes a commitment, it changes the structure of the game

and the incentives for other players to cooperate.
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three-person networks with one or two edges.

We call the unique 1-edge network the one-link network. There are

four 2-edge networks, called the line, the star-in, the star-out, and the pair

network. The set of networks we consider is illustrated in Figure 1, where an

arrow pointing from player  to player  indicates that player  can observe

player .2

[Figure 1 here]

The game defined by each of the networks we study has a large number

of equilibria and the equilibrium outcomes associated with the one- and two-

link networks as well as the complete network are virtually identical. Thus,

theory does not provide us with strong predictions about how the various

networks will influence the play of the games. Nonetheless, as Figure 2

illustrates, the degree to which subjects coordinate on efficient outcomes

(total contribution equals the cost of the good) appear to vary across the

different networks.

[Figure 2 here]

How are we to understand the impact of the network architecture on

subjects’ behavior and the efficiency of the outcomes? In this paper, we

argue that asymmetries in the network architecture makes certain strategies

salient. We identify two main ways in which this network architecture gives

rise to salient strategies. We call these behaviors strategic commitment and

strategic delay :

• Strategic commitment: There is a tendency for subjects in certain
network positions to make contributions early in the game in order to

encourage others to contribute. Clearly, commitment is of strategic

value only if it is observed by others. Strategic commitment tends

to be observed among uninformed-and-observed subjects — subjects in

positions where (i) they cannot observe other positions and (ii) they

are observed by another position.

2This set of networks has several non-trivial architectures, each of which gives rise to

its own distinctive information flows. To keep the scope of our study within reasonable

bounds, we exclude the large set of networks with three, four and five edges. For prac-

tical purposes, the networks with zero, one or two edges provide a sufficiently rich set of

networks, reveal important features of the game, and illustrate the main features of the

complete set of networks.
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• Strategic delay: There is a tendency for subjects in certain network
positions to delay their decisions until they have observed a contribu-

tion by a subject in another position. Obviously, there is an option

value of delay only if the decision depends on the information. Strate-

gic delay tends to be observed among informed-and-unobserved sub-

jects — subjects in positions where (i) they can observe other positions

and (ii) they are not observed by another position.

The bottom line is that, in some networks where the degree of coordi-

nation is high, the structure of observability make certain behaviors — and

possibly certain equilibria — salient.3 Conversely, some network architec-

tures have the opposite effect, that is, the structure of observability causes

problems coordinating on an efficient outcome. Mis-coordination tends to

arise in networks where two players are symmetrically situated. In symmet-

ric situations, it becomes problematic for two players to know who should

go first or, if only one is to contribute, which of two should contribute.

The rest of the paper is organized as follows. The next section describes

the properties of the set of sequential equilibria corresponding to each net-

work treatment. Section 3 describes the experimental design and procedures.

The results are gathered in Sections 4. Section 5 concludes by discussing the

results and relating them to the literature. The paper also includes three

data and technical online appendices for the interested reader. Sample ex-

perimental instructions are attached in Online Appendix I. Online Appendix

II provides a more refined analysis and discussion of the implications of the

data for equilibrium behavior. In reporting our results, we pool the data

from all experimental sessions and rounds for each network. We provide

a detailed discussion of the robustness of the results to subject pools and

learning effects in Online Appendix III.

2 Properties of equilibrium

The monotone game we study can be interpreted as follows. There are

three players indexed by  = , and three periods indexed by  =

1 2 3. Each player has an endowment of one indivisible token that he can

contribute to the production of a public good. The contribution can be made

in any of the three periods, but the decision is irreversible: once a player

3Our concept of salience, based on structural properties of the game, is quite different

from the concept of “psychological” salience introduced by Schelling (1960) as part of his

theory of focal equilibria.
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has committed his token, he cannot take it back. We assume that the public

good is indivisible and costs two tokens to produce. The good is provided if

and only if the total contribution is at least two tokens. If the public good

is provided, each player receives a payoff equal to two tokens plus his initial

endowment of one token minus his contribution. If the public good is not

provided, each player receives a payoff equal to his initial endowment minus

his contribution. Note that the aggregate endowment and the aggregate

value of the public good are greater than its cost, so that provision of the

good is always feasible and efficient.

The information available to each player is defined by a directed graph

or network. The network architecture is common knowledge. A player 

can observe the past actions of another player , if and only if there is a

directed edge leading from player  to player . Note that the edges need

not be symmetric: the fact that  can observe  does not necessarily imply

that  can observe . The seven networks we study are illustrated in Figure

1 above and are used as treatments in the experimental design.

In the remainder of this section, we summarize the properties of equilib-

rium in these games. Unfortunately, the game associated with each network

has a large number of sequential equilibria and the equilibrium outcomes in

the games defined by the one-and two-link networks (as well as in the game

defined by the complete network) are virtually identical. In other words,

theory has little to tell us about how the game will be played in practice.

2.1 Pure-strategy sequential equilibria

The sharpest result applies to the case of pure-strategy sequential equilibria.

We begin with the empty network, which serves mainly as a benchmark to

which the other networks can be compared. In the empty network, no player

can observe any other player. Although a player can make his contribution in

any of the three periods, the fact that no one receives any information in any

period makes the timing of the decision irrelevant. This game is essentially

the same as the one-shot game in which all players make simultaneous,

binding decisions. More precisely, for each equilibrium of the one-shot game,

there is a set of equilibria of the dynamic game that have the same outcome.

The one-shot game has multiple pure-strategy equilibria: There are three

equilibria in which two players contribute and one does not and the good

is provided with probability one. Conversely, there exists a pure-strategy

equilibrium in which no player contributes and the good is not provided.

Obviously, if a player thinks that no one else will contribute, it is not optimal
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for him to contribute.4 Each of the pure-strategy equilibria of the one-

shot game has its counterpart in the dynamic game defined by the empty

network.5

In the empty network all players are symmetrically situated. Adding

one link to the empty network creates a simple asymmetry among the three

players. Now  can observe ’s past contributions and condition his own

decision on what  does, while  and  observe nothing. The addition of a

single link eliminates one of the equilibrium outcomes present in the empty

network. The pure-strategy sequential equilibrium with zero provision is not

an equilibrium in the one-link network.6

The remaining pure-strategy equilibria of the one-shot game have their

counterparts in the dynamic game defined by the one-link network. These

equilibria can be implemented if players simply wait until the final period

and then use the strategies from the one-shot game. In addition to these

simple replications of the one-shot equilibria, there are variations in which

the players choose to contribute in different periods. Similar arguments

apply to any of the two-link networks.

We summarize the preceding discussion in the following simple proposi-

tion.

Proposition 1 (pure-strategy sequential equilibria) In the game de-

fined by each of the networks, any history of actions consisting of exactly

two players contributing is consistent with a pure-strategy sequential equilib-

rium. In the game defined by the empty network, no player contributing is

also consistent with a pure-strategy sequential equilibrium.

4Provision of the good in equilibrium depends crucially on the fact that each contribut-

ing player is pivotal in the sense that, at the margin, his contribution is necessary and

sufficient for provision (see, Bagnoli and Lipman, 1992 and Andreoni, 1998).
5For example, consider the equilibrium in which  and  contribute and  does not.

In the dynamic game  and  can choose different periods in which to contribute but

as long as they contribute with probability one before the end the game, their strategies

constitute a sequential equilibrium of the dynamic game.
6To see this, suppose to the contrary that there exists an equilibrium in which no one

contributes and consider what happens if  deviates from this equilibrium strategy and

contributes in period 1. At the beginning of period 2,  knows that  has contributed

and he knows that  does not know this. Then  knows that  will not contribute (

believes he is in the original equilibrium) and it is a dominant strategy for  to contribute.

Anticipating this response,  will contribute before the final period of the game, thus

upsetting the equilibrium.
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2.2 Mixed-strategy sequential equilibria

To get a more robust result, we should take account of pure and mixed

strategies. Mixed strategies are relevant because they expand the set of

equilibrium outcomes, even if mixed strategies are only used off the equilib-

rium path. The experimental data will show that they are also empirically

relevant. Except for the game defined by the empty network, all outcomes

consistent with a pure-strategy equilibrium are efficient (the total contribu-

tion is two tokens). The use of mixed strategies can change this result.

Notice that the one-shot game possesses a symmetric mixed-strategy

equilibrium where each player contributes with probability 12 because each

player is indifferent between contributing and not contributing. Thus, the

game defined by each network possesses a symmetric mixed-strategy equi-

librium where all players simply wait until the third period and each player

contributes with probability 12. Thus, the total number of contributions

at the end of the game can be strictly greater or less than the cost of the

public good.

Additionally, in the games defined by each of the networks, if one player

contributes his token in the first or second period (using a pure strategy),

the continuation game consists of two active players only one of whom needs

to contribute a token in order to provide the good. This continuation game

possesses a symmetric mixed-strategy equilibrium where each of the two

players contributes with positive probability.7 The use of mixed strategies

can therefore support outcomes with more or less than two contributions on

the equilibrium path.

Hence, whereas all pure-strategy sequential equilibria prescribe efficient

provision of the public good (except in the case of the game defined by the

empty network), mixed-strategy equilibria allow under-provision and over-

provision. Nevertheless, even in the case where the outcome is efficient, one

cannot conclude that players are necessarily using a pure strategy. There

exist mixed-strategy equilibria which are efficient, including some in which

mixing occurs on the equilibrium path.

Our next proposition summarizes the preceding argument and general-

izes the case of pure-strategy equilibria.8

7A necessary and sufficient condition for a symmetric mixed strategy 0    1 to be

an equilibrium strategy is that each player be indifferent between contributing and not

contributing. If a player contributes, the good is provided for sure and the player receives

two tokens. If he does not contribute and the other player contributes, then the good is

provided with probability  so his payoff is 2+ 1. Indifference requires that 2 = 2+ 1

or  = 12.
8The result applies to a single play of the game. The hypothesis that a single mixed-
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Proposition 2 (mixed-strategy sequential equilibria) In the games de-

fined by each of the networks, any history of actions consisting of no player,

one player, or two players contributing is consistent with mixed-strategy equi-

libria. Additionally, a variety of histories consisting of all players contribut-

ing are also consistent with mixed-strategy equilibrium.

2.3 Equilibrium refinements

Since there are many sequential equilibria of the game, it is natural to look

for refinements that may limit the set of equilibrium behaviors and provide

stronger predictions of the theory. We have investigated several different

refinement approaches, including trembling-hand perfection and forward in-

duction, and found them either unproductive or intractable. To illustrate

the reasons why the usual refinements do not produce the desired results

(strategic delay and strategic commitment) we consider equilibria in the

one-link network. The one-link network is a natural case to look at because

of the asymmetries among the three players. The salient feature of the one-

link network is the fact that  observes , while  and  observe nothing.

This suggests that, although there are many sequential equilibria, some re-

finements might eliminate equilibria in which  does not exhibit strategic

delay and/or  does not exhibit strategic commitment. We provide a couple

of counter-examples to show that this hope is not well founded.

We first show that there is an equilibrium which  and  contribute in

the last period and  never contributes. Obviously, this equilibrium does

not involve strategic commitment by the observed and uninformed player,

. The strategies are defined as follows:

Example 1 At any information set prior to the last period,  does not

contribute. In the last period,  contributes if neither  nor  has yet

contributed;  does not contribute if  has contributed.  does not

contribute at any information set. At any information set prior to the

last period,  does not contribute. In the last period,  contributes

if he has not already done so.

Beginning with Selten’s (1975) introduction of the trembling hand perfect

equilibrium, game theorists have tested the reasonableness of Nash equi-

libria by introducing small trembles or perturbations of the strategies to

see whether the equilibria respond continuously to the trembles. This equi-

librium survives such tests in the sense that, whatever small trembles we

strategy equilibrium is played in each repetition of a game might be falsified statistically

given sufficient data.
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introduce, the player’s strategies remain best responses. Given that  is

not expected to contribute, it is strictly optimal for  to contribute as long

as  has not done so and it is strictly optimal for  to contribute. Thus,

these strategies remain optimal if  contributes with a sufficiently small

probability, so the strategies of  and  respond continuously to any suffi-

ciently small trembles.

Note that in the one-link network, it is always weakly dominant for  to

delay and, if there is a small chance that  will contribute, then it is strictly

optimal for  to delay. This is a general property of various games we study:

delay is a weakly dominant strategy for any player who is informed but not

observed. There is, however, a strict Nash equilibrium of the one-shot game

in which player  does not contribute. The strategies of a corresponding

equilibrium in the extensive-form game are defined as follows:

Example 2  never contributes. At any information set,  and  con-

tribute immediately if they have not already done so; otherwise, they

do not contribute.

If we define strategic delay as “a decision by  to delay until  contributes

and then contribute,” then this provides a simple example of a equilibrium

with no strategic delay. Again, the strategies remain best responses in spite

of the introduction of any sufficiently small tremble.

Similar arguments apply to the other networks. In summary, standard

refinement theory provides little guidance in narrowing down behavior in

these games so theoretical analysis alone does not tell us which outcomes

are likely to be observed; for that we need experimental data.9,10

3 Design and procedures

The experiment was run at the Princeton Laboratory for Experimental So-

cial Science (PLESS) and at the UC Berkeley Experimental Social Science

9 Iterated weak dominance (Van Damme, 1989, and Ben-Porath and Dekel, 1992) is

only partially successful in restricting the set of sequential equilibria in dynamic games

with simultaneous moves and perfect information. In the game defined by each of the

networks, except for the complete network, some players have only partial information

about the actions taken previously.
10Choi et al. (2008) conduct a comprehensive theoretical and experimental study of

the complete network using a number of examples that “span” the set of parameters that

define the game. Choi et al. (2008) show that when all players are symmetrically situated,

the set of symmetric Markov-perfect equilibria yields much stronger predictions than could

be derived from the set of all sequential equilibria. However, the restriction imposed by

symmetry (identical decision rules) has no bite in asymmetric networks.
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Laboratory (Xlab). The subjects in this experiment were Princeton Uni-

versity and UC Berkeley students. After subjects read the instructions, the

instructions were read aloud by an experimental administrator. Each exper-

imental session lasted about one and a half hours. Payoffs were calculated

in terms of tokens and then converted into dollars, where each token was

worth $0.50. A $10 participation fee and subsequent earnings, which aver-

aged about $22, were paid in private at the end of the session.11 Sample

experimental instructions, including the computer program dialog windows,

are available at Online Appendix I.12

Aside from the network structure, the experimental design and proce-

dures described below are identical to those used by Choi et al. (2008). We

studied the seven network architectures depicted in Figure 1 above. The

network architecture was held constant throughout a given experimental

session. In each session, the network positions were labeled , , or . A

third of the subjects were designated type- participants, one third type-

participants and one third type- participants. The subject’s type, , ,

or , remained constant throughout the session.

Each session consisted of 25 independent rounds and each round con-

sisted of three decision turns. The following process was repeated in all 25

rounds. Each round started with the computer randomly forming three-

person groups by selecting one participant of type , one of type  and one

of type . The groups formed in each round depended solely upon chance

and were independent of the networks formed in any of the other rounds (a

random matching protocol). Each group played a dynamic game consisting

of three decision turns.

At the beginning of the game, each participant has an endowment of one

token. At the first decision turn, each participant is asked to allocate his

tokens to either an -account or a -account. Allocating the token to the

-account is irreversible. When every participant in the group has made his

decision, each subject observes the choices of the subjects to whom he is

connected in his network. This completes the first of three decision turns in

the round.

At the second decision turn, each subject who allocated his token to the

-account is asked to allocate the token between the two accounts. At the

end of this period, each subject again observes the choices of the subjects to

whom he is connected in his network. This process is repeated in the third

11Throughout the experiment we ensured anonymity and effective isolation of subjects

in order to minimize any interpersonal influences that could stimulate cooperation.
12Online Appendix I: http://emlab.berkeley.edu/~kariv/CGKP_I_A1.pdf.
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decision turn. At each date, the information available to subjects includes

the choices they observed at the previous dates.

When the first round ends, the computer informs subjects of their pay-

offs. The earnings in each round are determined as follows: if subjects

contribute at least two tokens to their -accounts, each subject receives two

tokens plus the number of tokens remaining in his -account. Otherwise,

each subject receives the number of tokens in his -account only. After

subjects are informed of their earnings, the second round starts by having

the computer randomly form new groups of participants in networks. This

process is repeated until all the 25 rounds were completed.

There were three experimental sessions for each network, except for the

complete network which is thoroughly studied by Choi et al. (2008). The

experimental design table below summarizes the experimental design and

the number of observations in each treatment (the entries have the form 

/  where  is the number of subjects and  the number of observations

per game). For each network treatment, two sessions (columns 1 and 2)

comprising 12, 15, 18, or 21 subjects were run at Princeton; several larger

sessions (column 3) comprising 27, 33, or 36 subjects were run at Berkeley.

The three sessions for each treatment were identical except for the number

of subjects and the labeling of the nodes of the graphs, which we changed in

order to see whether the labels were salient (and as far as we could tell, they

were not). Overall, the experiments provide us with a very rich dataset.

Session

Network 1 2 3 Total

Empty 12  100 15  125 33  275 60  500

One-link 15  125 12  100 27  225 54  450

Line 15  125 21  175 36  300 72  600

Star-out 18  150 15  125 36  300 69  575

Star-in 15  125 15  125 36  300 66  550

Pair 18  150 12  100 36  300 66  550

Complete −− −− 33  275 33  275

Remark 1 (matching protocol) Our experimental design uses the ran-

dom matching protocol, in which subjects are randomly matched with

replacement. Random matching is desirable to avoid the “repeated

game” effects that arise if the same group of subjects play a game

repeatedly. The advantage of using subjects repeatedly in different

configurations is that it allows us to generate a large amount of data

from a given number of subjects. Other protocols, such as the perfect
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stranger protocol, where subjects are never rematched, and the no-

contagion protocol, where subjects are neither rematched nor matched

with anyone who had been matched with their previous partners, re-

quire large subject pools or provide fewer observations. The disadvan-

tage of random matching is that, since the same subjects participate

in multiple games, the observations may not be independent. There is

no general agreement in experimental economics about which design

is better; each methods has its strengths and weaknesses (see, for ex-

ample, the discussion in Fréchette, 2007).

Our choice was to conduct relatively large sessions, using a random

matching protocol with multiple observations per subject. There were

several reasons for this choice. First, the theoretical motivation for the

experiment was based on the analysis of a one-shot game. By having

a large number of subjects per session (as many as 36), we mitigate

repeated game effects, and reduce dependencies in the data that can

arise — even in the absence of strategic repeated game effects — from

the interaction of learning and shared histories.13 Second, running

more sessions using a perfect stranger protocol with few subjects per

session would allow subjects to repeat the task only a small number of

times, which creates problems in controlling for heterogeneity and also

eliminates the possibility of learning over time. Because of concerns

about heterogeneity and learning, it was necessary for subjects to re-

peat the task a large number of times. This is especially important

in complicated, multi-stage games of coordination, most of which are

asymmetric.

4 Results

In this section, we present the experimental results. One of the main inter-

ests of our research is to see which network architecture can support high

levels of cooperation. We therefore begin our analysis with a descriptive

overview of some important features of the aggregate data, concerning the

provision of the public good and the efficiency of the contribution level. We

use the contribution rates to assess the level of cooperation within each net-

13The importance of designing away from repeated game effects when studying theo-

retical predictions about one-shot games has been widely discussed in the experimental

literature. There is considerable evidence supporting the notion that random matching

protocols with a sufficiently large number of subjects is an effective way to minimize

repeated game effects. For a recent example, see Duffy and Ochs (2009).
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work treatment (Section 4.1). We then move to a non-parametric analysis

of the relationship between the strategic behavior in the form of strategic

commitment and strategic delay and the data. In this section we look at the

evolution of contributions over time in the different networks. The analysis

is mainly focused on qualitative shifts in subjects’ behavior resulting from

changes in the network architecture (Section 4.2).

We also explore relationship between equilibrium and empirical behavior.

It is very difficult to establish that subjects are behaving consistently with

equilibrium, partly because there are so many equilibria and partly because

individual behavior is heterogeneous. However, we want to see whether some

outcomes might “stand out” or “suggest themselves” to human subjects and

to uncover discrepancies between the modal behavior in each network and

the predictions of any sequential equilibrium. To economize on space, we

provide the analysis in Online Appendix II.14

Our analysis pools the data from all rounds of all sessions for a given

treatment. We have conducted a parallel analysis of the data using only the

last 15 rounds of each session. The findings are very similar to the 25-round

pooled data set, with some small improvements in coordination rates over

time. We have also investigated behavior at the level of the individual sub-

ject. Not surprisingly, there is some heterogeneity across subjects, but the

choices made by most of our subjects reflect clearly classifiable strategies

which are stable across decision-rounds. Furthermore, the data from the

experiments at Princeton and the data from the experiments at Berkeley

present a qualitatively similar picture, with only relatively small differences

across subject pools in some networks. We provide a detailed discussion of

the robustness of the results to subject pools and learning effects in Online

Appendix III.15 The tables and figures based on the last 15 rounds of obser-

vations and the tables and figures based on the data from each campus are

also available in Online Appendix III.

4.1 Cooperation

Result 1 (cooperation) All networks support a higher level of cooperation

compared to the empty network. Conversely, the complete network does

not promote the highest level of cooperation. There are also significant

differences in the levels of cooperation across networks so the network

architecture plays a key role in solving the coordination problem.

14Online Appendix II: http://emlab.berkeley.edu/~kariv/CGKP_I_A2.pdf.
15Online Appendix III: http://emlab.berkeley.edu/~kariv/CGKP_I_A3.pdf.
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The top panel of Table 1 reports the total contribution rates across

networks. From these data we can immediately infer the provision rates and

the efficiency of contributions. Efficiency depends on the total number of

contributions, not just the provision rate. More precisely, inefficiency can

arise from under-contribution (total contribution is less than two tokens)

and from over-contribution (total contribution is more than two tokens). In

order to highlight the differences in efficiency across networks, we tabulate

the rates of under-contribution, efficient contribution, and over-contribution.

In the bottom panel of Table 1, the average total contributions from each

pair of networks are compared using the Wilcoxon (Mann-Whitney) rank-

sum test. In the last column, the provision rate in each network is compared

to the empty network.

[Table 1 here]

In Table 1, significant differences in subjects’ behavior can be identified

across the different networks. The highest provision rate (0762) is observed

in the star-out network and the smallest (0518) is observed in the empty

network. The empty network is isomorphic to the one-shot game in which

players choose their strategies simultaneously. The provision rate in the

symmetric, mixed-strategy equilibrium of the one-shot game is 12, which

is similar to the empirical provision rate in the empty network.

There are also considerable variations in efficiency across networks (pro-

vision is efficient total contribution is two tokens). The star-out network is

the most efficient (0683), whereas the empty (0404) and pair (0444) net-

works are the least efficient. In all networks, the public-good provision rate

is significantly higher than in the empty network. This suggests that there

is something about the structure of some networks that allows subjects to

coordinate efficiently. We return to this question later.

The highest rate of under-contribution is observed in the empty net-

work (0482). Again, the predicted under-contribution rate in the symmet-

ric mixed strategy equilibrium of the one-shot game is 12, which is similar

to the empirical under-contribution rate in the empty network. The highest

over-contribution rate (0202) is found in the one-link network, which also

has a high under-contribution rate (0336). We also observe high under-

contribution and over-contribution rates in the pair network (0415 and

0142), which appears to indicate a mis-coordination problem, discussed

further later in the paper. The complete network in which each subject can

observe the other two subjects also has high under-contribution and over-

contribution rates (0302 and 0193). Thus, subjects’ behavior is not more
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efficient in the complete network, which highlights the central role of the

network architecture in solving the coordination problem.

Remark 2 (statistical dependence) Our experiment employs a random

matching design that generates a rich set of data. In analyzing these

data, we followed the usual practice of regarding each game as an

independent trial, controlling for individual heterogeneity where pos-

sible. There is no simple adjustment to the standard tests that will

take care of the possible dependence among games, so we have used

the null of independence, while recognizing that it may not be sat-

isfied in this case. Independence would be satisfied, for example, if

the subjects in a given session use identical mixed strategies. If there

is heterogeneity among subjects, however, the outcomes of games in

which the same subjects appear will not be independent. This biases

the standard errors downwards, increasing the likelihood of finding a

significant treatment effect. The robustness of our results to subject

pools, individual behavior, and learning effects (Online Appendix III)

mitigate the concerns about statistical dependence.

An alternative and much more conservative approach would be to treat

each session average as a single observation. We have performed the

analysis in Table 1 under this alternative assumption. The results are

displayed in Table 1-Alt below. As one might expect, with only three

“independent” observations for each network treatment, fewer differ-

ences in network means are statistically significant, although some sig-

nificant differences remain. We reject this approach because it ignores

a large amount of useful information. More precisely, the variation

within a session is informative and reflects additional information that

is lost when one considers only the session average. It may be that our

approach biases standard errors downwards, but the conservative al-

ternative, by attributing all within-session variation to session-specific

factors, grossly overstates the standard errors. Given the budget con-

straints under which most experimentalists work, it is infeasible to

generate the quantities of data required to obtain significant results

under the conservative approach.16

[Table 1-Alt here]

16We used a total of 420 subjects in our experiments. To have enough sessions to

guarantee significant results, under the alternative assumption, would probably require

several times this number. Even a large university may not provide a sufficient pool of

subjects for such a large experiment and the costs in terms of time and subject payments

would be prohibitive.
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4.2 Strategic commitment and strategic delay

Next, we focus on the evolution of contributions over time in the different

network treatments. This allows us to identify further qualitative shifts in

subjects’ behavior resulting from changes in the network architecture. Table

2 presents the timing of contributions across network positions. Recall that a

subject in a position where he can observe other positions is called informed ;

otherwise, he is called uninformed. Also, a subject is called observed if he is

in a position where he is observed by another position; otherwise, he is called

unobserved. The contribution rates are defined as the ratio of the number

of contributions to the number of uncommitted subjects, i.e., the number

of subjects who still have a token to contribute. We sometimes refer to

these as conditional contribution rates. The number in parentheses in each

cell represents the number of uncommitted subjects (subjects who have an

endowment left for contribution). The last column of Table 2 reports total

contribution rates.

[Table 2 here]

For uninformed-and-observed subjects (top panel), most contributions

were made in the first period. The tendency of uninformed subjects to

make early contributions is found in all networks, but the contribution rates

in the first period and the total contribution rates vary considerably across

networks and positions. For informed subjects (middle panels), by contrast,

there is a general tendency to delay, especially if they are unobserved. For

example, the modal behavior of subjects in position  of the line network is

to contribute in the second period. Given the early contribution behavior of

position- subjects in this network, this indicates that position- subjects

delay their contribution until they observe that  has contributed. Finally,

the uninformed-and-unobserved subjects (bottom panel) in the one-link and

pair networks maintained low contribution rates across the three periods of

the game, but they are much more likely to contribute in the Berkeley data

than in the Princeton data (see Online Appendix III).

4.2.1 Strategic commitment

Result 2 (strategic commitment) There is a strong tendency for sub-

jects who are uninformed and observed by others to contribute early.

Specifically, subjects in positions  (one-link),  (line), and  (star-

in) exhibit strategic commitment. This effect is strongest for position
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 (line) and is associated with a high level of efficiency in that net-

work.

We have already suggested that an uninformed-and-observed subject has

an incentive to make an early contribution in order to encourage others

to contribute. In particular, subjects occupying positions  (one-link), 

(line), and  (star-in) should contribute in the first period according to this

reasoning. In contrast, the uninformed-and-observed subjects occupying

positions  (star-out) and  (star-out) face a coordination problem that

complicates the analysis of incentives for strategic commitment. We return

to them later.

The support for Result 2 comes from Figure 3 (below), which shows the

frequencies of contributions across time by uncommitted subjects occupying

position  (one-link),  (line), and  (star-in). We also include subjects

in position  (line). This position is different from the others included in

Figure 2, because it is both observed by position  and observes position

. Thus, in the line network, subjects in position  may be torn between

the incentive to contribute early and the incentive to delay.

The number above each bar in the histogram represents the number of

observations. The histograms in Figure 3 show that subjects in positions 

(one-link),  (line), and  (star-in) all exhibit a tendency toward early con-

tributions, but the actual contribution rates vary. Most noticeably,  (line)

has a higher contribution rate than the other two positions — the contribu-

tion rate in the first period is 0657 for  (line), whereas the corresponding

rates for  (one-link) and  (star-in) are 0578 and 0571, respectively — but

the differences are not statistically significant.17

[Figure 3 here]

The high contribution rate for  (line) is another reflection of the greater

efficiency of the line network. Given the strategic commitment of  (line), we

note that subjects in position  (line) have more in common with informed

subjects than with subjects who are uninformed and observed: most subjects

in position  (line) contribute in the second and third periods, although

there are a few subjects contributing in the first period. Another interesting

feature of the data is the similarity of the contribution rates at positions

 (one-link) and  (star-in). Unlike  (one-link),  (star-in) may have an

17Where appropriate, we test for the difference of means by estimating probit and logit

models that account for the statistical dependence of observations caused by the repeated

appearance of the same subjects in our sample.
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incentive to delay if he thinks that he can signal to (star-in) and  (star-in)

that he is determined to be a free rider and force the other two to contribute.

Thus, coordination in the star-in network would appear to be more difficult

than in the one-link network. The fact that efficiency is higher in the star-

in network than in the one-link network (0500 versus 0452) supports this

conclusion. Nonetheless, we observe very similar contribution rates at the

two positions and similar provision rates in the two networks.

4.2.2 Strategic delay

Result 3 (strategic delay) There is strong evidence of strategic delay by

informed subjects. In particular, subjects at position  (one-link), 

(line), and  (star-out), tend to delay their decisions until another

subject has contributed.

As we have already argued, informed subjects have an incentive to delay

making a decision to contribute until they observe that another subject has

contributed. According to this argument, subjects in positions  (one-link),

 and  (line), and  (star-out) should exhibit strategic delay. Informed

subjects in positions ,  and  (complete),  and  (star-in), and  and

 (pair) also have an incentive to delay but, because of the symmetry of

these positions in their respective network structures, the incentive to delay

is confounded with the coordination problem. For this reason, we deal with

these positions separately in the following subsection.

The support for Result 3 comes from Figure 4 below. For the network

positions of interest here, we present the subjects’ contribution rates, con-

ditional on their information states. The information state is 1 if a contri-

bution has been observed and is 0 otherwise. The number above each bar

of the histogram represents the number of observations. There is a strong

incidence of strategic delay for subjects in positions  (one-link),  (line)

and  (star-out) where observing a contribution significantly increases the

subject’s contribution rate. By contrast, the contribution rates for position

 (line) are low in both states. This suggests that the behavior of subjects

in position  (line) can be best described as free riding. But note that

given the tendency of subjects in positions  and  (line) to contribute, the

behavior of position- subjects is optimal and efficient.

[Figure 4 here]

18



4.2.3 Mis-coordination

Result 4 (mis-coordination) There is evidence of coordination failure in

networks where two subjects, such as  and  (star-out, star-in) and

 and  (pair), are symmetrically situated. Coordination failure ex-

plains the majority of inefficient outcomes in the star-out, star-in and

pair networks.

We have delayed the discussion of positions and  (star-out, star-in) and

and  (pair), because they involve a coordination problem that complicates

the analysis of incentives for strategic delay and strategic commitment. The

common feature of these pairs of positions is that they are symmetrically

situated in their respective networks. In the star-out network,  and  have

an incentive to encourage  but, at the same time, they have an incentive

to be free riders and let the other encourage . In the star-in network, 

and  have an incentive to delay in order to see whether  contributes but,

once  has contributed, they have an incentive to be free riders and let the

other provide the public good. In the pair network,  and  have both an

incentive to encourage the other and an incentive to delay. This conflict may

lead to inefficient outcomes. From the same reason, the symmetry of the

complete network architecture makes it difficult for subjects to coordinate

their contributions to the provision of the public good. In fact, there is no

salient solution to the coordination problem in the complete network. We

next investigate the coordination problem in the star-out, star-in and pair

networks. We begin with the star-out network.

The star-out network We first investigate the coordination problem by

revisiting the efficiency results presented in Table 1 above. The star-out

network has the lowest rate of over-contribution (0078) among all networks.

This result is not surprising. Subjects in position  play the role of a central

coordinator in the star-out network. The position- subject waits to see

whether the peripheral positions,  and , contribute and only contributes

himself, if necessary, in the last period. It is less obvious how much of the

under-contribution rate (0238) is attributable to mis-coordination between

 and . To answer this question, Figure 5 depicts the total contributions

made by subjects in positions  and  in each period. The numbers 

above

each bar of the histogram represent the rates of () under-contribution and

() over-contribution after this state the game.

[Figure 5 here]
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It is interesting that the frequency of no contribution by subjects in posi-

tions  and  during the first two periods (0205) is quite close to the rate of

under-contribution (0238). This suggests that the under-contribution out-

comes in the star-out network are mainly caused by a coordination failure

between position- and position- subjects. We can check this by focusing

on the 118 (out of 575) games in which neither  nor  contributed by the

end of the second period. The public good was provided in only four of

those games. This implies that 832% (= 01980238) of the total under-

contribution rate is attributable to a failure by subjects in positions  and

 to coordinate their contributions.

The star-in network In the star-in network, we distinguish two types of

coordination failures, one that occurs when position- subjects contribute

first and one that occurs when they try to free ride. We divide the sam-

ple according to the timing of contributions of position- subjects, and

re-calculate the efficiency results. The new results are presented in Figure

6 below. The numbers represent the total number of observations. One

interesting feature of the data presented in Figure 6 is that, even when the

subjects in position  contribute in the first two periods, the under- and

over-contribution rates are relatively high (0188 and 0241, respectively)

purely because of a coordination failure between the subjects in positions 

and . On the other hand, when position- subjects do not contribute, the

under-contribution rate is very high (0822), which strongly suggests that

the coordination between  and  becomes more difficult when  does not

contribute. Of course, the failure to coordinate depends on ’s refusal to

commit, so this could be interpreted as a failure of  to coordinate with 

and . In any case, the under-contribution rate when position- subjects

do not contribute is much higher than the under-contribution rate in the

benchmark empty network (0482).

[Figure 6 here]

The pair network In the pair network, the salient solution to the coordi-

nation problem is for  and  to contribute. According to this hypothesis,

under-contribution should be attributed to coordination failure between the

subjects in positions  and , whereas over-contribution is attributable to

contributions from subjects isolated in position . In order to investigate

the coordination failure between subjects in positions  and , we simply

compute the relative frequency that subjects in positions  and  fail to

contribute two tokens. This turns out to be surprisingly high (0418). The
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uncoordinated contributions of position- subjects sometimes lead to over-

contribution and sometimes compensate for under-contribution by subjects

in positions  and . On average, as one would expect, these contributions

have no effect on efficiency. In fact, the under-contribution rate (0415) is

almost identical to the frequency of under-contribution by subjects in posi-

tions  and . So we can argue that under-contribution in the pair network

is driven by the coordination failure between subjects in positions  and .

Over-contribution, on the other hand, is clearly the result of uncoordinated

contributions by position- subjects.

5 Concluding remarks

Our main conclusion is that different network architectures lead to different

outcomes in coordination games. Moreover, asymmetry in the network ar-

chitecture is an important factor in creating the salience of certain strategies

that lead to these different outcomes. Asymmetric networks give different

roles to different subjects, making their behavior more predictable and aid-

ing the coordination of their actions. We identify several ways in which

this predictability occurs in our data from monotone games. Two persistent

types of behavior are strategic commitment in some network positions and

strategic delay in other positions. We observe passivity in some positions,

particularly isolated subjects, who can neither observe others’ actions nor

have their choices observed by anyone else: such subjects are less likely to

contribute. As a result, the structure of observability in the network archi-

tecture gives rise to salience which, in turn, is an aid to predictability and

coordination.

Our paper contributes to the literature on monotone games. Admati and

Perry (1991) introduced the basic concepts and their work was extended by

Marx and Matthews (2000). Gale (1995, 2001) developed the theory applied

in this paper in two different environments. Choi et al. (2008) conduct a

theoretical and experimental study of monotone games with perfect infor-

mation: every player knows the history of the game. In the present paper,

we focus instead on the case where information is imperfect. Duffy et al.

(2007) investigate the model of Marx and Matthews (2000) experimentally

and show that positive provision can be supported in a dynamic laboratory

setting.

Our paper also contributes to the large and growing literature on the

economics of networks (see Jackson, 2008). Although network experiments

in economics are recent, there is now a growing experimental literature on
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the economics of networks (see Kosfeld, 2004, Goyal, 2005, and Jackson,

2005, for excellent, if now already somewhat dated, surveys). To the best

of our knowledge, all of the previous experimental work on networks has

quite different focuses than ours. Of particular interest are several articles

that examine coordination is social networks. The most recent such paper of

which we are aware is Cassar (2007). These studies are different from ours

in several respects. Our paper is also related to the large literature on co-

ordination games in experimental economics (see Crawford, 1997, Camerer,

2003, and Devetag and Ortmann, 2007 for comprehensive discussions).

There is clearly a lot more to be done and the uses of our dataset are

far from exhausted. We varied the informational network for one specific

three-person, three-period voluntary contribution game. The game was cho-

sen because of the richness of the equilibrium set and because observability

seemed intuitively to be an important factor in selecting among equilib-

ria. To determine more precisely which factors are important in explaining

strategic behavior in dynamic coordination games, it will also be useful to

investigate a larger class of games in the laboratory. The methodology and

approach we use could be applied to other versions of dynamic coordina-

tion games where theory makes weak (or no) predictions about equilibrium

selection, and observability could plausibly be a critical selection factor.

While the present paper does not propose a specific theoretically-grounded

structural model that might be applied to the data, we view that as the key

next step to understanding the effect of observational networks in multi-

player coordination games. We attempted to explore the application of

Quantal Response Equilibrium (QRE) analysis (McKelvey and Palfrey 1995,

1998) of these games, but there were problems of tractability because of the

multiplicity of equilibria and bifurcations in the logit equilibrium correspon-

dence. In fact, in the presence of imperfect information and simultaneous

moves, even in the case of three-person networks, characterizing the set of

QRE is computationally intensive. Another possible approach is to consider

models with cognitive hierarchies, such as level- theory, but the applica-

tion of these approaches to complex multistage games with repeated play is

bedeviled by the problem of specifying the behavior of the 0-level type. We

hope the results reported here open up future theoretical and experimental

research on these questions. We believe that our approach can be used to

study the role of network architecture in other kinds of games.
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Under
0 1 2 3 contribution

Empty 0.092 0.390 0.404 0.114 0.482 0.518
One-link 0.071 0.264 0.462 0.202 0.336 0.664
Line 0.087 0.215 0.570 0.128 0.302 0.698
Star-out 0.146 0.092 0.683 0.078 0.238 0.762
Star-in 0.087 0.276 0.462 0.175 0.364 0.636
Pair 0.098 0.316 0.444 0.142 0.415 0.585
Complete 0.076 0.225 0.505 0.193 0.302 0.698

Empty One-link Line Star-out Star-in Pair Complete Provision
Empty -- 0.000 0.469 0.046 0.006 0.179 0.003 --
One-link 0.000 -- 0.001 0.000 0.264 0.011 0.756 0.000
Line 0.000 0.243 -- 0.005 0.029 0.504 0.013 0.000
Star-out 0.000 0.001 0.015 -- 0.000 0.001 0.000 0.000
Star-in 0.000 0.355 0.026 0.000 -- 0.137 0.523 0.000
Pair 0.028 0.011 0.000 0.000 0.084 -- 0.059 0.028
Complete 0.000 0.346 0.996 0.048 0.078 0.002 -- 0.000

Provision

Wilcoxon (Mann-Whitney) rank-sum test - under (white) / over (gray)

Table 1. The total number of contributions and provision rate by network

Network Total contributions 



Under
0 1 2 3 contribution

1 0.080 0.510 0.360 0.050 0.590 0.410
2 0.040 0.296 0.528 0.136 0.336 0.664
3 0.120 0.389 0.364 0.127 0.509 0.491
1 0.064 0.224 0.480 0.232 0.288 0.712
2 0.160 0.320 0.390 0.130 0.480 0.520
3 0.036 0.262 0.484 0.218 0.298 0.702
1 0.120 0.160 0.592 0.128 0.280 0.720
2 0.040 0.166 0.697 0.097 0.206 0.794
3 0.100 0.267 0.487 0.147 0.367 0.633
1 0.220 0.153 0.547 0.080 0.373 0.627
2 0.184 0.064 0.704 0.048 0.248 0.752
3 0.093 0.073 0.743 0.090 0.167 0.833
1 0.016 0.136 0.744 0.104 0.152 0.848
2 0.136 0.344 0.376 0.144 0.480 0.520
3 0.097 0.307 0.380 0.217 0.403 0.597
1 0.133 0.273 0.413 0.180 0.407 0.593
2 0.100 0.280 0.510 0.110 0.380 0.620
3 0.080 0.350 0.437 0.133 0.430 0.570

Line

Session ProvisionNetwork Total contributions 

Empty

On-link

Table 1-Alt. The total number of contributions and provision rate by session

Star-out

Star-in

Pair

Empty One-link Line Star-out Star-in Pair Provision
Empty -- 0.127 0.513 0.275 0.275 0.513 --
One-link 0.127 -- 0.127 0.050 0.275 0.275 0.127
Line 0.127 0.275 -- 0.050 0.513 0.513 0.127
Star-out 0.127 0.275 0.827 -- 0.050 0.050 0.127
Star-in 0.275 1.000 0.513 0.513 -- 0.827 0.275
Pair 0.513 0.513 0.050 0.050 0.827 -- 0.513

Wilcoxon (Mann-Whitney) rank-sum test - under (white) / over (gray)



Contribution
rate

One-link B 0.578 (450) 0.432 (190) 0.213 (108) 0.811
Line C 0.657 (600) 0.121 (206) 0.160 (181) 0.747
Star-out B , C 0.395 (1150) 0.191 (696) 0.066 (563) 0.543
Star-in A 0.571 (550) 0.250 (236) 0.175 (177) 0.735

0.517 (2750) 0.225 (1328) 0.117 (1029) 0.669

Contribution
rate

One-link A 0.140 (450) 0.248 (387) 0.409 (291) 0.618
Line A 0.100 (600) 0.046 (540) 0.146 (515) 0.267
Star-out A 0.096 (575) 0.123 (520) 0.507 (456) 0.609
Star-in B , C 0.165 (1100) 0.176 (919) 0.266 (757) 0.495

0.132 (2725) 0.147 (2365) 0.310 (2019) 0.489

Contribution
rate

Line B 0.187 (600) 0.406 (488) 0.434 (290) 0.727
Pair A , B 0.255 (1100) 0.306 (819) 0.283 (568) 0.630
Complete A, B, C 0.179 (825) 0.260 (677) 0.349 (501) 0.605

0.214 (2525) 0.315 (1984) 0.340 (1359) 0.645

Contribution
rate

Empty A , B , C 0.351 (1500) 0.084 (973) 0.181 (891) 0.513
One-link C 0.244 (450) 0.065 (340) 0.104 (318) 0.367
Pair C 0.265 (550) 0.064 (404) 0.082 (378) 0.369

0.313 (2500) 0.076 (1717) 0.142 (1587) 0.455
( ) - # of obs.

Average

Average

Average

Average

1 2 3

1 2 3

C. Informed and observed

Network Position
Period

Period

3

D. Uninformed and unobserved

2 3

B. Informed and unobserved

Network Position
Period

1

Table 2. The evolution of contributions over time by uninformed and informed types

A. Uninformed and observed

Network Position

Network Position
Period

1 2



Figure 1: The networks 
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Figure 2. Efficiency rates across networks
(sample means and 95 percent confidence intervals)
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Figure 3. The frequencies of contributions across time for selected positions
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Figure 4. The frequencies of contribution at payoff-relevant states for selected positions
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Figure 5. The total contributions across time in the star-out network by subjects in positions B and C
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Figure 6. Efficiency in the star-in network conditional on the timing of contribution of position-A subjects

Efficient Under Over

314

59

31

146

0.0

0.1

0.2

0.3

1 2 3 4

F

Period

No contribution




