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1 Introduction
In many social and economic situations, individuals are influenced by the deci-
sions of others. The commonest examples occur in everyday life, as in choosing
a fashionable restaurant or a popular movie. But it has also been suggested
that similar influences affect technology adoption and asset market decisions.
For rational choice theory, however, the important question is why rational
maximizing individuals should behave in this way.
In recent years, a great deal of attention has been paid to the social learning

literature introduced by Banerjee (1992), and Bikhchandani, Hirshleifer, and
Welch (1992), describing situations in which individuals learn by observing the
behavior of others. This literature analyzes an economy where a sequence of
Bayesian individuals make a once-in-a-lifetime decisions under incomplete and
asymmetric information1. The typical conclusion is that, despite the asymmetry
of information, eventually every individual imitates her predecessor, even though
she would have chosen differently if she had acted on her own information alone.
In this sense, individuals rationally ignore their own information and follow the
herd.
Two phenomena that have elicited particular interest are informational cas-

cades and herd behavior, which can arise in a wide variety of economic circum-
stances2. These phenomena have been deemed pathological because erroneous
outcomes may occur despite individual rationality, and they may in fact be the
norm in certain circumstances. While the terms informational cascade and herd
behavior are used interchangeably in the literature, Smith and Sørensen (2000)
emphasize that there is a significant difference between them. An informational
cascade is said to occur when an infinite sequence of individuals ignore their pri-
vate information when making a decision, whereas herd behavior occurs when
an infinite sequence of individuals make an identical decision, not necessarily
ignoring their private information.
In other words, when acting in a herd, individuals choose the same action,

but they may have acted differently from one another if the realization of their
private signals had been different. In an informational cascade, an individual
considers it optimal to follow the behavior of her predecessors without regard to
her private signal since her belief is so strongly held that no signal can outweigh
it. Thus, an informational cascade implies a herd but a herd is not necessarily
the result of an informational cascade.
The practical importance of the distinction between herds and cascades is

that in a cascade social learning ceases since individual behavior becomes purely
imitative and hence is uninformative. In a herd, in contrast, individuals become
more and more likely to imitate but their actions still may provide information.
Thus, the distinction is related to the social welfare properties rather than the
informational properties per se. When acting in a herd, a group settles on a

1For surveys see: Gale (1996), and Bikhchandani, Hirshleifer, and Welch (1998).
2For examples see, Finance: Scharfstein and Stein (1990); Welch (1992); Avery and Zemsky

(1998); Welch (2000). Auctions: Neeman and Orosel (1999). Political Economy: Morton and
Williams (1999). Industrial Organization: Kennedy (2002).
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single pattern of behavior and, at the same time, the behavior is fragile in the
sense that a strong signal may cause behavior to shift suddenly and dramatically.
In contrast, a cascade is stable, i.e., no signal can cause a change in the pattern
of behavior. Hence, the distinction between herds and cascades, so far not
addressed by the experimental literature, sheds light on questions such as why
mass behavior is so fragile and prone to fads.
Apparently, informational cascades, which are defined in terms of (unobserv-

able) beliefs, are much harder to identify than herds, which are defined in terms
of (observable) actions. In market settings, we observe behavior but not beliefs
or private information. In the laboratory, in contrast, we can elicit subjects’
beliefs and control their private information. A novel setup and an elicitation
technique enable us to distinguish informational cascades from herd behavior.
The paper reports an experimental test of a model based on Çelen and Kariv

(2002)3. We employ a design in which a sequence of subjects draw private signals
from a uniform distribution over [−10, 10]. The decision problem is to predict
whether the sum of all subjects’ signals is positive or negative and to choose
an appropriate action, A or B. A is the profitable action when this sum is
positive and B if it is not. However, instead of choosing action A or B directly,
after being informed about the history of actions of others and before observing
their own private signals, subjects are asked to select a cutoff such that action
A will be chosen if the signal received is greater than the cutoff and action B
otherwise. Only after a subject reports her cutoff, is she informed of her private
signal, and her action is recorded accordingly.
As there is a one-to-one relation between subjects’ cutoffs and their beliefs

about the true state of the world, cutoff data enable us to determine which
subjects exhibit cascade behavior, i.e., acting irrespective of her private signal.
Such a subject is one who reports a cutoff −10 or 10. In contrast, a subject
who joins a herd but does not follow a cascade behavior is one who reports a
cutoff in the interval (−10, 10), indicating that for some signal she is willing
to make either decision, but when her private signal is realized she acts as her
predecessors did. Hence, cascade behavior is identifiable by the choice of a cutoff
while joining of a herd is identifiable from the realized action.
In the laboratory, we find that herd behavior occurs frequently as do cas-

cades. However, not all observed herds are cascades. Since the theoretical
result predicts that an informational cascade is impossible, we explain why cas-
cades often arise in the laboratory as a particular type of deviation from Bayes
rationality. For this purpose, we generalize the Bayesian model by allowing
the possibility that subjects make error and that they incorporate the possi-
bility that others are making errors into their beliefs. Our results suggest that
Bayesian models properly generalized to take account of human error success-
fully predict subjects’ behavior in the laboratory and provide an explanation
for cascade behavior.
The paper is organized as follows. The next section discusses continuum-

3This paper, focuses on observational learning under imperfect information. The conven-
tional perfect information setup is analyzed as a benchmark.
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signal and discrete-signal setups. Section 3 describes the experimental design
and procedures, and section 4 outlines the underlying decision problem. Section
5 summarizes the experimental results. Section 6 provides a modification of the
model by introducing the possibility of noise in the model and its estimation,
and section 7 concludes.

2 Continuum versus Discrete Setups
The most comprehensive study on social learning is provided by Smith and
Sørensen (2000). One of their departures from Bikhchandani, Hirshleifer and
Welch (1992) is the assumption that individuals may observe general signals.
So while Bikhchandani, Hirshleifer and Welch (1992) find that a cascade and,
consequently, a herd occurs, Smith and Sørensen (2000) show that with a con-
tinuous signal space herd behavior arises, yet there need be no informational
cascade. That is, even during herding, when making a decision everyone may
take private signals into account. If the signals were different, the individuals’
actions might also change.
In a seminal paper, Anderson and Holt (1997) investigate social learning

experimentally4. Their design is based on the binary-signal-binary-action model
of Bikhchandani, Hirshleifer and Welch (1992)5. In their setup there are two
decision-relevant events, say A and B, equally likely to occur ex ante and two
corresponding signals a and b. Signals are informative in the sense that there is a
probability higher than 1/2 that a signal matches the label of the realized event.
The decision to be made by the experimental subject is a prediction of which of
the events will take place, basing the forecast on a private signal and the history
of past decisions. In such a binary signal structure, whenever two consecutive
decisions coincide, say both predict A, the subsequent individual should also
choose A even if her private signal is different, b. Anderson and Holt (1997)
identify rational cascades as a case in which a subject observes two consecutive
identical decisions and despite her contrary private information, chooses the
same action. In their setup, this is the only way one can detect informational
cascades. They report that rational cascades formed in most rounds and that
about half of the cascades were incorrect.
In our setup, unlike Anderson and Holt (1997), while there are two events

which, ex ante, are equally likely to occur, there is a continuous signal space. The
following example illustrates the importance of this difference. Suppose that a
sequence of individuals who act alike is followed by someone who deviates. What
may successors conclude by observing the deviation? In Anderson and Holt
(1997)’s discrete signal world, such a deviation is impossible when individuals
are Bayes-rational, but in a continuous signal world, successors might instead

4Following Anderson and Holt (1997), a number of experimental papers analyzed several
aspects of social learning. Among others, Hung and Plott (2001), and Kübler and Weizsäcker
(2003) extend Anderson and Holt (1997) to investigate further possible explanations for cas-
cade behavior.

5Anderson and Holt (1996) describe a simple classroom setting of such an experiment.
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infer that the deviator has private information that is so convincing that it leads
her to deviate. That is, the deviator’s private signal is so strong that it provokes
a rational deviation.
To summarize, in the discrete-signal-discrete-action setup all herds are cas-

cades since once two consecutive decisions coincide no signal can lead to a de-
viation. In contrast, our continuous-signal-discrete-action setup, along with our
belief elicitation method, enables us to distinguish cascades and herds com-
pletely.

3 Experimental Design
The experiment was run at the Experimental Economics Laboratory of the
Center for Experimental Social Sciences (C.E.S.S.) at New York University.
The 40 subjects in this experiment were recruited from undergraduate economics
classes at New York University and had no previous experience in social learning
experiments. In each session eight subjects participated as decision-makers.
After subjects read the instructions (the instructions are available upon request)
they were also read aloud by an experimental administrator6. The experiment
lasted for about one and a half hours. A $5 participation fee and subsequent
earnings for correct decisions, which averaged about $22, were paid in private at
the end of the session. Throughout the experiment, we ensured anonymity and
effective isolation of subjects7 in order to minimize any interpersonal influences
that could stimulate uniformity of behavior.
Each experimental session entailed 15 independent rounds, each divided into

eight decision-turns. In each round, all eight subjects took decisions sequentially
in a random order. A round started by having the computer draw eight numbers
from a uniform distribution over [−10, 10]. The numbers drawn in each round
were independent of each other and of the numbers in any of the other rounds.
Each subject was informed only of the number corresponding to her turn to
move. The value of this number was her private signal. In practice, subjects
observed their signals up to two decimal points.
Upon being called to participate, a subject first observed the history of

the actions taken her predecessors in that round. After this and before being
informed of her private signal, each subject was asked to select a number between
−10 and 10 (a cutoff), for which she would take action A if her signal was above
the cutoff and action B if it was not. Action A was profitable if and only if
the sum of the eight numbers was positive and action B otherwise. Only after
submitting her decision, the computer informed her of the value of her private

6At the end of the first round, subjects were asked if there were any misunderstandings.
No subject reported any problems with understanding the procedures or using the computer
program.

7Participants’ working-stations were isolated by cubicles making it impossible for partici-
pants to observe other’s screens or to communicate. We also made sure that all remained silent
throughout the session. At the end of a session, participants were paid in private according
to the number of their working-stations.
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signal. Then, the computer recorded her decision as A if the signal was higher
than the cutoff she selected. Otherwise, the computer recorded her action as B.
After all subjects had made their decisions, the computer informed everyone

what the sum of the eight numbers actually was. All participants whose deci-
sions determined A as their action earned $2 if this sum was positive (or zero)
and nothing otherwise. Similarly, all whose decisions led to action B earned $2
if this sum was negative and nothing otherwise. This process was repeated in
all rounds. Each session was terminated after all 15 rounds were completed.

4 Some Theory

4.1 The Bayesian Solution

To formulate the Bayesian solution of the decision problem underlying our ex-
perimental design, suppose that each individual n ∈ {1, ..., 8} receives a private
signal θn drawn from a uniform distribution with support [−10, 10]. Assume
that private signals are i.i.d. across individuals. Each individual n has to make
a binary decision xn ∈ {A,B} in a sequential order where action A is profitable
if and only if

P8
i=1 θi ≥ 0, and action B is the profitable one otherwise8. All

decisions are announced publicly and therefore known to all successors.
Note that the decision problem involves incomplete and asymmetric informa-

tion. That is, individuals are uncertain about the underlying decision-relevant
event,

P8
i=1 θi ≥ 0 or

P8
i=1 θi < 0, and the information about it is shared

asymmetrically among them. Further, there is no private signal which can en-
able any individual to resolve the uncertainty by herself. This is referred in the
theoretical literature as a case of bounded beliefs.
The optimal decision rule of individual n can be summarized as

xn = A if and only if E
∙X8

i=1
θi | θn, (xi)n−1i=1

¸
≥ 0,

Since no one has any information about her successors’ signals, we get

xn = A if and only if E
hXn

i=1
θi | θn, (xi)n−1i=1

i
≥ 0.

Hence,

xn = A if and only if θn ≥ −E
∙Xn−1

i=1
θi | (xi)n−1i=1

¸
.

It readily follows that the optimal decision, as a function of the realized history
of actions, follows cutoff strategy

xn =

½
A if θn ≥ θ̂n,

B if θn < θ̂n,
(1)

8A note of clarification: From a technical point of view, this setup is different from the
standard herding models, as private signals are conditionally dependent, i.e., conditional on
the state of the world, signals are negatively correlated. In general, correlated signals make
the model very hard to solve; in our case, however, the reverse is true. Our results by and
large do not depend on the conditional dependence assumption.
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where

θ̂n = −E
∙Xn−1

i=1
θi | (xi)n−1i=1

¸
(2)

is the optimal history-contingent cutoff.
Note that θ̂n inherits all the information that individual n learns from the

history of actions. As such, it determines the minimum private signal for which
she optimally decides to choose action A. Hence, θ̂n is sufficient to characterize
individual n’s behavior, and thus, the process of cutoffs {θ̂n} characterizes the
social behavior. That is why we take it as the object of the experimental design
and analysis.

4.2 An Illustration

To provide some intuitive interpretation, we discuss the Bayesian reasonings of
the first few individuals. The first individual’s decision must be based solely
on her private signal. Thus the expected value of any of her successors’ signals
conditional on her information is zero. Hence, her cutoff is θ̂1 = 0 and she
takes action A if and only if θ1 ≥ 0 and action B otherwise. Since the second
individual observes the first’s action, she conditions her decision on x1. Thus,
according to (2)

θ̂2 =

½
−5 if x1 = A,
5 if x1 = B.

To clarify, if for example x1 = A then E [θ1 |x1 = A ] = E [θ1 |θ1 ≥ 0 ] = 5
and thus it is optimal for the second individual to take action A if and only if
θ2 ≥ −5. Similarly, if x1 = B it is optimal for her to take action A if and only
if θ2 ≥ 5.
Note that the second individual may imitate the first even though she would

have made a contrary decision had she based her decision solely on her own
signal. Moreover, any deviation of the second individual reveals that her private
signal is contrary to and stronger than the expected value of the first’s private
signal. Therefore, when the third individual observes a deviation, her cutoff is
more sensitive to the second’s action. By (2), a simple computation yields the
third individual’s cutoff rule:

θ̂3 =

⎧⎪⎪⎨⎪⎪⎩
−7.5 if x1 = A, x2 = A,
−2.5 if x1 = B, x2 = A,
2.5 if x1 = A, x2 = B,
7.5 if x1 = B, x2 = B.

Proceeding with the same analysis, we find that if the first three individuals
choose A, the fourth individual will choose A as long as θ̂4 ≥ −8.75; if the
first four individuals choose A, the fifth individual will choose A as long as
θ̂4 ≥ −9.375; and so on. Thus, the longer the sequence of individuals who
choose A, the harder it is for a single individual to choose action B, even if her
private signal is very negative.
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An important concept discussed in Smith and Sørensen (2000) is the over-
turning principle. This asserts that even if many individuals have acted alike,
following a rational deviation, the information revealed from the history to that
point (almost) cancels out. For successors must conclude that the final deviant
received a strong signal favoring the contrary action, and unconditional on any
new signals, they should infer this fact, and follow suit.

[Figure 1 here]

For example, if the fourth individual chooses B after her three predeces-
sors choose A, her action reveals that her signal is in the interval [−10,−8.75).
In such a case, according to (2), the fifth individual will choose A as long as
θ̂5 ≥ 0.625. In sum, the longer the sequence of individuals acting alike, the
larger the asymmetry between the information revealed by an imitation and a
deviation. Moreover, no matter how many individuals have acted alike, it is al-
ways possible that one individual who receives an extreme signal will not follow
the historic pattern to that point. Figure 1 illustrates the sequences of cutoffs
for two histories. In sequence one, all individuals choose action A. Therefore,
as time passes individuals become more confident that action A is the profitable
one. In sequence two, the first two individuals take action A and all subse-
quent individuals take action B. Thus, the third individual deviates, revealing
information indicating strongly that her signal favors action B. Because of this
newly revealed information, the fourth individual’s cutoff is very close to zero
but yet favors action B.

4.3 Some Definitions

Next, we define some key concepts to which we refer throughout the paper. We
identify a subject who engages in cascade behavior as one who reports a cutoff
−10 or 10, and thus takes either action A or B, no matter what her private
signal is.
We say that an informational cascade occurs in the laboratory when begin-

ning with some subject, either all report cutoffs −10, or all report cutoff 10,
and herd behavior occurs when, beginning with some subject, all take the same
action.
Therefore, a subject who joins a herd but does engage in cascade behavior

is one who reports a cutoff in the interval (−10, 10), indicating that there are
some signals that can lead her to choose action A, some to choose B but when
her private signal is realized she will act as her predecessors did.

4.4 A Note on Herds and Cascades

Since any history of actions is public information shared by all successors, all the
information revealed by the history (xi)

n−2
i=1 is already accumulated in individual

(n − 1)’s cutoff. Therefore, individual n’s cutoff is altered only by the new
information revealed by individual (n− 1)’s action. To be exact, θ̂n is different
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from θ̂n−1 only by E[θn−1 | xn−1, θ̂n−1]. As a result, the cutoff rule (2) exhibits
the following recursive structure:

θ̂n = θ̂n−1 − E[θn−1 | θ̂n−1, xn−1] (3)

with the following updating rule,

E
h
θn−1 | θ̂n−1, xn−1

i
=

(
10+θ̂n−1

2 if xn−1 = A,
−10+θ̂n−1

2 if xn−1 = B.
(4)

Substituting (4) in (3) we see that the cutoff dynamics follows the stochastic
process

θ̂n =

(
−10+θ̂n−1

2 if xn−1 = A,
10+θ̂n−1

2 if xn−1 = B,
(5)

where θ̂1 = 0.
The impossibility of an informational cascade follows immediately from (5)

since for every n, −10 < θ̂n < 10. That is, in making a decision, everyone takes
her private signal into account in a non-trivial way. Thus, from a theoretical
point of view informational cascades are mistakes. Also, the cutoff dynamics
(5) captures the distinction between herd behavior and informational cascades.
Note that when all choose action A (B) the cutoff process tends to move rapidly
toward −10 (10). As a result, since the probability of imitation increases, herd
behavior becomes more likely.
Technically, the cutoff process {θ̂n} has the martingale property, i.e., E[θ̂n |

θ̂n−1] = θ̂n−1. So, by the Martingale Convergence Theorem it converges to a
random variable θ̂∞ almost surely as n → ∞. In particular, θ̂∞ = −10 or
θ̂∞ = 10 with probability one — namely, the two fixed points of (5). Further,
since convergence of the cutoff process implies convergence of actions by (4),
the behavior cannot be overturned forever. Thus, the behavior settles down in
some finite time and is consistent with limit learning. In conclusion, we have
rendered informational cascades an observable behavioral phenomenon in this
model, and they ought not occur. Still, a herd must arise.

5 Experimental Results
Over all sessions, herd behavior of at least five subjects, was observed in 27
of the 75 rounds (36 percent). As Table 1 summarizes, of the 27 herds, 13
(48 percent) involved all eight subjects acting alike. Herding also occurred in
24 of the 37 (64.8 percent) rounds in which it is predicted by Bayes rule9.
Moreover, all herds, except one turned out to be on the correct action. In
contrast, Anderson and Holt (1997) report that about half of the herds turned
out to be on the incorrect action. Theoretically, however, the difference between

9 In other words, it the subjects were Bayesians, playing the game according to (5), given
the realization of the signals, we should have observed herding in 37 rounds.

9



the probabilities of an incorrect herd in this setup and in Anderson and Holt
(1997) is negligible10 .

[Table 1 here]

Table 1 shows the cutoffs in rounds in which all eight subjects acted alike.
Note that when a subject observed a history in which all previous actions were
identical, she typically favored joining the herd for a larger set of private signals
by setting her cutoff far from zero in a direction consistent with her predecessors’
behavior. Since the cutoff strategy is symmetric around zero, we take a mirror
image transformation11 and use the average of the transformed cutoffs to get an
idea of the average trend. The result suggests that as subjects observed more
identical past actions, they became more confident about the profitability of the
herded action. Moreover, we can readily notice that cascade behavior was, in
general, increasingly likely to occur towards the last turns of a round. However,
an informational cascade was not a necessary condition for herd behavior. For
instance, subjects in the last turns of what we have labeled session/round 2/7
(the seventh round in the second session), 4/9, 5/5 and 5/9, participated in
herds but still set their cutoffs in the interval (−10, 10).
Perhaps our most unexpected result, at least from the view point of theory,

is that informational cascades were observed in 26 rounds (34.7 percent). Of
these 26 rounds, in one round the last four subjects, in four rounds the last three
subjects, in 11 rounds the last two subjects and in 10 rounds the last subject
followed cascade behavior12. In addition, cascade behavior was observed 32
times outside of informational cascades13 . Table 2 shows the rounds in which
the longest informational cascades occurred.

[Table 2 here]

Finally, only 7.2 percent of all decisions, excluding the first decision turn in
each round, were inconsistent with the observed history in the sense that the
sign of the cutoff actually employed is opposite to what it should be according
to (5) given the history of past actions. For example, in round 2/13 (see Table
2), the second subject favored action A even though the action she observed

10 In Anderson and Holt (1997)’s setup with signal precision 2/3, simple calculations yield
that the probabilities of a correct herd, or an incorrect herd, are 70.6 percent and 28.3 percent
respectively. In this setup, it cannot be found analytically since, conditional on the true state
of the world, private signals are negatively correlated. However, with the help of simulations,
we find that the probabilities of a correct herd, or an incorrect herd of at least five individuals
are 75.7 percent and 23.7 percent respectively.
11We call decisions made by subjects concurring if the sign of their cutoff is as they should

be according to theory. Otherwise, we say that the decisions are contrary. We transform the
data by taking the absolute value of cutoffs in concurring decision points and negative of the
absolute value of cutoffs at contrary decision points.
12Of all 40 subjects only two followed cascade behavior in all 15 rounds in which they

participated.
13We identify a subject who engages in cascade behavior which was not a part of any cascade,

as one who reports a cutoff −10 (10) and there exist a subsequent subject who reports a cutoff
in the interval (−10, 10] ([−10, 10)).
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was B. Similarly, the third subject favored action B, where past actions should
have led her to favor action A.

6 An Econometric Analysis
The frequency of herd behavior, and the fact all herds, except one, turned out
to be correct, suggests that subjects process the information revealed by others’
actions, and attempt a best response based on this information. In so doing
subjects must presumably estimate the errors of others and consider this in
processing the information revealed by their predecessors’ actions. Like An-
derson and Holt (1997), we attempt to formulate this by estimating a recursive
model that allows for the possibility of errors in earlier decisions. This approach
enables us to evaluate the degree to which Bayes rationality explains behavior
in the laboratory. However, while Anderson and Holt (1997) use subjects’ ex-
pected payoffs, our cutoff elicitation allows us to estimate recursively the process
of cutoff determination adjusted for decision errors and independent shocks.
To incorporate the possibility that individuals can make mistakes, we mod-

ify the original model, relaxing the assumption of rationality. To be precise,
we assume that at each decision turn n, with probability pn an individual is
Bayesian and rationally computes her cutoff, and with probability 1−pn, she is
noisy, in the sense that her cutoff is a random draw from a distribution function
Gn with support [−10, 10] and mean θ̃n. Suppose that others cannot observe
whether an individual’s behavior is noisy, but the sequences {pn} and {Gn} are
common knowledge among individuals.
At any turn n > 1, a rational individual makes her decision based on the in-

formation revealed by the history (xi)
n−1
i=1 taking the noise, (pi)

n−1
i=1 and (Gi)

n−1
i=1 ,

into consideration. Since all the information revealed by the history (xi)
n−2
i=1 is

already accumulated in the cutoff of the rational individual at turn (n− 1), the
cutoff rule of rational individuals exhibits the following recursive structure:

θ̂n = θ̂n−1 − pn−1E[θn−1 | θ̂n−1, xn−1]− (1− pn−1)E[θn−1 | Gn−1, xn−1]

where

E[θn−1 | Gn−1, xn−1 = A] =

Z 10

−10

10 + x

2
dG(x) =

10 + θ̃n
2

,

and

E[θn−1 | Gn−1, xn−1 = B] =

Z 10

−10

−10 + x

2
dG(x) =

−10 + θ̃n
2

.

Hence, the cutoff dynamics of rational individuals follow the process

θ̂n = θ̂n−1 −
(

10+(1−pn−1)θ̃n−1+pn−1θ̂n−1
2 if xn−1 = A,

−10+(1−pn−1)θ̃n−1+pn−1θ̂n−1
2 if xn−1 = B,

(6)

where θ̂1 = 0.
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In addition, we assume that rational individuals could tremble, in the sense
that their cutoff embodies uncorrelated small computation or reporting mis-
takes. To be precise, a rational individual in turn n reports cutoff θ̂n + φn
where φn is distributed normally with mean 0 and variance σ

2
n. It is important

to note, however, that the mistakes of the rational individuals differ from the
behavior of noisy individuals since the former is a tremble from the rational
cutoff, i.e., has mean θ̂n, whereas the later is simply random behavior.
Under these assumptions, at any decision turn n and round i, the expected

cutoff is
yin = (1− pn)θ̃n + pnθ̂

i

n + pnφ
i
n

and in matrix form

yn = (1− pn)θ̃n1+ pnθ̂n + pnφn (7)

where yn,1, θ̂n, and φn are vectors whose components are yin, 1, θ̂
i

n and φin
respectively.
This leads the following econometric specification:

yn = αn1+ βnzn + εn (8)

where
αn = (1− pn)θ̃n−1, βn = pn, εn = pnφn

and for any round i, z1 = 0 and for any n > 1

zin = zin−1 −
(

10+(α̂n−1+β̂n−1z
i
n−1)

2 if xin−1 = A,
−10+(α̂n−1+β̂n−1zin−1)

2 if xin−1 = B,
(9)

is the ith component of vector zn14 .
Notice that the parameters are estimated recursively. That is, the estimated

parameters for the first decision-turn, α̂1 and β̂1, are employed in estimating
the parameters for the second turn, α2 and β2, and so on. So, at each turn
n, the estimates for the previous turn α̂n−1 and β̂n−1 are used to calculate an

estimate of the optimal cutoff for each decision θ̂
i

n, denoted by zin, according
to (9), which, in turn, constitutes the independent variable in the estimation
(8) for that turn. This is the sense in which the updating rule given by (9) is
optimally adjusted to previous decision errors in a Bayesian way. The error-
adjusted updating rule (9) suggests that rational individuals estimate average
errors in earlier decisions and take them into account in making their decisions.
This is the behavioral interpretation of the recursive econometric method.
As to the interpretation of the parameters, coefficient β is the probability

that a subject participating in decision-turn n is rational, which can be in-
terpreted as a parameterization of the average weights given to the information
14Note that a cutoff, which is based on the observed histories of decisions adjusted to

previous decision errors, may escape the support of private signals, i.e. go outside the interval
[−10, 10]. In such cases, we set the cutoff at the corresponding boundary. That is, whenever
zin < 10 (zin > 10) we set it to 10 (−10).
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revealed by the history of actions. On the other hand, coefficient α can be inter-
preted as a parameterization of the information processing bias such as a blind
tendency toward a particular action. For example, since θ̃n = αn/(1−βn), when
βn < 1, any αn < 0 (αn > 0) indicates that subjects participating in turn n are
biased toward action A (B). When the information processing biases diminish,
i.e., αn → 0, and βn → 1 (and σ2n → 0), the behavior tends to become Bayesian.
That is, when αn = 0 and βn = 1 for all n, according to (8), the laboratory
decision-making conforms perfectly with the optimal history-contingent cutoff
process given by (5). Similarly, the behavior tends to be random as αn → 0
and βn → 0. Notice that when αn = βn = 0 (and σ2n → 0), equation (8)
requires expected cutoff to be zero, which is simply a choice based on private
information. In general, any βn < 1 indicates that the population of subjects in
turn n underweights the information revealed by the history of others’ actions
relative to their private information. This is a plausible response to the belief
that others can make errors in their decisions. In a simulation that was carried
out taking byn as the benchmark cutoff and the corresponding realized signals
in the experiment, our estimation accurately predicts 467 (77.8 percent) of the
600 actions in the experiment. Table 3 reports the results15.

[Table 3 here]

As Table 3 reports, we fail to reject the hypothesis that α̂n = 0 in all turns,
which is strong support for the inference that noisy subjects do not have any
systematic bias towards a particular action, A or B, and the β̂n coefficients are
bounded away from zero and one. Note that on average a subject acting as a
second decision-maker tends to undervalue sharply the first subjects’ decision,
β̂2 = 0.22. Thus, our econometric results strongly suggest that subjects who
take decisions early have a substantial tendency to determine their cutoffs ran-
domly instead of employing Bayesian reasoning. Also noteworthy is the obvious
upward trend in the β̂n coefficients, which indicates that over time subjects tend
to approach to Bayesian updating more closely. Put differently, along the line of
subjects the information revealed by the history of actions is relied upon more
and subjects become increasingly likely to imitate their predecessors.
Note that when noisy individuals ignore history and make decisions solely

on the basis of private information, by simply setting cutoffs at zero, put side
by side with a rational individual, a noisy individual reveals more of her pri-
vate information. Thus, our empirical results indicate that, in Bayesian terms,
subjects weigh their own information too heavily and give too little weight to
public information. Furthermore, subjects who are early decision-makers tend
to rely more heavily on their own information in the learning process, which
then becomes available to late decision-makers, who tend more to be Bayesian.
This finding explains why informational cascades arise in the laboratory.

This is because someone who overweights private information, reveals more in-

15The GLS random-effects (mixed) estimators and robust variance estimators for indepen-
dent data and clustered data (data not independent within subjects but independent across
subjects) yield similar results.
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formation about the private signal, and, as a result, may stimulate an informa-
tional cascade. To illustrate this, note that since α̂1 = α̂2 = α̂3 = 0, β̂2 = 0.22
and β̂3 = 0.48 whenever the first three individuals take the same action, say
A,A,A, a simple calculation using (6) shows that the cutoff of a subsequent
rational individual escapes the support of private signals, θ̂4 < −10, and thus
she chooses A no matter what her private signal is.
Next, we turn our attention to the following question: How well do our

econometric results predict cascade behavior?
To answer this question, for each decision turn, we first find the number of

rounds for which the estimation predicts that a rational individual would engage
in cascade behavior, i.e., according to (9), either zin = 10 or z

i
n = −10. Then, we

multiply this number by the estimated probability that an individual is rational,
β̂n, to obtain the expected number of occurrences of cascade behavior. As a
goodness-of-fit measure, the histograms in Figure 2 compare, turn by turn, the
proportion of rounds in which cascade behavior was observed in the laboratory
(Black) to the proportion of rounds it was predicted by the model (Gray).
Figure 2 shows that in decision turns 4-8 the estimation adequately predicts
cascade behavior in the laboratory: overall there is no significant difference
from what the estimation predicts. However, in turns 1-3, even though the
estimation predicts the impossibility of rational cascade behavior, it still arises
in the laboratory. We attribute the cascade behavior in early decision turns to
noisy individuals who are more populated in these turns.

[Figure 2 here]

So far, we have focused on the frequency of cascade behavior as a goodness-
of-fit measure between the observed behavior and the one prescribed by the
estimation. This tells only part of the story as it ignores how well the estima-
tion fits the data decision point by decision point. Note that we can organize
the data in terms of cascade behavior into four possible cases: the estimation
predicts that a rational individual would engage in cascade behavior and cas-
cade behavior is observed or not observed (cases I and II respectively), and
the estimation predicts that a rational individual would not engage in cascade
behavior and cascade behavior is observed or not observed (cases III and IV
respectively). Figure 3 summarizes these cases.

[Figure 3 here]

In case I, our prediction attributes the observed cascade behavior to rational
subjects. By contrast, in case II, even though the prediction of our estimation
suggests that rational subjects would engage in cascade behavior, we do not ob-
serve such behavior. This observation leads us to conclude that the decisions in
case II originate from noisy subjects. Similarly, we can identify the decisions in
case III as noisy since the estimation predicts that a rational individual would
not engage in cascade behavior and cascade behavior is observed. A notable
difference between cases I and II is that, for case II these decisions might be
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attributable to a preference for conformity16. This type of cascade behavior
was observed many years ago in social psychology experiments. This literature
suggests several alternative explanations to the rational view of cascade behav-
ior. In particular, individuals inherently wish to confirm with the behavior of
others because this inclination to confirm is a natural property of individual
preferences, i.e., preferences for conformity for its own sake17. Lastly, in case
IV, the estimation remains silent about the composition of rational and noisy
decisions. This is because the prediction that a rational subject would engage in
cascade behavior does not necessarily imply that the observed behavior comes
from a rational subject.
In order to put the observed behavior into perspective, for each turn n let

Ck
n denote the number of occurrences in case k and consider the ratios

r1n :=
CI
n

CI
n + CIII

n

and r2n :=
CII
n

CII
n + CIV

n

.

Hence, for decision points where cascade behavior was observed (not observed)
in the data, r1n (r

2
n) is the fraction that the model predicts that a rational subject

would engage in cascade behavior. Table 4 summarizes the percentages of each
case and the ratios, r1n and r2n by turn. Note that r

1
n is higher than r2n in late

decision-turns, indicating that the estimation is not only predicting the right
frequencies of rational and noisy cascade behavior, but also predicting it in the
right occurrences. Furthermore, r1n also provides an upper bound on the fraction
of cascade occurrences in turn n which, according to the estimation, might have
resulted from rational behavior.

[Table 4 here]

Finally, it will be illustrative to compare the predictions of the modified
model with the Bayesian model. For this purpose Figure 4 compares the theo-
retical Bayes’ cutoff process and the estimated error-adjusted expected processbyn for two histories. When all choose action A (sequence one), the estimated
expected cutoffs are far above their theoretical counterparts in early decisions,
meaning a relative predisposition of subjects to follow their private informa-
tion. However, over time, the gap between the theoretical and estimated cutoffs
diminishes, which suggests that the Bayesian solution, as given by cutoff strat-
egy (5), adequately predicts the behavior of a large portion of subjects in the
laboratory18. One may argue that this result is not robust since a history in

16Hung and Plott (2001) manipulate the payoff structure of Anderson and Holt (1997) to
investigate further possible explanations for cascade behavior in binary-signal-binary-action
setup. They reject preference for conformity and non-equilibrium Bayesian behavior as expla-
nations, in favor of Bayesian equilibrium behavior.
17For early literature, see Asch (1958). Anderson, et al. (1997) review this psychology

literature and provide additional references. In the economics literature, Bernheim (1994)
formulates some relevant concepts.
18Note that when all choose action A, ẑn, which is the estimate of the rational cutoff θ̂n,

equals −10 at late decision turns but ŷn = α̂n + β̂nẑn does not escape the support of private
signals.
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which all subjects act alike is a very special case. However, Bayes rationality
also performs well as a predictor of the behavior observed in the laboratory in
case of an overturn. When the first two subjects take action A and all subse-
quent subjects take action B (sequence two), the estimated cutoffs show that
an average successor follows the deviation, as the theoretical findings indicate,
although she values the newly revealed information a little less than the theory
predicts. This is an obvious reaction to the possibility that her predecessor’s
deviation is erroneous.

[Figure 4 here]

To conclude, the subjects’ behavior can best be characterized as a mixture of
bounded rationality and rationality. Taken as a whole, the estimated cutoffs are
properly modified to take these traits into account and this permits successful
prediction of the subjects’ behavior in the laboratory.

7 Concluding Remarks
Social learning models are easily adapted to an experimental setting and this
has provided a valuable opportunity to test theoretical predictions. In addition
to testing the theory, by using a novel setup, this paper discovers behavior
patterns about which the existing theory has little to say. This paper offers two
contributions to method: First, our experiment shows how a continuous-signal
social learning model can be tested, theoretically yielding a behavior richer than
the one of the simple binary-signal models tested by Anderson and Holt (1997).
Second, it shows the use of a cutoff elicitation technique to elicit subjects’ beliefs.
This enables us to distinguish herd behavior experimentally from the important
behavioral phenomenon, the informational cascades, and leads us to examine
how well Bayes rationality approximates the actual behavior observed in the
laboratory.
Our results are summarized as follows. First, we find that herd behavior

develops frequently (36 percent) in the laboratory and that all herds, except
one, turned out to be correct. This is particularly interesting since a prediction
of the theory, which was matched in many experiments, is that mass behavior
is likely to be erroneous. Moreover, as apposed to the impossibility of informa-
tional cascades prediction of the theory, we find that cascades often arise (34.7
percent). Thus, we conclude that although cascades are not a theoretical pos-
sibility, they are a reality. Second, we find that in the laboratory subjects give
excessive weight to their private information relative to the public information
revealed by the behavior of others, but, over time, they tend towards Bayesian
updating. We have used this result to help explain why the cascade behavior
observed in the laboratory may, after all, be rational.
The message of the paper is, therefore, that its novel setup, along with its

elicitation method, enriches the social learning paradigm and, at the same time,
provide an effective explanations of mass behavior. Special interest is merited
by the sequential decision problem that permits patterns of mass behavior to
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be fragile and easily overturned after a deviation, a type of episodic instability
that is characteristic of social behavior in the real world. In this way, we find
the experimental results helpful both for understanding and improvement of
the theory of social learning. The experimental techniques and results that we
have developed provide some tools promising for future work in this area, which
is certainly needed for fuller understanding of the economic impact of social
learning.
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Session/ Action
Round* herded 1 2 3 4 5 6 7 8

1/11 B 0 4.25 10 5 10 10 10 10
2/7 A 4 1 -2 1 -6.1 -10 0 -9.4
2/1 B 2 3 9 10 10 9.8 10 10

2/11 A -6.1 -2 -6 -10 -8.8 0 -10 -10
2/14 A 0 -7 -10 -10 -4 -9.9 -10 -10
3/1 A 0 1.5 -0.01 -2 -10 0 0 -10
4/3 A -5 5 0 -4 -10 -9.87 -10 -10
4/9 B 5.4 10 8.69 6.4 3 9 10 8.5

4/12 A 0 0 -9 -10 -9.13 -5 -10 -10
4/15 B 10 9.99 5 0 9.9 10 10 10
5/3 B 0 4 -2 10 2 10 0 10
5/5 A -1 0 -10 -8 -5 -10 5 0
5/9 A 0 0 -10 -10 -3 -10 -6 -9

2.0 2.5 6.3 6.5 7.0 8.0 6.2 9.0

** - Average of the cutoffs absolute values.

Table 1: Data for rounds in which all eight subjects acted alike

Cutoff by turn

Average**

** - (Session/Round). For example, 1/11 is the eleventh round in the first session.



Sum of
Signals

8:B 6:B 4:B 2:B 1:A 7:B 5:B 3:B
1/9 0 0 5 5 0 10 10 10 -15.2

-5.41 -7.12 -3.72 -1.89 3.59 5.59 1.76 -7.95
8:B 6:B 1:A * 3:A 4:A 2:A 5:A 7:A

1/1 0 0 -10 8.6 0 -10 -10 -10 1.5
-0.35 -4.71 -0.34 9.17 0.63 8.69 -7.61 -4.00
4:B 6:B 8:B 2:B 5:B 7:B 1:B 3:B

1/11 0 4.25 10 5 10 10 10 10 -10.5
-1.44 -2.71 0.74 -4.76 1.87 -7.94 4.80 -1.06
2:B 1:A * 5:A * 7:A 3:A 6:A 4:A 8:A

2/13 0 -1 1.5 -5.9 -6.6 -10 -10 -10 23.5
-1.50 4.11 4.11 1.35 6.42 -5.71 6.04 8.71
2:B 3:B 4:B 1:B 6:B 5:B 7:B 8:B

4/15 10 9.99 5 0 9.9 10 10 10 -19.5
-6.45 -4.56 -6.57 -1.82 6.05 0.8 -8.19 1.29

 - Cascade behavior.
*  - Cutoffs inconsistent with the observed history.

Cutoff

8Session/
Round

Table 2: Data for the rounds with the longest informational cascades

1 2 3 4 5 6 7

Private signal

Subject number : Action



Turn 1 2 3 4 5 6 7 8
# of obs. 75 75 75 75 75 75 75 75

-0.41 0.96 0.02 0.16 -0.02 0.39 -0.05 0.27
(0.53) (0.46) (0.56) (0.56) (0.48) (0.59) (0.63) (0.67)

-- 0.22 0.48 0.49 0.59 0.60 0.59 0.62
(0.09) (0.07) (0.07) (0.06) (0.07) (0.08) (0.08)
0.07 0.31 0.39 0.51 0.47 0.45 0.45

(standard errors)

Case 1 2 3 4 5 6 7 8
I 0 0 0 16.0 10.7 17.3 22.7 32.0
II 0 0 0 29.3 33.3 29.3 30.7 25.3
III 14.7 5.3 18.7 2.7 6.7 10.7 14.7 6.7
IV 85.3 94.7 81.3 52.0 49.3 42.7 32.0 36.0

0 0 0 0.86 0.62 0.62 0.61 0.83
0 0 0 0.36 0.40 0.41 0.49 0.41

Table 3: The econometric results by turn

Table 4: The percentages of each case of cascade behavior by turn

Decision turn

β̂

2R

1
nr
2

nr



Figure 1: Sequences of cutoffs for two histories
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Figure 2: Cascade behavior
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Figure 3: Cases of cascade behavior - observed and predicted
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Figure 4: Sequences of cutoffs for two histories - theory and estimated
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