
Appendix I
Theoretical Framework

Our experimental data are generated by individual subjects solving a series
of randomly generated portfolio-choice problems. In our setting, there are S
states of nature, denoted by s = 1, . . . , S. The probability of state s is commonly
known to be πs > 0, with

∑S
s=1 πs = 1, so that π = (π1, . . . , πS) � 0 denotes

the vector of state probabilities.1 For each state s, there is an Arrow security
that pays one token (the experimental currency) in state s and nothing in the
other state(s). The amount of consumption in state s is denoted by xs ≥ 0, and
the portfolio of securities may be written as x = (x1, . . . , xS) ≥ 0.

In the experiment, each subject has a budget of 1, which has to be allo-
cated among the Arrow securities, with ps > 0 denoting the price of security s.
Formally the subject chooses a portfolio x ≥ 0 among those which satisfy the
constraint p · x = 1, where p = (p1, . . . , pS) � 0 denotes the vector of state
prices. The subject can choose any portfolio x satisfying the budget constraint.

Let D := (pi,xi) be the dataset generated by an individual subject’s choices
from these linear budget sets, where pi denotes the i-th observation of the price
vector and xi denotes the corresponding demand allocation by the subject.
The subject’s total expenditure is fixed at 1 throughout, so pi · xi = 1 for all
observations i. The experimental design required subjects to solve a sequence
of 50 decision problems (so D has 50 observations) involving three-dimensional
budget sets (S = 3), and we also compare these results against the results from
otherwise identical experiments involving two-dimensional budget lines (S = 2).
In all of the two- and three-dimensional experiments that we consider, the states
are equiprobable, though the theoretical results which we review below do not
hinge on this feature.

Rationalizability (e∗) Recall, from the main paper, that we refer to a utility
function U : RS

+ → R as well-behaved if it is continuous and increasing, where
the latter means that U(x′′) > U(x′) if x′′ > x′. A utility function U rationalizes
D if U(xi) ≥ U(x) for all

x ∈ Bi = {x ∈ RS
+ : pi · x ≤ pi · xi}.

In other words, the utility of xi is weakly higher than that of any alternative
that is weakly cheaper at the price vector pi. When a dataset D can be ratio-
nalized by a well-behaved utility function U , we say that D is rationalizable by
a well-behaved utility function, or simply rationalizable. Afriat’s (1967) Theo-
rem characterizes rationalizable datasets via the Generalized Axiom of Revealed
Preference (GARP).

Let X = {xi} be the set of portfolios observed across all observations i. For
any xi, xj ∈ X , we say that xi is directly revealed preferred to xj (and denote
this relation by xiRD xj) if pi ·xi ≥ pi ·xj . GARP requires that if xi is revealed

1As a matter of notation, for any x,y ∈ RS , we say that x ≥ y if xs ≥ ys for all s; x > y
if x ≥ y and x 6= y; and x� y if xs > ys for all s.
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preferred to xj (either directly or indirectly via a sequence of other portfolio
choices), then xi must cost at least as much as xj at the prices prevailing when
xj is chosen. To be precise, we define on X the revealed preference relation,
where xi is revealed preferred to xj (denoted by xiRxj) if there is a sequence
of observations i1, i2, . . . , in such that

xiRD xi1 RD xi2 RD · · ·RDxin RD xj .

In other words, the relation R is the transitive closure of the relation RD. We
also define the strict direct revealed preference relation PD, where xi PD xj if
pi · xi > pi · xj . GARP requires that, for any xi,xj ∈ X ,

if xiRxj , then xj PD xi does not hold.

The term “revealed preference” for the relation R is very intuitive, since if a
dataset can be rationalized by some utility function U , then U(xi) ≥ U(xj) if
xiRxj . Furthermore, it is not hard to show that if U is locally nonsatiated,
then U(xi) > U(xj) if xi PD xj . It follows from these observations that if
D is rationalizable by a locally nonsatiated utility function then it must obey
GARP, since it impossible for U(xi) ≥ U(xj) and for U(xj) > U(xi) to hold
simultaneously.2 The substantive part of Afriat’s Theorem says that if D obeys
GARP then it is rationalizable by a concave and well-behaved utility function.
Notice that the two statements are not completely symmetric: GARP holds
whenever a dataset is generated by a locally nonsatiated utility function, but
whenever GARP holds on a dataset, it can also be rationalized by a utility
function with properties that are stronger than local nonsatiation.

Figure 1 illustrates a simple violation of GARP involving two budget sets
p1 =

(
3
9 ,

2
9 ,

1
9

)
and p2 =

(
1
6 ,

1
6 ,

1
6

)
, and two portfolio allocations x1 = (1, 2, 2)

and x2 = (0, 1, 5). It is clear that x1 PD x2 and x2 PD x1 since p1 ·x1 > p1 ·x2

and p2 · x2 > p2 · x1.
GARP provides an exact test of utility maximization (either the data satisfy

GARP or they do not). To account for the possibility of errors, we assess how
close a dataset is to being rationalizable by using Afriat’s (1972, 1973) Critical
Cost Efficiency Index (CCEI), which we shall now explain.

Given a number e ∈ (0, 1], a dataset D is rationalizable at cost efficiency e
if there is a well-behaved utility function U such that U(xi) ≥ U(x) for all

x ∈ Bi(e) = {x ∈ RS
+ : pi · x ≤ epi · xi}.

2A utility function U : RS
+ → R is locally nonsatiated if, in any open ball around

x ∈ RS
+, there is some x′ such that U(x′) > U(x). The eagle-eyed reader may notice

that in our experiments each subject at observation i chooses from the budget boundary

Bi = {x ∈ RS
+ : pi · x = 1} rather than from the budget set Bi, so that we ought to check

that D satisfies GARP if xi is a utility-maximizing choice from Bi. This is indeed the case
provided that U is continuous and locally nonsatiated; these assumptions on U guarantee that
arg max

x∈Bi U(x) = arg maxx∈Bi U(x) so that U(xi) ≥ U(x) for all x ∈ Bi and U(xi) > U(x)

if x ∈ Bi \ Bi. In particular, this implies that U(xi) ≥ U(xj) if xi Rxj and U(xi) > U(xj) if
xi PD xj .
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Figure 1: Violation of Rationalizability

It is not difficult to see that every dataset D could be rationalized by a well-
behaved utility function at an efficiency level e for some e ∈ (0, 1] that is suf-
ficiently close to zero. Afriat’s CCEI, denoted by e∗, is the largest value of e
associated with the dataset D; formally,

e∗ = sup {e ∈ (0, 1] : D is rationalizable at cost efficiency e}.

A subject with a CCEI of e∗ < 1 makes mistakes, in the sense that there is
at least one observation k for which U(xk) < U(x) for some x ∈ Bk, but the
cost inefficiency is bounded in the sense that p · x ≥ e∗; thus the subject could
switch to a bundle x that gives the same utility as xk and spend less, but the
savings is no more than 1− e∗.

The coefficient e∗ can be straightforwardly obtained through a binary search,
once there is a way to check if a dataset is rationalizable at cost efficiency e for
any given value of e. Very conveniently, rationalizability at cost efficiency e can
be characterized by a generalized version of GARP. We define the direct revealed
preference relation at efficiency e (denoted by RD(e)) as follows: xiRD(e)xj if
epi ·xi ≥ pi ·xj . The revealed preference relation R(e) is the transitive closure
of RD(e). Similarly, the strict direct revealed preference relation at efficiency
e (denoted by PD(e)) is defined as follows: xi PD(e)xj if epi · xi > pi · xj .
e-GARP requires that, for any xi,xj ∈ X ,

if xiR(e)xj , then xj PD(e)xi does not hold.

It is straightforward to check that if a dataset D can be rationalized at cost
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efficiency e by a locally nonsatiated utility function, then it will satisfy e-GARP;
conversely, if D satisfies e-GARP, then it is rationalizable at efficiency e by a
concave and well-behaved utility function (see Afriat (1973)).

FOSD-Rationalizability (e∗∗) Nishimura et al. (2017) shows that a further
modification of GARP can be used to test whether a dataset D is rationalizable
(at cost efficiency e) by a continuous utility function that is increasing with
respect to a given preorder D on the choice space. This result is convenient for
our purposes because for a utility function U to be monotone with respect to
FOSD simply means that it is increasing with respect to the preorder D, where
x′′ D x′ if x′ and x′′ (when considered as distributions given the vector of state
probabilities π) have the property that x′′ first-order stochastically dominates
x′. In our experiments, each state is equally likely; thus, x′′ D x′ if there is
some permutation of the entries in x′′ such that the permuted allocation is
entry-by-entry weakly greater than x′. For example, (1, 0, 1) D (0, 1, 0) since
(1, 1, 0) ≥ (0, 1, 0). In this case, a well-behaved utility function is monotone
with respect to FOSD if and only it is symmetric.

We say that a dataset D is FOSD-rationalizable at cost efficiency e if it can
be rationalized at cost efficiency e by a well-behaved utility function that is
monotone with respect to FOSD. The rationalizabily score e∗∗ is given by

e∗∗ = sup {e ∈ (0, 1] : D is FOSD-rationalizable at cost efficiency e}.

The FOSD-rationalizability at cost efficiency e of a dataset D can be character-
ized by a generalized notion of GARP which we shall now explain.

We define the direct revealed preference relation at efficiency e (denoted by
RD

D(e)) as follows: xiRD
D(e)xj if there exists some y such that epi · xi ≥ pi · y

and y D xj . The revealed preference relation RD(e) is the transitive closure
of RD

D(e). Similarly, the strict direct revealed preference relation at efficiency e

(denoted by PD
D (e)) is defined as follows: xi PD

D (e)xj if there exists some y such

that epi ·xi ≥ pi ·y and y D xj but xj 6D y (in other words, y strictly first-order
stochastically dominates xj). e-GARP(D) requires that, for any xi,xj ∈ X ,

if xiRD(e)xj , then xj PD
D (e)xi does not hold.

A dataset D satisfies e-GARP(D) if and only if it is FOSD-rationalizable at cost
efficiency e.

To illustrate in simple terms how the test works, Figure 2 depicts the same
two budget sets as in Figure 1, p1 =

(
3
9 ,

2
9 ,

1
9

)
and p2 =

(
1
6 ,

1
6 ,

1
6

)
, with the

portfolio allocations x1 = (1, 2, 2) and x2 = (0, 5, 1). These choices are ra-
tionalizable but not FOSD-rationalizable (with equiprobable states) because
x1 PD

D (1)x2 and x2 PD
D (1)x1. It is clear that p2 ·x2 > p2 ·x1, but it is also the

case that p1 · x1 > p1 · y where y = (0, 1, 5) D (0, 5, 1) = x2.
Violations of FOSD are typically regarded as errors, regardless of risk at-

titude — that is, as a failure to recognize that some allocations yield payoff
distributions with unambiguously lower returns. As a result, the most promi-
nent non-EUT models have been constructed/amended to avoid violations of
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Figure 2: Violation of FOSD-Rationalizability

FOSD. There are, however, some notable exceptions. For example, Kőszegi and
Rabin’s (2007) reference-dependent risk preferences may violate FOSD due to
(excessive) loss aversion — see Masatlioglu and Raymond’s (2016) characteriza-
tion. However, the Kőszegi and Rabin (2007) utility function U is locally nonsa-
tiated and, in the case where states are equiprobable (as in our experiments), it
must respect symmetry. It is straightforward to check that a subject who max-
imizes a symmetric and locally nonsatiated utility function at cost efficiency e
would generate a dataset D satisfying e-GARP(D) (with D being the preorder
corresponding to equiprobable states) and thus D is FOSD-rationalizable at
cost efficiency e. In other words, in the context of our experiments, reference-
dependent risk preferences cannot do better in explaining a subject’s data than
the family of utility functions that are monotone with respect to FOSD.

EUT-Rationalizability (e∗∗∗) Polisson et al. (2020) develops a revealed
preference method to test whether choice data under risk are consistent with
maximizing a utility function that has some special structure. The method
restricts an infinite choice set to a finite grid, and is thus called the method
of Generalized Restriction of Infinite Domains (GRID). GRID tests are me-
chanically distinct from GARP tests (in the sense that they do not involve
constructing revealed preference relations and checking for strict cycles), but
they are fully nonparametric (within the specified class of utility functions) and
can also be used to measure inconsistencies. This is the approach that we use
to test expected utility.
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We say that a dataset D is EUT-rationalizable at cost efficiency e if it can
be rationalized at cost efficiency e by a well-behaved utility function U taking
the expected utility form, i.e., if there is a continuous and increasing Bernoulli
index u : R+ → R such that U(x) =

∑S
s=1 πsu(xs). Following Polisson et al.

(2020), let Y be the set that contains any demand level observed in a given
dataset D plus zero, that is

Y := {x ∈ R+ : x = xis for some (i, s)} ∪ {0}.

We then form the finite grid G = YS ⊂ RS
+ which is a restriction of the choice

space RS
+ to allocations comprised of demand levels that have been observed in

the dataset D. We claim that EUT-rationalizability at cost efficiency e requires
the existence of a real number ū(y) associated with each y ∈ Y, with ū(y′) > ū(y)
whenever y′ > y, such that at each observation of (pi,xi)

S∑
s=1

πsū(xis) ≥
S∑

s=1

πsū(xs) for any x such that pi · x ≤ epi · xi and x ∈ G,

and

S∑
s=1

πsū(xis) >

S∑
s=1

πsū(xs) for any x such that pi · x < epi · xi and x ∈ G.

Indeed, if a dataset D can be EUT-rationalized at cost efficiency e by a con-
tinuous and increasing Bernoulli index u, then these conditions must hold if we
choose ū(y) = u(y) for each y ∈ Y since, in the case of the first condition, x is
in Bi(e) and in the case of the second condition, x is in the interior of Bi(e). An
important application of the main result of Polisson et al. (2020) is that these
conditions are also sufficient for EUT-rationalizality at cost efficiency e. Note
that the conditions constitute a finite set of linear inequalities and ascertain-
ing whether or not it has a solution is computationally straightforward. This
gives us a way of determining whether a dataset D is EUT-rationalizable at cost
efficiency e and thus allows us to calculate its rationalizability score

e∗∗∗ = sup {e ∈ (0, 1] : D is EUT-rationalizable at cost efficiency e}.

To illustrate, Figure 3 depicts the same two budget sets as in Figures 1 and
2, p1 =

(
3
9 ,

2
9 ,

1
9

)
and p2 =

(
1
6 ,

1
6 ,

1
6

)
, with the portfolio allocations x1 = (1, 2, 2)

and x2 = (3, 1, 2). Assuming that the three states are equiprobable, it is easy to
verify that these choices are FOSD-rationalizable, but we claim that they are not
EUT-rationalizable. To see this, consider the portfolio allocations y = (1, 1, 3)
and z = (2, 2, 2) and notice that

p1 · x1 > p1 · y and p2 · x2 = p2 · z.

But EUT-rationalizability requires that

1
3u(1) + 1

3u(2) + 1
3u(2) = U(x1) > U(y) = 1

3u(1) + 1
3u(1) + 1

3u(3),
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Figure 3: Violation of EUT-Rationalizability

and

1
3u(3) + 1

3u(1) + 1
3u(2) = U(x2) ≥ U(z) = 1

3u(2) + 1
3u(2) + 1

3u(2),

implying that 2u(2) > u(1) + u(3) and u(3) + u(1) ≥ 2u(2), a contradiction.
The GRID procedure would also reveal this violation of EUT-rationalizability.
To see this, note there must exist real numbers ū(1) < ū(2) < ū(3) satisfying

2ū(2) > ū(1) + ū(3) and ū(3) + ū(1) ≥ 2ū(2),

which is an impossibility.
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