Ever Since Allais∗

Aluma Dembo, Shachar Kariv, Matthew Polisson, and John K.-H. Quah†

May 10, 2021

Abstract

The Allais critique of expected utility theory (EUT) has led to the development of theories of choice under risk that relax the independence axiom, but which adhere to the conventional axioms of ordering and monotonicity. Unlike many existing laboratory experiments designed to test independence, our experiment systematically tests the entire set of axioms, providing much richer evidence against which EUT can be judged. Our within-subjects analysis is nonparametric, using only information about revealed preference relations in the individual-level data. For most subjects we find that departures from independence are statistically significant but minor relative to departures from ordering and/or monotonicity.

JEL Codes: D81, C91.

Keywords: rationality, expected utility, revealed preference, first-order stochastic dominance, experiment.

∗We are grateful to David Dillenberger, Federico Echenique, Yoram Halevy, Yusufcan Masatlioglu, and William Zame for discussions, and to a number of seminar audiences for suggestions. The experiments reported in this paper were conducted in the Experimental Social Science Laboratory (Xlab) at UC Berkeley and the California Social Science Experimental Laboratory (CASSEL) at UCLA. This research has made use of the ALICE High Performance Computing Facility at the University of Leicester and BlueCrystal/BluePebble High Performance Computing at the University of Bristol. Financial support was provided by the National Science Foundation (Grant No. SES-0962543).

†Dembo: Interdisciplinary Center Herzliya (aluma.dembo@idc.ac.il); Kariv: University of California, Berkeley (kariv@berkeley.edu); Polisson: University of Bristol (matthew.polisson@bristol.ac.uk); Quah: Johns Hopkins University and National University of Singapore (john.quah@jhu.edu).
“I can tell you of an important new result I got recently. I have what I suppose to be a completely general treatment of the revealed preference problem, which will give a fresh setting for the related work of Samuelson-Houthakker-Uzawa. Calculus methods are unavailable. The methods are set-theoretic or algebraical.” — A letter from Sydney Afriat to Oskar Morgenstern, 1964

1 Introduction

Canonical decision-theoretic models of choice under risk consider a decision-maker who has a complete and transitive preference relation over the set of lotteries (probability measures) on a set of consequences (outcomes). By Debreu’s (1954, 1960) theorem, any continuous preference relation can be represented by a continuous utility function, but any such continuous utility representation is admissible. For the utility function to have an expected utility representation, the preference relation must also satisfy the familiar von Neumann-Morgenstern (1947) independence axiom.

Expected utility theory (EUT) lies at the very heart of economics, and so it is natural that experimentalists would want to empirically test the axioms which characterize the EUT model. Empirical violations of these axioms generate intriguing questions about the rationality of individual behavior, and specifically raise criticisms of the independence axiom and its status as the touchstone for rational decision-making in the context of risk. In response to these criticisms, various generalizations of EUT have been formulated, and the experimental scrutiny of these theories has led to new empirical regularities in the laboratory.

Considerable effort has been put towards developing alternatives to EUT. Almost all of these models embody ordering (completeness and transitivity) and generalize EUT by weakening the independence axiom, while generally staying within the class of utility functions that are monotone (in other words, increasing) with respect to first-order stochastic dominance (FOSD); this is true, for example, of weighted expected utility (Dekel, 1986; Chew, 1989), rank-dependent utility (Quiggin, 1982, 1993), cumulative prospect theory (Tversky and Kahneman, 1992), and (under certain restrictions) reference-dependent risk preferences (Kőszegi and Rabin, 2007). The accompanying experimental investigations for the most part use pairwise choices, à la Allais, to test EUT and its generalizations, presuming that subjects have well-defined preferences.

Given that EUT is part of the core of economics — and not something that one can or should abandon lightly — we wish to provide a comprehensive assessment of all the axioms on which EUT is based, and not just the independence

1 Monotonicity with respect to FOSD is a natural and widely accepted principle in decision theory, so much so that theories of choice under risk have been modified to avoid violations of dominance, as pointed out by Quiggin (1990), Wakker (1993), and Starmer (2000); for example, cumulative prospect theory (Tversky and Kahneman, 1992) “dominance corrects” the original formulation of prospect theory (Kahneman and Tversky, 1979).

2 In the choice acclimating personal equilibrium model of Kőszegi and Rabin (2007), monotonicity with respect to FOSD holds if the coefficient of loss aversion is within a certain range (see Masatlioglu and Raymond (2016)).
axiom. Our overall objective is to provide a better, positive account of choice behavior under risk by evaluating the performance of EUT (and other models) in a choice environment where all features of the model(s) can be simultaneously evaluated. Our experiment and analysis draw upon our prior work (in particular, Choi et al. (2007b) and Polisson et al. (2020)). In the experiment, subjects choose an allocation of contingent commodities from a three-dimensional budget set through a simple “point-and-click” design. As our power analysis shows, data from three-dimensional budget sets provide a much stronger test — especially of EUT versus non-EUT alternatives — than data from two-dimensional budget lines (as collected by Choi et al. (2007b), Choi et al. (2014), and Halevy et al. (2018), among others).

Afriat’s (1967) theorem tells us that if a finite dataset generated by an individual’s choices from linear budget sets satisfies the Generalized Axiom of Revealed Preference (GARP), then the data can be rationalized by a well-behaved (by which we mean a continuous and increasing) utility function. This result provides a practical way of checking whether a dataset is rationalizable in this minimal/basic sense. There are also extensions of Afriat’s theorem that allow us to test whether a dataset can be rationalized by a utility function with stronger properties. In particular, we could test whether a dataset is FOSD-rationalizable, in the sense that it is consistent with the maximization of a utility function that is monotone with respect to FOSD, and whether a dataset is EUT-rationalizable, in the sense that it is consistent with the maximization of an expected utility function.

For datasets that do not satisfy GARP exactly, Afriat (1973) introduces the notion of the Critical Cost Efficiency Index (CCEI), which measures the extent to which budget sets need to be reduced in order to rationalize the data. The CCEI, denoted by e^*, is bounded between 0 and 1; the closer it is to 1, the smaller are the budgetary adjustments required for rationalizability. There are also known procedures to measure the extent to which budget sets need to be adjusted in order for a dataset to be FOSD-rationalizable and EUT-rationalizable. Thus, for any dataset collected from an individual subject’s choices, three CCEI-type scores can be calculated: e^* for (basic) rationalizability, e^{**} for FOSD-rationalizability (which can be no greater than e^* since FOSD-rationalizability is the more stringent requirement) and e^{***} for EUT-rationalizability (which can be no greater than e^{**} since EUT-rationalizability is the more stringent requirement).

While other measures of violations of rationalizability are available, we adopt the CCEI since it is straightforward to calculate and interpret (and, partly for those reasons) the most commonly used measure in empirical work. The use of the same measure for all three models we consider has the very important advantage that we can decompose violations of EUT and compare the magnitudes of violations of the different axioms from which EUT can be derived. Perfect consistency with EUT implies that $1 = e^* = e^{**} = e^{***}$, whereas perfect consistency with any of the familiar non-EUT alternatives (such as rank-dependent utility) that respect FOSD but not EUT itself implies that $1 = e^* = e^{**} > e^{***}$. Our rich individual-level data also allow us to make statistical comparisons of
rationalizability (e^*), FOSD-rationalizability (e^{**}), and EUT-rationalizability (e^{***}) for each subject, using a purely nonparametric econometric approach.

Figure 1 depicts the distributions of the e^*, e^{**}, and e^{***} rationalizability scores. The horizontal axis presents score values; the vertical axis indicates the percent of subjects whose score is above each value. Only a small fraction of our subjects are perfectly rationalizable (have no violations of GARP), but none are perfectly FOSD-rationalizable and thus EUT-rationalizable. More importantly, the difference between perfect rationalizability and FOSD-rationalizability ($1 - e^{**}$) is much larger at all score values than the difference between FOSD-rationalizability and EUT-rationalizability ($e^{**} - e^{***}$). This difference in differences is statistically significant for nearly all subjects. Violations of EUT thus run deeper than violations of independence, challenging the most prominent non-EUT alternatives.

The emphasis in our paper is to provide a comprehensive and nonparametric test of complete representations of preferences under risk rather than focusing on individual axioms. Our main result — that violations of EUT are relatively minor after accounting for violations of ordering and monotonicity — is what Quiggin (1982) calls an “undesirable result” as ordering and monotonicity are more fundamental principles than the standard independence axiom, and they are embodied in the most prominent non-EUT theories of choice under risk. As Starmer (2000) notes, economists have taken the view that the independence axiom needs to be weakened on the grounds of predictive validity and psycho-
logical realism, but have generally left ordering and monotonicity unchallenged.

Our rich individual-level experimental data involving three states and three associated securities could also be used, in principle, to test each non-EUT theory against the others. The different (weaker) alternatives deliver more empirically testable restrictions on observed behavior in the case of three states than in the case of two states. However, for most subjects there is only a small (or no) difference between FOSD-rationalizability \((e^{**}) \) and EUT-rationalizability \((e^{***}) \), which implies that there is little scope for existing non-EUT alternatives to explain observed behavior.

Looking ahead, we note that an important advantage of our methods and analyses is that they can be transported, with relative ease, to different decision domains. The experiment reported in this paper considers decision making under risk. In related ongoing work, we study decision making under uncertainty/ambiguity, and also intertemporal choice.

The rest of the paper is organized as follows. The next section provides more background and motivation. Section 3 describes our tests of rationalizability, experimental procedures, and the power of the experiment. Section 4 summarizes the experimental results. Section 5 describes how the paper is related to the literature, focusing on recent revealed preference papers on choice under risk. Section 6 outlines what we think that theorists, experimentalists, and other economists should take away from the paper. In the interests of brevity, all technical details that are not essential for understanding the results are relegated to the Appendix.

2 Background and Motivation

Much of the experimental literature on choice under risk is directed towards finding violations of EUT. To understand the role of each of the axioms on which EUT is based, suppose that there are three mutually non-indifferent outcomes \(x_h \succ x_m \succ x_l \) and consider the familiar Marschak (1950) and Machina (1982) probability triangle depicted in Figure 2. Each point in the triangle represents a lottery \((\pi_h, \pi_m, \pi_l) \) over the outcomes \((x_h, x_m, x_l) \), where \(\pi_h = 0 \) on the horizontal edge, \(\pi_m = 0 \) on the hypotenuse (because \(\pi_h + \pi_l = 1 \)), and \(\pi_l = 0 \) on the vertical edge.

Monotonicity with respect to FOSD implies that preferences are increasing from right to left along horizontal lines, from bottom to top along vertical lines, and from bottom-right to top-left along lines parallel to the hypotenuse (Figure 2a). Ordering (completeness and transitivity) plus continuity imply that there exists a map of (non-intersecting) indifference curves. Assuming that these axioms hold, independence then implies that preferences admit an expected utility representation, so that the indifference curves in the triangle are parallel straight lines (Figure 2b). Viewed within the context of the triangle, independence is a strong requirement, leaving only the slope of the indifference lines undetermined (steeper lines imply higher risk aversion).

An example of the famous Allais (1953) paradox is illustrated by a pair of
Figure 2: Marschak-Machina Triangles

The Marschak-Machina triangle depicts the lottery space as a set of probability weights \((\pi_h, \pi_m, \pi_l)\) over three fixed outcomes \((x_h, x_m, x_l)\). (a) Ordering (completeness and transitivity) plus continuity guarantee non-intersecting indifference curves; monotonicity (with respect to FOSD) guarantees that preferences are increasing as shown (see arrows). (b) Adding independence gives rise to EUT, characterized by indifference curves that are parallel straight lines. (c) The Allais paradox arises because EUT requires \(a \succ b\) and \(a' \succ b'\), but experimental subjects often make choices revealing that \(a \succ b\) but \(b' \succ a'\). Alternatives to EUT like (d) weighted expected utility and (e) rank-dependent utility often avoid the Allais paradox by relaxing independence while adhering to ordering and monotonicity.
binary choices — between lotteries a and b and between lotteries a' and b' (Figure 2c). The imaginary straight lines connecting lotteries a and b and lotteries a' and b' are parallel to each other and flatter than the indifference curves so $a \succ b$ and $a' \succ b'$. But experimental subjects often make choices revealing that $a \succ b$ but $b' \succ a'$ (or $b \succ a$ but $a' \succ b'$), which is commonly taken as evidence against independence. As a consequence, non-EUT models typically weaken the independence axiom while maintaining the axioms of ordering and monotonicity with respect to FOSD.

In weighted expected utility (Dekel, 1986; Chew, 1989), for example, all indifference curves are again straight lines but they typically “fan out” — that is, they become steeper (corresponding to higher risk aversion) when moving northwest in the triangle (Figure 2d).³ Or in rank-dependent utility (Quiggin, 1982, 1993) and prospect theory (Kahneman and Tversky, 1979, 1992) the indifference curves are not straight lines and they can “fan out” or “fan in”, especially near the triangle boundaries (Figure 2e). Each of the conventional alternatives to EUT gives rise to indifference curves with distinctive shapes in the Marschak-Machina triangle, but with the common feature that they avoid the Allais paradox.

In most experimental studies, the criterion used to evaluate a theory is the fraction of choices that it correctly predicts. A few studies have also estimated parametric utility functions for individual subjects. Generally speaking, these experiments involve collecting a small number of decisions from each subject, with the decisions involving very specific choices that are narrowly tailored to discover violations of independence and its various generalizations. There is less emphasis on ensuring that these decision problems are representative, both in the statistical sense and in the economic sense. As a result, the accumulated experimental evidence against independence that has prompted theorists to develop formal alternatives to EUT consists primarily of Allais-type behaviors — choices inconsistent with linear indifference curves in the Marschak-Machina triangle. Related to this, the more basic features of EUT — such as ordering and monotonicity — have not been systematically probed.

Although ordering and monotonicity are commonly-held assumptions in formal models on the grounds of analytical tractability, there is ample evidence that these postulates fail in experiments: subjects may exhibit “indecisiveness” (as opposed to indifference), or somehow execute intended choices incorrectly, or err in other ways that cause violations of these postulates. In this paper, we develop tests of rationalizability that are comprehensive in the sense that we check whether a given model — taken as a whole — succeeds or fails in explaining the data, rather than focusing on specific axioms like the independence axiom. Our overall objective is to provide a positive account of choice under risk in natural economic environments. The other important feature of our tests is that they are nonparametric, in the sense that we make no auxiliary functional form assumptions on the utility function.

³The indifference curves corresponding to disappointment aversion (Gul, 1991) are also straight lines but “fan in” for lotteries better than x_m (top part of the triangle) and “fan out” for lotteries worse than x_m (bottom part of the triangle). See Gul (1991), Figure 2 (p. 679).
3 Framework for Analysis

In this section, we describe the theory on which the experimental design is based, the design itself, and the power of the experiment. All technical details that are not essential for the experimental results are relegated to Appendix I.

3.1 Rationalizability

We consider a portfolio choice framework with \(S \) states of nature, each state denoted by \(s = 1, \ldots, S \). For each state \(s \), there is an Arrow (1962) security that pays one in state \(s \) and zero in the other state(s). Let \(x_s \geq 0 \) denote the demand for the security that pays off in state \(s \) and \(p_s > 0 \) denote the corresponding price, so that \(x = (x_1, \ldots, x_S) \) is a demand allocation and \(p = (p_1, \ldots, p_S) \) is a price vector. Let \(D := (p^i, x^i) \) be the data generated by a subject’s choices from linear budget sets, where \(p^i \) denotes the \(i \)-th observation of the price vector and \(x^i \) denotes the associated allocation. We say that a data set \(D \) is rationalizable if there is a utility function \(U : \mathbb{R}^S_+ \to \mathbb{R} \) such that \(U(x^i) \geq U(x) \) for all \(x \in B^i = \{x \in \mathbb{R}^S_+ : p^i \cdot x \leq p^i \cdot x^i \} \).

In other words, the utility of \(x^i \) is weakly higher than that of any alternative that is weakly cheaper at the price vector \(p^i \).

Note that rationalizability, as defined, has no empirical content, since any dataset \(D \) can be rationalized by a constant utility function. For this concept to be meaningful, some restriction has to be imposed on \(U \). A well-known result, due to Afriat (1967), tells us that \(D \) can be rationalized by a well-behaved (in the sense of being continuous and increasing) utility function if and only if the data satisfy the Generalized Axiom of Revealed Preference (GARP). GARP is an intuitive and (more importantly from the perspective of empirical application) easy-to-check condition on \(D \).

To account for data that are not exactly rationalizable, Afriat (1972, 1973) proposes the notion of the Critical Cost Efficiency Index (CCEI). Given a number \(e \in (0, 1] \), a dataset \(D \) is said to be rationalizable at cost efficiency \(e \) if there is a well-behaved utility function \(U \) such that \(U(x^i) \geq U(x) \) for all \(x \in B^i(e) = \{x \in \mathbb{R}^S_+ : p^i \cdot x \leq e p^i \cdot x^i \} \).

Clearly, approximate rationalizability weakens the notion of rationalizability since \(B^i(e) \) is a subset of \(B^i \). As Afriat (1973) notes, this definition captures the idea that while the consumer “has a definite structure of wants,” she “programs at a level of cost-efficiency \(e \).” It is not difficult to see that every dataset \(D \) could be rationalized by a well-behaved utility function at an efficiency level \(e \) for some \(e \in (0, 1] \) that is sufficiently close to zero.

The CCEI, denoted by \(e^* \), of a dataset \(D \) is the greatest \(e \) for which \(D \) is rationalizable. For example, if \(e^* = 0.95 \), then we can find \(U \) such that \(U(x^i) \) is greater than \(U(x) \) for any bundle \(x \) that is more than 5 percent cheaper than \(x^i \) at the prevailing prices \(p^i \). Alternatively, the decision maker is effectively
“wasting” as much as 5 percent of his income by making “irrational” choices. Just as GARP characterizes rationalizability by a well-behaved utility function, so too is there a modified version of GARP that can be used to check whether a dataset is rationalizable by a well-behaved utility function at some efficiency level e. It follows that one could easily obtain e^*. Afriat’s Theorem is just the first of a long list of results developed by various authors with the following pattern: D is rationalizable by a well-behaved utility function belonging to some family if and only if D obeys some property. For our purposes, two families are particularly important.

The first is the family of well-behaved utility functions that are monotone with respect to FOSD. In our framework, the probability of state s is commonly known to be $\pi_s > 0$, so that $\pi = (\pi_1, \ldots, \pi_S)$ is a vector of probability weights with $\pi_1 + \cdots + \pi_S = 1$. Then we say that U is monotone with respect to FOSD if $U(x'') \geq U(x')$ whenever x'' (considered as a distribution through π) first-order stochastically dominates x' (with the inequality being strict if the dominance is strict). It is straightforward to check that, in the case where the states are equiprobable (as in our experiment), a well-behaved utility function is monotone with respect to FOSD if and only if it is symmetric. A dataset D is said to be FOSD-rationalizable (with respect to a given π) if it can be rationalized by a utility function that is well-behaved and monotone with respect to FOSD. Relying on Nishimura et al. (2017), we provide an easy-to-implement (necessary and sufficient) test of whether D is FOSD-rationalizable; furthermore, one could also check whether D can be rationalized at cost efficiency e by a utility function in this family and thus the corresponding CCEI, denoted by e^*, can easily be calculated. Since this family of utility functions is contained within the family of well-behaved utility functions, it must be the case that $e^{**} \leq e^*$.

The second important family is the family of well-behaved utility functions that satisfy expected utility. These are utility functions U taking the form $U(x) = \pi_1 u(x_1) + \cdots + \pi_S u(x_S)$, where the Bernoulli index $u : \mathbb{R}_+ \to \mathbb{R}$ is continuous and increasing. Recently, Polisson et al. (2020) have developed a procedure called the Generalized Restriction of Infinite Domains (or GRID) method that could be employed to test whether a dataset is rationalizable (at cost efficiency e) by a well-behaved expected utility function, or EUT-rationalizable. Using this method, one could also calculate e^{***}, the CCEI corresponding to EUT-rationalizability. Since this family of utility functions is contained within the family of well-behaved utility functions which respect FOSD, it must be the case that $e^{**} \leq e^{***}$.

To recap, given any dataset D we could calculate three rationalizability scores corresponding to three nested models, with

$$1 \geq e^* \geq e^{**} \geq e^{***} > 0.$$
There are, of course, other families of utility functions besides these three, and there will also be rationalizability scores corresponding to those families of utility functions. In particular, specific families of utility functions (such as rank-dependent utility) which generalize expected utility and respect FOSD will necessarily have rationalizability scores between e^* and e^{***}.

The great advantage of measuring — on the same scale — a dataset’s consistency with three increasingly stringent models is that it allows us to determine the source of the departure from EUT. A subject who is perfectly EUT-rationalizable will have $1 = e^* = e^{**} = e^{***}$. More generally, e^{***} will be strictly less than one, and the corresponding values of e^* and e^{**} will then allow us to say something about why that has occurred. For example, if $1 = e^* = e^{**} > e^{***}$, then it would be plausible to believe that the subject is indeed violating the independence axiom and her behavior could potentially be explained by a utility model that relaxes the independence axiom, while retaining monotonicity with respect to FOSD. On the other hand, a subject for whom $1 = e^* > e^{**} = e^{***}$ could be utility-maximizing, but her choices could only be explained by a model that departs from monotonicity with respect to FOSD. Last but not least, the choice behavior of a subject with $1 > e^*$ is not consistent with the maximization any utility function; she may or may not also be violating the independence axiom, but understanding her behavior would require a more radical departure from the classical framework.

In Appendix I, we provide more details on GARP and the other conditions for checking rationalizability (or rationalizability at a given cost efficiency) with respect to specific families of utility functions.

3.2 Experiment

In this paper, we employ the same experimental methodology as in Choi et al. (2007b, 2014) and Halevy et al. (2018), except that instead of having just two states of nature ($S = 2$) and two associated Arrow securities, the new experiment incorporates three states ($S = 3$) and three associated Arrow securities, with a price for each security. Choices from three-dimensional budget sets provide more rigorous tests of rationalizability than choices from two-dimensional budget sets, in particular when it comes to testing EUT (see more on this below).

We conducted the experiment at UC Berkeley and UCLA. The subjects in the experiment were recruited from undergraduate classes at these institutions. In the experiment, subjects choose an allocation from a three-dimensional budget set presented using the graphical interface introduced by Choi et al. (2007a). Subjects make choices by using the computer mouse to move the pointer on the computer screen to the desired point, and are restricted to allocations on the budget constraint. The full experimental instructions, including the computer program dialog windows, are reproduced in Appendix II.5

5 We are building on the expertise that we have acquired in previous work using the experimental method across different types of individual choice problems. Choi et al. (2014) introduces the graphical interface of Choi et al. (2007a) into a nationally representative sample. The datasets of Choi et al. (2007b) and Choi et al. (2014) have been analyzed in
The experimental procedures described below are identical to those described by Choi et al. (2007a) and used by Choi et al. (2007b) to study a portfolio choice problem with two risky assets, except that each choice involved choosing a point on a three-dimensional (instead of two-dimensional) graph representing the set of possible allocations. In the experimental task, there are three equally likely states denoted by \(s = 1, 2, 3 \) and three associated securities, each of which promises a payoff of one token (the experimental currency) in one state and nothing in the others. Recall that \(x_s \geq 0 \) denotes the demand for the security that pays off in state \(s \) and \(p_s > 0 \) denotes the corresponding price. Without loss of generality, we assume that the budget is normalized to 1. The budget set is then given by \(\mathcal{B} = \{ \mathbf{x} : \mathbf{p} \cdot \mathbf{x} = 1 \} \), where \(\mathbf{x} = (x_1, x_2, x_3) \) denotes the portfolio of securities and \(\mathbf{p} = (p_1, p_2, p_3) \) denotes the vector of security prices.

Each experimental subject faced 50 independent decision rounds. For each subject, the computer selected 50 budget sets randomly from the set of planes that intersect at least one axis at or above the 50 token level and intersect all axes at or below the 100 token level. The budget sets selected for each subject in his/her decision problems were independent of one another and of the budget sets selected for other subjects in their decision problems. Subjects were not informed of any state that was actually realized until the end of the experiment. This procedure was repeated until all 50 rounds were completed. At the end of the experiment, the computer randomly selected one of the 50 decision rounds to carry out for payoffs, and token allocations were converted into dollars. The round selected depended solely on chance.

3.3 Power

To show that the three-dimensional budgetary experiment is more powerful than the two-dimensional experiments previously used in the literature — and specifically that it is sufficiently powerful to detect whether or not EUT is the right model of choice under risk — we start by building on the test designed by Bronars (1987) which employs as a benchmark the choices of a simulated subject who randomizes uniformly among all allocations on each budget set. The simulated subject makes 50 choices from randomly generated budget sets, in the same way as do the human subjects.

Figure 3 provides a clear graphical illustration by comparing the distributions in many papers, including Halevy et al. (2018), Polisson et al. (2020), de Clippel and Rozen (2021), and Echenique et al. (2021). Fisman et al. (2007, 2015a, 2015b, 2017) and Li et al. (2017) employ a similar experimental methodology to study social preferences across a number of different samples, including a nationally representative sample. Three-dimensional budget sets have been used by Fisman et al. (2007) to study preferences for giving, and also by Ahn et al. (2014) to study ambiguity aversion, but so far have not been used to study risk. Other related work by Zame et al. (2020) develops theoretical tools and experimental methods for testing the linkages between preferences for personal and social consumption and attitudes toward risk and inequality.
The 3D budgetary experiment is more powerful than the 2D experiment in detecting violations of EUT. We compare the distributions of EUT-rationalizability scores (e^{***}) in 2D and 3D for simulated subjects who choose randomly conditional on having perfect FOSD-rationalizability ($e^{**} = 1$). The proportion of simulated subjects that have e^{***} above 0.9 (conditional on $e^{**} = 1$) is over 80 percent in the 2D experiment but just over 20 percent in the 3D experiment.

Another benchmark against which to compare the power of the two- and three-dimensional designs involves the choices of a simulated subject who maximizes a non-EUT utility function. To illustrate such preferences when there are three states ($S = 3$), consider the rank-dependent utility function:

$$U(\tilde{x}) = \beta_L u(x_L) + \beta_M u(x_M) + \beta_H u(x_H),$$

where $\beta_L, \beta_M, \beta_H > 0$ are decision weights that sum to unity, $\tilde{x} = (x_L, x_M, x_H)$ is a rank-ordered portfolio with payoffs $x_L \leq x_M \leq x_H$, and u is the Bernoulli index. This formulation encompasses a number of non-EUT models and reduces to EUT when $\beta_L = \beta_M = \beta_H$ (since each state has an equal likelihood of occurring). When there are two states of nature ($S = 2$), the rank-dependent

6As Starmer (2000) points out, although the number of so-called non-EUT models “is well into double figures,” the preferences generated by rank-dependent utility (Quiggin, 1982, 1993) is the leading contender. Machina (1994) concludes that rank-dependent utility is “the
utility function takes the simpler form
\[U(\tilde{x}) = \beta_L u(x_L) + \beta_H u(x_H), \]
where \(\beta_L, \beta_H \) are the decision weights and \(\tilde{x} = (x_L, x_H) \) is the rank-ordered portfolio with payoffs \(x_L \leq x_H \). The general rank-dependent formula for the rank-ordered portfolio \(\tilde{x} \) can be expressed in terms of the probability weighting function \(w \) (see more on this below) as follows:

\[\begin{align*}
\beta_L &= 1 - w\left(\frac{2}{3}\right), \\
\beta_M &= w\left(\frac{2}{3}\right) - w\left(\frac{1}{3}\right), \\
\beta_H &= w\left(\frac{1}{3}\right),
\end{align*} \]

for three states \((S = 3) \), and

\[\begin{align*}
\beta_L &= 1 - w\left(\frac{1}{2}\right), \\
\beta_H &= w\left(\frac{1}{2}\right),
\end{align*} \]

for two states \((S = 2) \). That is, the cumulative distribution function of the induced lottery assigns to each monetary payoff the probability of receiving that payoff or anything less.\(^7\)

In order to draw a comparison across the two- and three-dimensional experiments using simulated subjects maximizing a rank-dependent utility function, we hold the weighting fixed using the weighting function suggested by Tversky and Kahneman (1992), which distorts each probability \(\pi \in (0,1) \) according to

\[w(\pi) = \frac{\pi^\gamma}{[\pi^\gamma + (1-\pi)^\gamma]^{1/\gamma}}. \]

This formulation takes the familiar (inverted) \(s \)-shaped form for \(0 < \gamma < 1 \), and any \(\gamma > 0.279 \) guarantees that \(w \) is increasing.\(^8\) When \(\gamma = 1 \) we have \(w(\pi) = \pi \), and so we get the standard EUT representation. In our numerical simulation, we set \(\gamma = 0.5 \) (in order to generate sufficient “pessimism”) and we specify \(u(x) = \log(x) \). Clearly, for these simulated subjects \(1 = e^* = e^{**} \) since their choices are FOSD-rationalizable by construction. However, as an indication, while all of the simulated subjects have \(e^{***} \) above 0.95 in the two-dimensional experiment, none of the simulated subjects have \(e^{***} \) above 0.95 in the three-dimensional experiment.

\(^7\) The weighting function \(w \), which is increasing and satisfies \(w(0) = 0 \) and \(w(1) = 1 \), transforms the distribution function into decision weights. By definition, the decision weight \(\beta_H \) is equal to \(w\left(\frac{1}{2}\right) \) in the case of three states and to \(w\left(\frac{1}{3}\right) \) in the case of two states.

\(^8\) The other widely-used simple (single parameter) probability weighting function has been proposed by Prelec (1998).
Despite the advantages of the three-dimensional design, we nevertheless complement our analysis of these data by analyzing observations collected from a further nearly one thousand subjects, each making 50 choices over two-dimensional budget lines. (These experiments are identical to the (symmetric) risk experiment of Choi et al. (2007b).) We discuss these results in Section 4.3; the bottom line is that the major findings in the three-dimensional experiment are replicated across the two-dimensional experiments.

4 Experimental Results

In this section, we present the experimental results. The data from the experiment contain observations on 168 individual subjects. For each subject, we have a set of 50 observations $D := (p^i, x^i)_{i=1}^{50}$, where $p^i = (p_1^i, p_2^i, p_3^i)$ denotes the i-th observation of the price vector and $x^i = (x_1^i, x_2^i, x_3^i)$ denotes the associated allocation. The experiment provides us with a large set of data consisting of many individual decisions over a wide range of three-dimensional budget sets. This is an important point, because as our power analysis shows, a large number of individual decisions over three-dimensional instead of two-dimensional budget sets is crucial in order to provide a sufficiently powerful test of the entire set of axioms underlying EUT.

4.1 Illustrative Subjects

In the Introduction, we provide an overview of the important aggregate features of our experimental data, which we summarize by reporting the distributions of our indices of rationalizability (e^*), FOSD-rationalizability (e^{**}), and EUT-rationalizability (e^{***}). But the aggregate data tell us little about the choice behavior of individual subjects. To get some idea of the wide range of observed behaviors, we present in Figure 4 scatterplots depicting all 50 choices for five illustrative subjects. We have chosen subjects whose behavior corresponds to one of several prototypical choices and illustrates the striking regularity within subjects and heterogeneity across subjects that is characteristic of our data.

Figure 4 depicts the choices in terms of token shares for the three securities as points in the unit simplex. For each allocation $x^i = (x_1^i, x_2^i, x_3^i)$, we relabel the states $s = 1, 2, 3$ so that $p_1^i < p_2^i < p_3^i$ and define the token share of the security that pays off in state s to be the number of tokens payable in state s as a fraction of the sum of tokens payable in all three states

$$\bar{x}^i_s = \frac{x^i_s}{x^i_1 + x^i_2 + x^i_3},$$

and $\bar{x}^i = (\bar{x}^i_1, \bar{x}^i_2, \bar{x}^i_3)$ is the vector of token shares corresponding to the allocation x^i. Each panel of Figure 4 contains a scatterplot of the token share vectors corresponding to the 50 allocations chosen by one of the five illustrative subjects. The vertices of the unit simplex correspond to allocations consisting of one of
Each plot shows all 50 choices for a single subject in terms of token shares. Each vertex of the unit simplex corresponds to a full allocation to one of the three securities. Some subjects are roughly EUT-rationalizable: (a) ID 101 is consistent with infinite risk aversion; (b) ID 913 is consistent with risk neutrality; (c) ID 1001 is consistent with maximizing logarithmic von Neumann-Morgenstern expected utility. Some subjects are distinctly not EUT-rationalizable: (d) ID 1003 is FOSD-rationalizable and could be explained by rank-dependent utility; and (e) ID 1105 is not FOSD-rationalizable.
the three securities, and each point in the simplex represents an allocation as a convex combination of the extreme points.

The behaviors of the first three subjects are roughly EUT-rationalizable. In the scatterplot for subject ID 101 (Figure 4a), all of the vectors of token shares lie near the center of the simplex where \(\bar{x}^i = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right) \); this behavior is consistent with infinite risk aversion. In the scatterplot for subject ID 913 (Figure 4b), the token shares are all concentrated on (or, in a few cases, adjacent to) the top vertex of the simplex where \(\bar{x}^i = (1, 0, 0) \); this behavior is consistent with risk neutrality. A more interesting behavior is illustrated in the scatterplot for subject ID 1001 (Figure 4c). The choices of this subject roughly equalize expenditures \(p^1 x_1 = p^2 x_2 = p^3 x_3 \), rather than tokens, across the three securities; this behavior is consistent with maximizing a logarithmic von Neumann-Morgenstern expected utility function.

The next two subjects are not EUT-rationalizable. In the scatterplot for subject ID 1003 (Figure 4d), all token shares lie roughly along the bisectors of the angles of the simplex where \(\bar{x}_1 = \bar{x}_2 \) or \(\bar{x}_2 = \bar{x}_3 \); this behavior — equalizing the demands for two out of the three securities for a non-negligible set of price vectors — is FOSD-rationalizable (because \(\bar{x}_1 \geq \bar{x}_2 \geq \bar{x}_3 \) where \(p^1 < p^2 < p^3 \)) but not EUT-rationalizable. As we explain in Appendix I, preferences generated by rank-dependent utility (Quiggin, 1982, 1993) could give rise to such choices. Finally, in the scatterplot for subject ID 1105 (Figure 4e), the token shares are not confined to the top left subset of the simplex where \(\bar{x}_1 \geq \bar{x}_2 \geq \bar{x}_3 \); this behavior is not FOSD-rationalizable (and thus also not EUT-rationalizable).

We have obviously shown just a small subset of our full set of subjects, and these are of course special cases where regularities in the data are very clear.

4.2 Rationalizability Scores

As a first check for the rationalizability \((e^*)\), FOSD-rationalizability \((e^{**})\), and EUT-rationalizability \((e^{***})\) of individual subjects, Figure 5 shows scatterplots of \(e^* \) against \(e^{**} \) (Figure 5a) and of \(e^{**} \) against \(e^{***} \) (Figure 5b). By definition, \(e^* \geq e^{**} \geq e^{***} \) so all points in both scatterplots must lie on or below the 45-degree lines. An individual subject who is perfectly EUT-rationalizable will have \(1 = e^* = e^{**} = e^{***} \). When \(e^{***} \) is strictly less than one, the corresponding values of \(e^* \) and \(e^{**} \) will then allow us to isolate the source of the subject’s departure from EUT.

Out of our 168 subjects, the choices of only 27 subjects (16.1 percent) are perfectly rationalizable \((e^* = 1)\), but the choices of none of our subjects are perfectly FOSD-rationalizable \((e^{**} = 1)\), and hence perfectly EUT-rationalizable \((e^{***} = 1)\). Most interestingly, only 11 subjects (6.5 percent) fall along the 45-degree line in the scatterplot of \(e^* \) against \(e^{**} \) (Figure 5a); the choices of these subjects are not necessarily perfectly rationalizable but they are not less FOSD-rationalizable than they are rationalizable \((e^* = e^{**})\). By contrast, 65 subjects

9 There are many subjects for whom the behavior is much less clear. But a review of the full dataset reveals striking regularities within and marked heterogeneity across subjects. The scatterplots for the full set of subjects are available upon request.
Figure 5: Scatterplots of Rationalizability Scores

The plots depict rationalizability scores for individual subjects. By definition, \(e^* \geq e^{**} \geq e^{***} \) so all points in both scatterplots must lie on or below the 45-degree lines.

(a) All individual-level differences between \(e^* \) and \(e^{**} \) are statistically significant at the 1 percent significance level (red). (b) The individual-level differences between \(e^{**} \) and \(e^{***} \) are statistically significant for 75.0 percent of the sample (red), but there is also a sizeable minority of subjects for whom this is not the case (blue).

(38.7 percent) fall along the 45-degree line in the scatterplot of \(e^{**} \) against \(e^{***} \) (Figure 5b); the choices of these subjects are not perfectly FOSD-rationalizable but they are not less EUT-rationalizable than they are FOSD-rationalizable (\(e^{**} = e^{***} \)). Only 3 subjects (1.8 percent), fall along the 45-degree line in both scatterplots; the choices of these subjects are not less EUT-rationalizable than they are rationalizable (\(e^* = e^{**} = e^{***} \)).

Our rich individual-level data also allow us to make statistical comparisons of rationalizability (\(e^* \)) versus FOSD-rationalizability (\(e^{**} \)) and of FOSD-rationalizability (\(e^{**} \)) versus EUT-rationalizability (\(e^{***} \)) using a purely non-parametric econometric approach that makes no assumptions on the “errors” in the individual choices. Clearly, subjects may calculate incorrectly, or execute intended choices incorrectly, or err in any number of other ways. Thus any conclusions based on an explicit model of the errors (which cannot be directly testable) will be sensitive to the manner in which the error terms are introduced and the estimation technique.

To this end, for each subject, we split the 50 observations into two non-overlapping partitions of 25 observations, generating paired subsamples of observations. Clearly, we cannot examine all \(\binom{50}{25} > 10^{14} \) possible paired subsamples of the observed individual-level data; instead we draw 1,000 such paired subsamples at random for each subject and construct the sampling distributions of \(e^* \) and \(e^{***} \) on one subsample and the sampling distribution of \(e^{**} \) on the other. Note that given the non-overlapping partitions, the orderings \(e^* \geq e^{**} \) and \(e^{**} \geq e^{***} \) are no longer guaranteed. We can then test whether the mean
The plot depicts rationalizability score differences for individual subjects. For the vast majority of subjects, the difference between FOSD-rationalizability and EUT-rationalizability ($e^{**} - e^{***}$) is small (or non-existent), while the difference between perfect rationalizability and FOSD rationalizability ($1 - e^{**}$) is much larger: 85.1 percent of subjects fall below the 45-degree line, and of those 45.5 percent fall along the horizontal axis ($e^{**} = e^{***}$). This difference in differences is statistically significant for 97.6 percent of subjects (red) at both the 1 and 5 percent significance levels.

In Figure 5, individual subjects are depicted in red if the two scores — either e^* and e^{**} (Figure 5a) or e^{**} and e^{***} (Figure 5b) — are statistically distinguishable at the 1 percent significance level and depicted in blue otherwise. All individual-level differences between e^* and e^{**} (Figure 5a) are statistically significant, including for those 11 subjects (6.5 percent) falling along the 45-degree line (for whom $e^* = e^{**}$ across all 50 observations). The individual-level differences between e^{**} and e^{***} (Figure 5b) are statistically significant for 126 subjects (75.0 percent), including for 25 out of the 65 subjects (38.5 percent) falling along the 45-degree line (for whom $e^{**} = e^{***}$ across all 50 observations). If we instead evaluate at the 5 percent significance level, the individual-level differences between e^{**} and e^{***} are statistically significant for 134 subjects (79.8 percent). Hence, for the majority of subjects the difference between FOSD-rationalizability and EUT-rationalizability ($e^{**} - e^{***}$) is statistically significant, but there is also a sizeable minority of subjects for whom this is not the case.

Furthermore, we compare the magnitudes of differences between scores. Figure 6 shows a scatterplot of the difference between perfect rationalizability and FOSD-rationalizability $(1 - e^{**})$ against the difference between FOSD-rationalizability and EUT-rationalizability ($e^{**} - e^{***}$). Out of our 168 subjects, 143 (85.1 percent) fall below the 45-degree line in the scatterplot $(1 - e^{**} > e^{**} - e^{***})$, and of those 65 subjects (45.5 percent) fall along the horizontal axis ($e^{**} = e^{***}$). Hence, for the vast majority of our subjects there is only a small
(or no) difference between FOSD-rationalizability and EUT-rationalizability ($e^{**} - e^{***}$), whereas the difference between perfect rationalizability and FOSD-rationalizability ($1 - e^{**}$) is much larger. For these subjects, there is little scope for the most prominent non-EUT alternatives, such as weighted expected utility, rank-dependent utility, or reference-dependent risk preferences, that relax the independence axiom to explain observed behavior, as they all postulate FOSD-rationalizability ($1 = e^{*} = e^{**} > e^{***}$).

To provide a statistical test of the difference between $1 - e^{**}$ and $e^{**} - e^{***}$, we again draw 1,000 paired subsamples of observations for each subject and construct the sampling distribution of $1 - e^{**}$ on one subsample and the sampling distribution of $e^{**} - e^{***}$ on the other. We then test whether the mean difference in differences is statistically significant using a paired t-test. We find that it is significant for 164 subjects (97.6 percent) at both the 1 and 5 percent significance levels. These subjects are depicted in red in Figure 6; the other subjects are depicted in blue.

The broad conclusion from our analysis is clear: even for a single subject, the sources of violation of EUT are variegated; furthermore, for many subjects, violations of ordering and monotonicity are more prominent and much larger in magnitude than departures from the independence axiom.

4.3 Two- Versus Three-Dimensional Data

For comparison purposes, in Appendix III we replicate our entire analysis with observations on 956 subjects making choices from two-dimensional budget lines. For each subject, we again have a set of 50 observations $D := (p^i, x^i)_{i=1}^{50}$ where $p^i = (p^i_1, p^i_2)$ denotes the i-th observation of the price vector and $x^i = (x^i_1, x^i_2)$ denotes the associated allocation. Figure 7 compares the rationalizability scores across the two- and three-dimensional experiments for e^{*} (Figure 7a), e^{**} (Figure 7b), and e^{***} (Figure 7c). Note that the data from three-dimensional budget sets are at least as rationalizable (e^{*}) as the data from two-dimensional budget lines, which is an interesting result in its own right. As a practical

10 Utility functions representing reference-dependent risk preferences (specifically the choice acclimating personal equilibrium model of K˝ oszegi and Rabin (2007)) can fail to be increasing if loss aversion is sufficiently high (see Masatlioglu and Raymond (2016)); however, these preferences are always locally nonsatiated and, in our experimental setting, symmetric. For reasons explained in greater detail in Appendix I, utility functions that are symmetric and locally nonsatised cannot rationalize any behavior that cannot also be rationalized by a symmetric and increasing utility function. Thus the rationalizability score for such preferences cannot improve on e^{**}.

11 The data include the (symmetric) data collected by Choi et al. (2007b) and similar data with different subject pools collected by Zame et al. (2020) and Cappelen et al. (2021), as well as new data. In all of these experiments, the individual-level data consist of 50 decision problems. We do not include the data of Choi et al. (2014) which consist of 25, rather than 50, decision problems. Note that 25 individual decisions provide a rich enough data set to provide a powerful test of GARP. But as our power analysis shows, choices from two-dimensional budget lines provide a much weaker test of EUT, so we omit datasets with only 25 individual decisions, though this number is still higher than is usual in the literature. See, for examples, Cox (1987), Sippel (1997), Mattei (2000), Harbaugh et al. (2001), and Andreoni and Miller (2002), among others.
Figure 7: Distributions of Rationalizability Scores

The plots depict distributions of rationalizability scores across the 2D and 3D experiments for (a) e^*, (b) e^{**}, and (c) e^{***}.

note, it suggests that subjects did not have any difficulties in understanding the procedures or using the three-dimensional computer program.

On the other hand, the data from three-dimensional budget sets are less FOSD-rationalizable (e^{**}) and EUT-rationalizable (e^{***}) than the data from the two-dimensional budget lines. In the three-dimensional experiment, 28.0 (resp. 16.1) percent of the subjects have e^{**} (resp. e^{***}) scores above the 0.95 threshold, and 48.2 (resp. 36.9) percent have values above 0.90. In the two-dimensional experiment (also with 50 choices), the corresponding percentages are 49.9 (resp. 46.4) and 65.0 (resp. 63.4). Finally, statistical tests on the two-dimensional data show that the individual-level differences between e^* and e^{**} are statistically significant for 859 (89.9 percent) and 866 (90.6 percent) at the 1 and 5 significant levels, respectively. In contrast, the individual-level differences between e^{**} and e^{***} are statistically significant for only 215 (22.5 percent) and 268 subjects (28.0 percent). This comparison suggests that three-dimensional
budget sets (relative to two-dimensional budget sets) considerably improve the power of revealed preference tests of EUT-rationalizability.

In the two-dimensional data, as in the three-dimensional data, the loss of consistency arising from EUT specifically is small, once we account for ordering and monotonicity. Indeed, $1 - e^{**} > e^{**} - e^{***}$ for 827 out of 956 subjects (86.5 percent). These differences in differences are statistically significant for 888 subjects (92.9 percent) and 890 subjects (93.1 percent) at the 1 and 5 percent significance levels, respectively.

5 Related Literature

There is a vast amount of research on decision making under risk and under uncertainty, and laboratory experiments have provided some key empirical guideposts for the development of new ideas in these areas. We will not attempt to review the large and growing experimental literature. Though now somewhat dated, an overview of experimental and theoretical work can be found in Camerer (1995), while Starmer (2000) provides a review of the risk literature that focuses on evaluating non-EUT theories. Following the seminal work of Hey and Orme (1994) and Harless and Camerer (1994), a number of papers have estimated parametric utility functions. While Harless and Camerer (1994) fits models to aggregate data, Hey and Orme (1994) uses data derived from decisions over a very large menu of binary choices and estimates functional forms at the level of the individual subject.

More recently, Choi et al. (2007b) employs graphical representations of budget sets containing bundles of state-contingent commodities in order to elicit preferences; this experimental approach constitutes the foundation of this paper’s contribution as it allows for the collection of a very rich individual-level dataset. For each subject in their experiment, Choi et al. (2007b) tests the data for consistency with GARP and estimates preferences in a parametric model with loss or disappointment aversion (Gul, 1991). This formulation encompasses a number of different theories (see Section 2) and embeds EUT as a parsimonious and tractable special case. But testing EUT as a restriction on a non-EUT utility function has an obvious drawback — it depends on assumptions over functional form and the specification of the error structure. Indeed, Halevy et al. (2018) highlights the distinction between the non-parametric and parametric recoverability of preferences.

The most basic question that one could ask about individual-level choice data is whether they are compatible with utility maximization, and classical revealed preference theory (Samuelson, 1938, 1948, 1950; Houthakker, 1950; Afriat, 1967; Diewert, 1973; Varian, 1982) provides GARP as a direct test. Consistency

\[^{12}\text{Camerer and Weber (1992) and Harless and Camerer (1994) also summarize the experimental evidence from testing the various utility theories of choice under risk and under uncertainty. Kahneman and Tversky (2000) collects many theoretical and empirical papers that have emerged from their pioneering work on prospect theory.}\]

\[^{13}\text{For overviews of the revealed preference literature, see Crawford and De Rock (2014)}\]
with GARP is implied by — and guarantees — choice from a coherent preference over all possible alternatives, but any consistent preference ordering that is locally nonsatiated is admissible. In particular, choices can be compatible with GARP and yet fail to be reconciled with the maximization of a utility function that is monotonic with respect to FOSD, which is not normatively appealing. One is thus naturally led to go beyond consistency and to ask whether the choices made by a subject are compatible with a utility function that has some special structure, in particular one which is monotonic with respect to FOSD and/or adheres to EUT. To answer these questions properly requires the development of new revealed preference tests.

Originating in the works of Varian (1983a, 1983b, 1988) and Green and Srivastava (1986), some more recent papers which pursue these questions include Diewert (2012), Bayer et al. (2013), Kubler et al. (2014, 2017), Echenique and Saito (2015), Chambers et al. (2016a, 2016b), Nishimura et al. (2017), Echenique et al. (2019, 2021), Polisson et al. (2020), and de Clippel and Rozen (2021). We compare our approach and contribution to existing work along four dimensions — methods, measures, tests, and power.

Methods With the exception of the GRID method, all other tests of EUT involve a concave Bernoulli index. The GRID method, by contrast, neither assumes nor guarantees concavity. This distinction is by no means cosmetic, since it has empirical implications. Although concavity of the Bernoulli index, which is equivalent to risk aversion under EUT, is widely assumed in empirical applications, we avoid imposing any further requirements that are not, strictly speaking, a part of EUT in our test of the model. This feature of our analysis is an important part of our claim that our tests are purely nonparametric, with no extraneous assumptions on the parametric form or shape of the utility function.

Measures Revealed preference relations generate an exact test while choice data almost always contain some violations. Given this, any serious empirical investigation would require an index to measure a model’s goodness-of-fit, or (in other words) the extent to which a subject’s choices are incompatible with the model. In this paper, we use Afriat’s (1973) CCEI to measure a subject’s consistency with (basic) rationalizability (e*), FOSD-rationalizability (e**), and EUT-rationalizability (e***). Since the models are nested, the indices must be ordered for any given subject, with

14 For further discussion of this issue, see Polisson et al. (2020). A subject who maximizes expected utility will pass our test and be classified as EUT-rationalizable, even if that subject is not globally risk averse. For an example of choice data that are EUT-rationalizable but only with a non-concave Bernoulli index, see Section A4 of the Online Appendix in Polisson et al. (2020). Polisson et al. (2020) also develops a test for the case where the Bernoulli index is required to be concave.
\[1 \geq e^* \geq e^{**} \geq e^{***} > 0, \] where an index of 1 implies exact agreement with a given model.

The use of a common index across different models means that we can perform a comprehensive test of each relevant model (in which all the axioms of a model are tested \textit{in combination}) and at the same time cleanly identify the incremental impact of additional axioms. We employ the CCEI (rather than some other index) for several related reasons: we know how to compute it for the three models under consideration; these computations can be done efficiently; and it is the most commonly used measure of goodness-of-fit.15,16

de Clippel and Rozen (2021) proposes a different index to measure goodness-of-fit which is applicable to different families of utility functions; roughly speaking, the index is based on the size of the departures from the first-order conditions. Building on the methodology developed by Echenique et al. (2020) within the context of intertemporal choice, Echenique et al. (2021) proposes essentially the same index as de Clippel and Rozen (2021) in the case of the expected utility model, albeit with a somewhat different motivation. This index (or collection of indices) relies on a first-order (condition) approach, so they are only applicable to models representable by quasiconcave utility functions (defined on the space of contingent consumption). As such, it is not ideal for our purposes since we want to avoid imposing a concave Bernoulli index (or, more generally, a quasiconcave utility function) as a rationality requirement.

Tests We create individual-level non-parametric \textit{permutation} (randomization) tests. The approach builds only on revealed preference techniques and it is purely \textit{nonparametric}, making no assumptions about the form of the subject’s underlying utility function or on the error structure. That is, we obtain the (empirical) distribution functions for the test statistics under the null hypotheses — that choices are as FOSD-rationalizable as they are rationalizable \((e^{**} = e^*)\) and as EUT-rationalizable as they are FOSD-rationalizable \((e^{***} = e^{**})\) — directly from the individual-level data. We are not aware of similar statistical tests performed in other work.

Power A number of recent papers — including Polisson et al. (2020), de Clippel and Rozen (2021), and Echenique et al. (2021) — analyze the

15A small subset of the studies using the CCEI includes Harbaugh et al. (2001) on children’s preferences, Andreoni and Miller (2002) and Fisman et al. (2015b) on social preferences, and Choi et al. (2007b, 2014) and Carvalho et al. (2016) on risk preferences. Furthermore, Dziewulski (2020) provides a behavioral interpretation for the CCEI based on a decision maker’s cognitive inability to distinguish between bundles that are sufficiently similar.

16The index proposed by Varian (1990) is closely related to the CCEI and has been used in some important work (see, for example, Halevy et al. (2018)). There are known methods for calculating this index for the different models that we consider, but its calculation is much more computationally demanding than the CCEI (especially in the case of the EUT model) and therefore it is not practically implementable for us, given the size of our datasets and the scope of our empirical exercise. For more on the computation of this index to measure rationalizability, FOSD-rationalizability, and EUT-rationalizability, see Polisson et al. (2020).
experimental data from Choi et al. (2014). This experiment is identical to Choi et al. (2007b), except that it consists of 25, rather than 50, decision problems involving two (equiprobable) states of nature and two associated Arrow securities. Echenique et al. (2021) also analyzes the experimental data from Carvalho et al. (2016) and Carvalho and Silverman (2017), which also consist of 25 problems. The Choi et al. (2007b) data have also been extensively analyzed, including by Halevy et al. (2018) and Polisson et al. (2020). The common thread in all these experiments is that there are two states and two securities.

The experiment reported in this paper consists of 50 decision problems involving three (equiprobable) states with three associated Arrow securities. Collecting 50, or even 25, individual decisions is more than is usual in the experimental literature on choice under risk and, as Choi et al. (2014) show, it does provide a rich enough individual-level dataset for a powerful test of (basic) rationalizability. However, our power analysis indicates that having three states significantly enhances the discriminatory power of the experiment, especially with respect to EUT-rationalizability, when compared to experiments with two states (and 25, or indeed 50, observations). Given that the primary purpose of this paper to reach a robust empirical conclusion on the sources of departure from EUT, our use of a more discriminating choice environment is crucial.

To conclude, Polisson et al. (2020), de Clippel and Rozen (2021), and Echenique et al. (2021) all develop new methodologies and apply their techniques to existing experimental data. Echenique et al. (2021) finds that subjects who are more rationalizable (as measured by the CCEI) are not necessarily more EUT-rationalizable (as measured by their index). However, these two rationalizability measures are not formally comparable, so the analysis cannot separate the empirical validity of each of the axioms on which EUT is based. More closely related to our theme, Polisson et al. (2020) observes a relatively small gap between FOSD-rationalizability and EUT-rationalizability; notwithstanding the use of a different measure, de Clippel and Rozen (2021) draw a similar conclusion. The focus of both Polisson et al. (2020) and de Clippel and Rozen (2021), however, is methodological rather than empirical and both also rely on existing two-dimensional datasets in their empirical analyses; as acknowledged by de Clippel and Rozen (2021), power issues cast doubts on the robustness of their conclusions. In this paper, our findings rely on new experimental data with three-dimensional budget sets and 50 observations per subject. A thorough analysis of these data allows us to establish conclusively that subjects have multiple sources of EUT violations and, for the vast majority, violations of ordering and/or monotonicity rather than violations of independence are the main sources of departure from EUT.
6 Concluding Remarks

The standard model of choice under risk is based on von Neumann and Morgenstern’s (1947) EUT. It is meant to serve as a normative guide for choice and also as a descriptive model of how individuals choose. At the same time, much of the experimental and empirical evidence of “anomalies” in choice behavior suggests that EUT may not be the right model. While EUT embodies three important axioms — ordering, monotonicity (with respect to FOSD), and independence — independence is the only axiom which the seminal alternatives to EUT relax.

It is thus natural that experimentalists should want to test the empirical validity of the independence axiom, and the overwhelming body of evidence against independence has raised criticisms about its status as the touchstone of rationality in the context of decision-making under risk. In response to these criticisms, various generalizations of EUT have been developed, and the experimental examination of these theories has led to new empirical regularities in the laboratory. Starmer (2000) calls this the “conventional strategy” — theories/experiments designed to permit/test violations of independence (and weakened forms of independence) while retaining the more basic axioms of ordering and monotonicity.

Combining theoretical tools, experimental methods, and non-parametric econometric techniques, our study confronts all of the axioms of EUT with individual-level experimental data that is richer than anything that has heretofore been used. The data are well-suited to purely nonparametric revealed preference tests which allow for the reality that individual behavior is not perfectly consistent with well-behaved preferences.

Why does this matter? It matters because choice data cannot be treated as being generated by a utility function, or by a utility function that is monotone with respect to FOSD, if there are large deviations from rationalizability or FOSD-rationalizability. In these cases, the standard approach of postulating some parametric family of utility functions (typically respecting FOSD), and estimating its parameters leads to model misspecification. As a result, the estimated preference will not be the true underlying preference, if such a preference ordering even exists, and positive predictions and welfare conclusions based on these models will be misleading.

Our findings also have implications for public policy; for example, in the practice of light paternalism, which is aimed at steering people toward better choices (Thaler and Sunstein, 2003; Camerer et al., 2003; Loewenstein and Haisley, 2008). Clearly, decision-makers that only violate independence merit greater deference from policy-makers than the more boundedly rational ones that violate ordering and monotonicity because the

17Bell (1982), Fishburn (1982), and Loomes and Sugden (1982) (simultaneously) propose a model of nontransitive risk preference. Loomes and Sugden (1987) develop a version of this model that involves regret with pairwise choice. Starmer (2000) provides an overview of these models and relates them to other non-EUT alternatives.

18Halevy et al. (2018) parametrically estimates preferences for the dataset collected by Choi et al. (2007) involving two states and two associated securities. They find significant quantitative and qualitative differences between the preferences induced by parametric estimation and the revealed preferences implied by choices, due to model misspecification.
choices of the former, unlike the latter, maximize a well-defined utility function and are thus of a higher quality (Kariv and Silverman, 2013).

To conclude, by applying the latest revealed preference techniques to an experiment involving three states with three associated securities, we provide strong comprehensive and nonparametric tests of complete representations of preferences under risk. Our main result is that while the vast majority of our subjects have statistically significant violations of independence, for many subjects these violations are minor when compared against violations of ordering and monotonicity. As EUT lies at the very heart of economics, these results have far reaching implications for economic theory and policy.

The experimental platform and analytical techniques that we have used are applicable to many other types of individual choice problems. One important direction is to study choice under ambiguity. In a separate paper, we apply the GRID method to the analogous data of Ahn et al. (2014) which similarly allow for a rigorous test of individual-level decision-making under ambiguity.

References

