
A RDU analysis

Figure A.1: The fraction of subjects for whom RDU is more complete than the most
complete regularized regressions, tree-based, and neural networks model, as well as
more complete than the best ML model overall (the horizontal lines), quartiles of
consistency scores with GARP and FOSD (Nishimura et al. (2017) and Polisson
et al. (2020)). This score measures the amount by which each budget constraint must
be relaxed in order to remove all violations of GARP and FOSD and it is bounded
between 0 and 1. The closer it is to 1, the smaller the perturbation of budget lines
required to remove all violations and thus the closer the data are to satisfying GARP
and FOSD. The quartiles are [0, 0.831), [0.831, 0.950), [0.950, 0.988) and [0.988, 1).

1

Absolute completeness difference
RDU’s win rate against between RDU and ML by

Average RDU’s win rate ML by rationality quartiles rationality quartiles

Panel A: RDU and ML model classes completeness against ML 1st 2nd 3rd 4th 1st 2nd 3rd 4th Restrictiveness

RDU 89.2% - - - - - - - - - 16.5%
[88.3%, 89.9%]

Regularized Regressions 79.5% 85.1% 67.5% 87.4% 88.8% 97.0% 3.1% 7.5% 9.9% 18.0% 20.6%
[77.8%, 80.6%]

Tree-based Models 89.1% 70.1% 60.8% 67.4% 71.7% 80.6% -2.0% 0.6% 0.7% 0.8% 9.4%
[88.4%, 89.9%]

Neural Networks 71.6% 92.6% 79.6% 92.9% 98.8% 99.2% 8.7% 14.4% 16.8% 30.7% 14.3%
[68.7%, 73.7%]

Panel B: Regularized Regressions

Lasso 75.9% 89.6% 77.9% 90.8% 91.7% 98.3% 6.4% 11.5% 14.0% 21.3% 20.6%
[74.2%, 76.9%]

OLS 70.2% 87.1% 70.8% 90.0% 90.0% 97.9% 10.6% 10.4% 15.9% 39.0% 20.6%
[57.5%, 74.7%]

Ridge 70.6% 87.0% 70.8% 89.5% 90.0% 97.9% 10.5% 10.2% 15.6% 38.1% 20.6%
[58.2%, 75.0%]

Panel C: Tree-based Models

Mean 86.6% 85.9% 77.5% 88.3% 86.3% 91.6% 2.4% 3.5% 2.4% 2.0% 12.3%
[85.7%, 87.4%]

Linear 82.9% 86.5% 81.3% 85.8% 87.5% 91.6% 11.8% 5.8% 3.7% 3.6% 5.4%
[81.6%, 84.0%]

SVR 85.7% 88.5% 80.4% 90.4% 87.9% 95.4% 3.5% 3.9% 2.9% 3.5% 10.7%
[84.8%, 86.6%]

RF 88.0% 79.9% 70.0% 78.7% 80.8% 90.3% -0.1% 1.5% 1.4% 1.7% 11.9%
[87.2%, 88.8%]

Table A.1: The completeness and restrictiveness of RDU and ML models

2

(a) Quartile 1 (b) Quartile 2

(c) Quartile 3 (d) Quartile 4

Figure A.2: Scatterplot of completeness of RDU and the most complete machine
learning model by rationality quartile.

3

B The experiment

Choi et al. (2007b) developed an experimental graphical interface that allows
subjects to make numerous choices over a wide range of budget sets, and this yields a
rich dataset that is well-suited to analysis at the level of the individual subject. With
the interface, subjects see on a computer screen a geometrical representation of a
standard consumer decision problem – the selection of a bundle of commodities from
a standard budget set – and choose allocations through a simple “point-and-click.”
The experiment consisted of 50 independent decision problems.

y

x

ȳ

x̄slope = −pi

Figure B.3: Example of a Budget Line Bi with Two States and Two Assets

Figure B.3 showcases an example problem. In each decision problem, a subject was
asked to allocate tokens (the experimental currency) between two accounts, labeled
x and y. The x account corresponds to the x-axis and the y account corresponds to
the y-axis in a two-dimensional graph. Each choice involved choosing a point on a
budget line of possible token allocations. Each decision problem started by having
the computer select a budget line randomly from the set of lines that intersect at
least one axis at or above the 50 token level and intersect both axes at or below the
100 token level.18

The payoff at each decision round was determined by the number of tokens in
the x account and the number of tokens in the y account. At the end of the
round, the computer randomly selected one of the accounts, x or y, determined
at random and equally likely. Each subject only received the number of tokens
allocated to the account that was chosen. At the end of the experiment, the computer
selected one decision round for each participant, revealed the chosen account for that
round, and the subject was paid the amount he had earned in that round. Our
dataset is comprised of nearly a thousand subjects from several studies including the

18The budget lines selected for each subject in their decision problems were independent of each
other and of the budget lines selected for other subjects in their decision problems. To choose
an allocation, subjects used the mouse to move the pointer on the computer screen to the desired
allocation. Choices were restricted to allocations on the budget constraint, so that subjects could
not violate budget balancedness.

4

(symmetric) data collected by Choi et al. (2007a) and data from identical experiments
with different subject pools collected by Zame et al. (2020) and Cappelen et al. (2021),
as well as new data from identical experiments.19 In all of these experiments, the
individual-level data consist of 50 decision problems.20 See Choi et al. (2007b) and
Choi et al. (2007a) for an extended description of the experimental interface.21

19Choi et al. (2007a) studied a symmetric treatment, in which the two accounts were equally likely
and two asymmetric treatments in which one of the accounts was always selected with probability
1/3 and the other account was selected with probability 2/3.

20We do not include the data of Choi et al. (2014) which consist of 25, rather than 50, decision
problems. The datasets of Choi et al. (2007a) and Choi et al. (2014) have been analyzed in many
papers, including Halevy et al. (2018), Polisson et al. (2020), and De Clippel and Rozen (2021),
among others.

21The experimental platform is applicable to many other types of individual choice problems.
Ahn et al. (2014) extended the earlier experimental work of Choi et al. (2007a) in settings with
risk (known probabilities) to settings with ambiguity (unknown probabilities). Fisman et al. (2007),
Fisman et al. (2015a), Fisman et al. (2015b), Fisman et al. (2017) and Li et al. (2017), Li et al.
(2022) employ a similar experimental methodology to study social preferences across a number of
different samples, including a nationally representative sample.

5

C Revealed preference tests

The most basic question to ask about choice data is whether it is consistent with
individual utility maximization. We thus want to relate the out-of-sample prediction
accuracy of the economic model, as well as of the ML models, to the consistency
of individual behaviors with utility maximization. If budget sets are linear (as in
our experiments), classical revealed preference theory (Afriat, 1967; Varian, 1982,
1983) provides a direct test: choices in a finite collection of budget sets are consistent
with maximizing a well-behaved (that is, piecewise linear, continuous, increasing, and
concave) utility function if and only if they satisfy GARP. Because GARP provides
an exact test of utility maximization – either the data satisfy GARP or they do not
– but individual choices frequently involve at least some errors, we assess how nearly
individual choice behavior complies with GARP by using Afriat (1972) critical cost
efficiency index (CCEI), which measures the fraction by which each budget constraint
must be shifted in order to remove all violations of GARP. By definition, the CCEI is
between 0 and 1: indices closer to 1 mean the data are closer to perfect consistency
with GARP and hence to perfect consistency with utility maximization.

But not any consistent preference ordering is admissible. Clearly, choices can
be consistent with GARP yet fail to be reconciled with any utility function that is
normatively appealing given the decision problem at hand. Given the two states
are equally likely, allocating fewer tokens to the cheaper security (xs > xs′ when
ps < ps′) is a violation of monotonicity with respect to FOSD. Violations of FOSD
are errors – the failure to recognize that some allocations yield payoff distributions
with unambiguously lower returns.22 To test whether choice behavior satisfies GARP
and FOSD (for a given subject), we combine the actual data from the experiment
and the mirror-image data and compute the CCEI for this combined data set. By
definition, the CCEI score for the combined data set consisting of 100 observations
can be no bigger than the CCEI score for the actual data. Relying on Nishimura
et al. (2017), Polisson et al. (2020) show that when states are equiprobable (as in our
experiment), the CCEI score for the combined data set is a measure of consistency
with GARP and FOSD for each subject because a well-behaved utility function is
monotone with respect to FOSD if and only if it is symmetric.23

22Almost all decision-theoretic models that have been proposed as alternatives to EUT of which we
are aware obey monotonicity with respect to FOSD, including RDU (Quiggin 1982, 1993), Weighted
Expected Utility (Dekel 1986; Chew 1989), and CPT (Tversky and Kahneman (1992)). As noted
by Quiggin (1990), Wakker and Tversky (1993) and Starmer (2000) prominent non-EUT models,
including Prospect Theory (Kahneman and Tversky (1979)), were amended to avoid violations of
FOSD.

23Clearly, any decision to allocate fewer tokens to the cheaper security (positions along the shorter
side of the budget line relative to the 45-degree line) will necessarily generate a simple violation of
the Weak Axiom of Revealed Preference (WARP) involving its mirror-image decision.

6

D Machine learning models

Regularized regressions Regularized regression, in its simplest form, assumes a
linear relationship between outcomes and covariates, whose coefficient is estimated
using ordinary least squares with a penalty term. Roughly, the penalty term lets the
model “learn” which variables are important, and which to ignore. While including
a penalty biases the coefficients, doing so also reduces the chance of overfitting, or
“chasing noise.” We consider two popular models of regularized regression that add
the norm of the coefficient vector as the penalty. The two differ in which norm is
implemented as the penalty. First, we consider Lasso (Tibshirani (1996)), which
penalizes using the L1 norm. Formally, estimating relative demand using Lasso
generates a mapping f̂Lasso:

f̂Lasso(B) = β̂TB,

where β̂ solves

β̂ = argminβ

50∑
i=1

(xi − βTBi)2 + λ || β ||1

Second, we consider ridge regression (Hoerl and Kennard (1970)), which penalizes
using the L2 norm. Formally, estimating relative demand using Ridge generates a
mapping f̂Ridge:

f̂Ridge(B) = β̂TB,

β̂ = argminβ

50∑
i=1

(xi − βTBi)2 + λ(|| β ||2)1/2

The parameter λ affects the degree to which the size of β affects the objective function.
If λ = 0, then the optimization is OLS. We use leave-one-out cross-validation to
determine the parameter λ ∈ [0, 0.2, 0.4, 0.6, 0.8, 1]. The budget set Bi is encoded as
an intercept 1/p1 and the price ratio p2/p1. The parameter vector θ for regularized
regressions models is a linear coefficient vector.

Tree-based Let t denote one of the possible variables associated with a budget set.
Unlike the linear relationship assumed in regularized regression, tree-based models
divide the set of budget sets B into subsets (based on the prices and the endowment)
and estimate a model on each of the subsets. This division is done recursively.
That is, given some index of observations Z corresponding to data {(Bi,xi)}i∈Z ,
the the algorithm considers all further binary partitions that can be represented
as separating data based on a variable x being above or below a given threshold
k: {(Bi,xi)}i∈Z and ti≤k and {(Bi,xi)}i∈Z and ti>k. Of these partitions, the selected

7

partition is the (t, k) pair that minimizes error when applying optimal models to each
partition.

(t∗, k∗) ∈ argmin(t,k)

 ∑
i:i∈Z,ti≤k

`
[
f≤θ (Bi),xi

]
+

∑
i:i∈Z,ti>k

`
[
f>θ (Bi),xi

] ,

where f≤θ = argminf∈FΘ

∑
i:i∈Z,ti≤k `(f(Bi,xi)) and f>θ = argminf∈FΘ

∑
i:i∈Z,ti>k `(f(Bi,xi)).

The process is then reapplied for the two subsets of the resulting partition, and so
on. This partitioning process generates both the (locally) best partition of budget sets
and the (locally) best model estimate for the partition. In aggregate, the algorithm
returns a piecewise demand function. To predict the relative demand of some budget
set Bi, first the subset containing Bi determines which model to use. Then, evaluating
that model determines the demand.

This partitioning process, if allowed to continue without restraint, would end
with each data point in its own partition, with perfect within-sample prediction. To
prevent such overfitting, we limit the decision trees in two simple ways. First, we
set a minimum number of observations per partition. This prevents the algorithm
from splitting a partition if doing so would result in an insufficiently large sample
size. Second, we limit the “depth”, or number of partitions away from B, of a
tree. These limits are determined endogenously for each subject by performing 3-fold
cross validation. In this procedure, data is randomly split into three equally sized
subsamples. We choose the maximum depth to search over 2, 4, 6, and 8; we choose
the minimum observations per partition to search over 2, 4, 6, 8, and 10.

The standard decision tree model, denoted Mean, takes the sample mean token
share x of each subset. We use Mean as well as three extensions. The first extension,
known more broadly as model trees (Quinlan et al. (1992)), changes the estimated
model from a sample mean to a linear regression (Linear). Mean is nested in Linear.
The second extension, support vector regression trees, instead uses a support vector
regression of each subset. Support vector regression attempts to find the flattest
demand mapping possible such that the token share predictions are accurate up to
some ε ≥ 0 (see Smola and Schölkopf (2004)). The last tree-based model, the random
forest model (RF) averages the decision rules of multiple standard decision trees.
Each tree is given a bootstrapped data set, and is generally seen as an improvement
over singular decision trees (Breiman (2001)). In addition to limits on depth and
minimum sample size, RF regulates the number of trees, which we choose to be 10,
50, and 100 trees. Because each tree not trained on the original data set, there is no
nesting and thus no restrictiveness or completeness guarantees between RF and the
other tree-based models. Additionally, since trees are inherently nonparametric, they
cannot be easily described by a parameter vector θ.

8

Neural networks Neural networks, specifically a multilayer perceptron, transform
budget sets into relative demand predictions by nonlinear regression, whose functional
form assumes a series of nested transformations. In our setup, the transformation
takes two parts. First, a budget set B undergoes an affine transformation W (0)B+b(0),
where W (0) and b(0) are a matrix and vector of size n0×2 and n0×1, respectively. The
dimension n0 is prespecified by the analyst. Second, the affine transformation is again
transformed by a function σ(0) : Rn0 → Rn0 to obtain a new vector B(1) = σ(0)(W (0)B+
b(0)). The function σ is also prespecified by the analyst. The resulting vector, B(1),
is referred to as a “hidden layer”. It is then used as the input to generate another
hidden layer, B(2) = σ(1)(W (1)B + b(1)), using a new affine transformation defined
by W (1)

n1×n0

and b(1)

n1×1
as well as transformation by σ(1). This process continues for the

number of hidden layers prespecified by the analyst. The final affine transformation
results in a scalar value that can be interpreted as the estimated relative demand.

For a multilayer perceptron, the parameter values W (i) and b(i) are estimated,
while the analyst has the freedom to choose the number of layers, the dimensions
of each layer, the σ(i) functions, and a number of parameters associated with the
estimation of W (i) and b(i).

We use the layer count, layer dimension, and σ(i) values from Zhao et al. (2020).
σ(i) are all chosen to be the same component-wise maximum function σ(x) = max(0, x).
This function, the rectified linear unit (“ReLU”) function, keeps all positive compo-
nents of a vector, and sets all negative components to zero. We use 3-fold cross-
validation to simultaneously determine the individual-best layer count and layer
dimension. We search over all combinations of {1, 2, 3} hidden layers, as well as all
combinations of {15, 20, 25} for the size of each layer, for a total of 39 “architectures”
investigated.

We use the L-BFGS algorithm to estimate W (i) and b(i) (for a full treatment, see
Bottou et al. (2018) and Sun et al. (2019)). This algorithm is readily available in
software packages such as Python’s sklearn. The estimation objective function to
be minimized is mean squared error, which is the same objective function used to
evaluate all models (through completeness and restrictiveness). For example, given a
network of 2 hidden layers each with dimension 15, the objective function is:

min
W (0)

15×2
,W (1)

15×15
,W (2)

1×15
, b(0)

15×1
, b(1)

15×1
,b(2)

1×1

∑
xi∈D

`(f(W, b),xi) =
[
xi −W (2)σ

(
W (1)σ

(
W (0)Bi + b(0)

)
+ b(1)

)
− b(2)

]2
Let w denote a vectorized version of W and b. The estimation method is quasi-

Newtonian, and involves iteratively updating parameters in the direction of the
gradient of the loss function with respect to the parameters w, ∇L(w). The general
form is

wk+1 ← wk − αkHk∇L(w),

where wk denotes the kth iteration of updating w, αk is a step-size parameter value

9

chosen to satisfy

min
α
L (wk − αHk∇L(w)) ,

and Hk is an updating estimate of the inverse of the Hessian matrix ∇2L(w). Let
sk = wk+1 − wk and vk = ∇L(wk+1)−∇L(wk). Then,

Hk+1 ←
(
I − vks

T
k

sTk vk

)T
Hk

(
I − vks

T
k

sTk vk

)
+
sks

T
k

sTk vk

10

E Asymmetric probability

We investigate a more complex environment, using data with asymmetric prob-
abilities of 1/3 and 2/3 but otherwise identical experiment and analysis, on 46
subjects who participated in the original Choi et al. (2007) study. In the asymmetric
environment where P (sx) = 1/3 and P (sy) = 2/3, RDU corresponds to

RDU(x, y; ρ) =

{
w(1/3) · u(x) + [1− w(1/3)] · u(y) x < y

w(2/3) · u(y) + [1− w(2/3)] · u(x) x > y

To economize on notation, let w1 := w(1/3) and w2 := w(2/3). Optimal demand
results in checking the maximum utility of two cases: where x > y and where x < y.
For both cases, x is solved for and y = 1−px·x

py
.

For CRRA utility u(x) = x1−ρ

1−ρ (and log(x) when ρ = 1), assuming x < y, the
optimal solution is

x∗lower =

1

px+py
[

w1
1−w1

∗ py
px

]−1/ρ w1 <
px

px+py

1
px+py

w1 ≥ px
px+py

Assuming x > y, the optimal solution is

x∗upper =

1

px+py
[

1−w2
w2
∗ py
px

]−1/ρ w2 <
py

px+py

1
px+py

w2 ≥ py
px+py

The optimal demand x∗CRRA = arg maxx∈{x∗lower,x∗upper}RDU(x, 1−px·x
py

; ρ).

For CARA utility u(x) = e−Ax, x ≥ 0, assuming x < y, the optimal solution is

x∗lower =

0 w1 ≤ px

px+py ·exp(A/py)

1
px+py

−
log
(

1−w1
w1
· px
py

)
A·
(

1+ px
py

) w1 ∈ [px
px+py exp(A/py)

, px
px+py

]

1
px+py

w1 ≥ px
px+py

Assuming x > y, the optimal solution is

x∗upper =

1

px+py
w2 ≥ py

px+py

1
px+py

−
log
(

w2
1−w2

· px
py

)
A·
(

1+ px
py

) w2 ∈ [py
px·exp(A/px)+py

, py ‘

px+py
]

1
px

w2 ≤ py
px·exp(A/px)+py

The optimal demand x∗CARA = arg maxx∈{x∗lower,x∗upper}RDU(x, 1−px·x
py

; ρ).

Replications of Tables 1, 2, and A.1, along with Figure 1, are reported below.
Overall, the results are fairly robust: RDU is more complete than any individual

11

model, although EUT has slightly reduced completeness. Additionally, RDU’s win
rate against machine learning models is increasing by rationality quartile, although
the fewer subjects gives noisier results.

12

Absolute completeness difference
RDU’s win rate against between RDU and ML by

Average RDU’s win rate ML by rationality quartiles rationality quartiles

Panel A: RDU and ML model classes completeness against ML 1st 2nd 3rd 4th 1st 2nd 3rd 4th Restrictiveness

RDU 90.1% - - - - - - - - - 13.5%
[87.8%, 91.8%]

Regularized Regressions 84.2% 84.8% 72.7% 75.0% 91.7% 100.0% 5.4% 2.6% 4.6% 11.5% 22.1%
[80.5%, 86.9%]

Tree-based Models 90.2% 54.3% 27.3% 75.0% 50.0% 63.6% -2.0% 0.9% 0.2% 0.1% 8.1%
[88.3%, 91.9%]

Neural Networks 81.8% 91.3% 81.8% 91.7% 91.7% 100.0% 11.2% 3.8% 9.6% 8.6% 15.9%
[78.0%, 84.6%]

Panel B: Regularized Regressions

Lasso 75.8% 95.7% 81.8% 100.0% 100.0% 100.0% 11.5% 12.1% 13.7% 20.1% 22.1%
[72.4%, 78.9%]

OLS 81.8% 87.0% 81.8% 75.0% 91.7% 100.0% 13.3% 2.7% 4.7% 13.3% 22.1%
[71.6%, 85.8%]

Ridge 82.2% 87.0% 81.8% 75.0% 91.7% 100.0% 12.4% 2.6% 4.6% 12.8% 22.1%
[72.7%, 86.0%]

Panel C: Tree-based Models

Mean 89.4% 71.7% 45.5% 83.3% 75.0% 81.8% -0.4% 1.4% 0.7% 0.8% 10.1%
[87.3%, 91.2%]

Linear 88.0% 80.4% 54.5% 91.7% 91.7% 81.8% 1.2% 3.3% 2.1% 1.6% 10.7%
[85.7%, 90.0%]

SVR 86.2% 84.8% 90.9% 83.3% 75.0% 90.9% 5.7% 3.9% 2.1% 4.3% 7.0%
[83.3%, 88.4%]

RF 86.3% 84.8% 72.7% 100.0% 83.3% 81.8% 2.7% 5.6% 3.2% 3.5% 9.0%
[84.0%, 88.3%]

Table E.3: The completeness and restrictiveness of RDU and ML models

13

Table E.3: The completeness and restrictiveness of EUT and RDU

Absolute completeness difference
EUT’s win rate against between EUT and RDU by

Average EUT win rate RDU by rationality quartiles rationality quartiles

Panel A: EUT and RDU completeness against RDU 1st 2nd 3rd 4th 1st 2nd 3rd 4th Restrictiveness

EUT 83.5% 50.0% 50.0% 50.0% 50.0% 50.0% 0.0% 0.0% 0.0% 0.0% 30.2%
[79.6%, 86.4%]

RDU 90.1% 17.4% 27.3% 16.7% 8.3% 18.2% -6.8% -4.8% -6.6% -8.4% 13.5%
[87.8%, 91.8%]

Panel B: CRRA Only

EUT CRRA 82.3% 50.0% 50.0% 50.0% 50.0% 50.0% 0.0% 0.0% 0.0% 0.0% 31.2%
[78.5%, 85.3%]

RDU CRRA 89.6% 19.6% 27.3% 16.7% 16.7% 18.2% -6.4% -6.1% -6.9% -9.9% 13.2%
[87.1%, 91.4%]

Panel C: CARA Only

EUT CARA 82.6% 50.0% 50.0% 50.0% 50.0% 50.0% 0.0% 0.0% 0.0% 0.0% 29.6%
[78.2%, 85.6%]

RDU CARA 89.2% 15.2% 27.3% 16.7% 8.3% 9.1% -7.5% -4.5% -6.4% -8.2% 13.8%
[86.9%, 90.9%]

14

Table E.3: The completeness and restrictiveness of EUT and ML models

Absolute completeness difference
EUT’s win rate against between EUT and ML by

Average EUT’s win rate ML by rationality quartiles rationality quartiles

Panel A: EUT and ML model classes Completeness against model 1st 2nd 3rd 4th 1st 2nd 3rd 4th Restrictiveness

EUT 83.5% - - - - - - - - - 30.2%
[79.6%, 86.4%]

Regularized Regressions 84.2% 50.0% 72.7% 33.3% 25.0% 72.7% -1.4% -2.2% -2.0% 3.0% 22.1%
[80.5%, 86.9%]

Tree-based Models 90.2% 19.6% 18.2% 16.7% 25.0% 18.2% -8.7% -3.9% -6.5% -8.3% 8.1%
[88.3%, 91.9%]

Neural Networks 81.8% 54.3% 63.6% 33.3% 75.0% 45.5% 4.5% -0.9% 2.9% 0.1% 15.9%
[78.0%, 84.6%]

Panel B: Regularized regressions

Lasso 75.8% 87.0% 90.9% 91.7% 75.0% 90.9% 4.7% 7.3% 7.1% 11.7% 22.1%
[72.4%, 78.9%]

OLS 81.8% 52.2% 72.7% 33.3% 25.0% 81.8% 6.5% -2.1% -1.9% 4.8% 22.1%
[71.6%, 85.8%]

Ridge 82.2% 52.2% 72.7% 33.3% 25.0% 81.8% 5.6% -2.2% -2.0% 4.3% 22.1%
[72.7%, 86.0%]

Panel C: Tree-based models

Mean 89.4% 23.9% 27.3% 25.0% 25.0% 18.2% -7.2% -3.3% -6.0% -7.6% 10.1%
[87.3%, 91.2%]

Linear 88.0% 43.5% 45.5% 50.0% 33.3% 45.5% -5.6% -1.5% -4.5% -6.9% 10.7%
[85.7%, 90.0%]

SVR 86.2% 47.8% 63.6% 41.7% 33.3% 54.5% -1.1% -0.9% -4.6% -4.2% 7.0%
[83.3%, 88.4%]

RF 86.3% 52.2% 45.5% 58.3% 41.7% 63.6% -4.0% 0.8% -3.5% -5.0% 9.0%
[84.0%, 88.3%]

15

Figure E.4: The fraction of subjects for whom RDU is more complete than the most
complete ML models, 2D Asymmetric.

16

F Simulated agents with logit noise

To observe the effects of increased data on model performance, we simulate agents
with CRRA Bernoulli utility u(x) = x1−ρ

1−ρ with parameter ρ = 0.5. Each agent makes
choices with noise, with the probability of a specific allocation x being chosen from a
budget set with prices p according to a logistic distribution

P (x) =
exp [γEu(x)]∫

x′|px′=1
exp [γEu(x′)]

As γ approaches zero, the distribution approaches uniform random choice over
the budget line. As γ approaches infinity, the distribution approaches deterministic
utility maximization. We simulate 1000 choices from γ ∈ {0.25, 0.5, 1, 5, 10}, and
calculate completeness estimates for each simulation, with random uniform choice
over the budget line as the naive model and perfect prediction as the irreducible
error.24

Because of the changed size of the data set, we modify the hyperparameter values
of tree-based models to handle the increased size. We extend the minimum depth and
minimum observations per partition to search over 2, 4, 6, 8, 10, 12, 14, 16, 18, and
20 for both hyperparameters. Note that linear and support vector regression trees
are omitted due to computational limitations.

Table F.4 shows the results. Overall, the completeness of EUT and RDU slightly
outperform the best ML algorithm at all levels of noise. As somewhat expected, the
performance gap is reduced when introducing orders of magnitude more data.

Table F.4: The completeness of economic and machine learning models for simulated
agents with 1000 choices.

Regularized Tree-based Neural
γ EUT RDU Regressions Models Networks Best ML

0.25 68.6% 68.5% 57.6% 67.9% 67.6% 67.9%
0.5 74.2% 74.1% 60.3% 73.4% 73.7% 73.7%
1 79.5% 79.5% 64.6% 79.3% 78.5% 79.3%
5 95.0% 94.9% 71.8% 94.8% 94.6% 94.8%
10 97.0% 97.0% 71.9% 96.9% 96.7% 96.9%

24We can also use a noiseless model as the irreducible error. This would serve to only increase
the completeness of each model, as the noiseless model will make errors in prediction. However, the
order of model performances will not be affected.

17

G Lowest quartile of consistency analysis

We further investigate subjects in the lowest quartile of consistency, to determine
whether behavioral inconsistencies are due to either randomness or systematic vio-
lations of GARP and FOSD. Randomness in responses can generally be viewed as
mistakes; in the most extreme cases, subjects would be no more consistent with CCEI
than a Bronars (1987) test. For subjects that have systematic violations, consider
subjects allocating all tokens to one security regardless of price, which is consistent
with GARP but not with FOSD, or always allocating all tokens to the more expensive
security (violating both GARP and FOSD). In the case of pure randomness, we expect
model performance to be approximately equally poor, as the out-of-sample data is
uncorrelated with training data. However, in the case of systematic and regular
violations out of the scope of standard economic models that satisfy GARP and
FOSD, we expect machine learning model performance to be better than economic
models.

Figure G.5 plots completeness of EUT and ML for each subject, additionally fitting
polynomials of degree three to the scatterplot for both EUT and ML. The three
vertical lines within the image denote the cutoffs between quartiles of consistency
scores. We emphasize that while the lowest quartile visually takes up more space in
the figure, it still contains the same number of subjects as the other quartiles. For
the three highest quartiles, there is a close relationship between consistency scores
and the performances of EUT and ML. However, when considering subjects whose
consistency is less than 0.5, the completeness of ML is estimated to be consistently
higher than that of EUT. This corresponds to 59 subjects, or approximately 6.2%
of our subject pool. For these subjects, we reject the notion that choices are due to
randomness.

First, we examine these subjects in the aggregate. The average completeness
among these subjects is 68.7% for ML and 59.2% for EUT. Additionally, lower
consistency scores are associated with higher numbers, not just magnitudes, of WARP
and FOSD violations: subjects below 0.5 have on average 14 FOSD violations and
49 WARP violations, compared to an average of 3 FOSD violations and 7 WARP
violations for subjects above 0.5.

Second, we examine the three subjects with the highest difference in completeness
between ML and EUT. The average completeness among these subjects is 97.8% for
ML and 28.4% for EUT. Additionally, all subjects belong to the lowest quartile of
rationality scores: the average consistency score is 0.167. Demand curves are shown
in Figure G.6.

It is easy to visually classify the three subjects as subscribing to a simple decision
rule, yet their rules are mistakes. For subjects ID 66 and 81, security 2 is always
(nearly) fully invested in, regardless of the price. These decision rules are nearly
consistent with utility maximization. Unlike other subjects below consistency score of
0.5, ID 66 has 1 WARP violation and ID 81 has 0 WARP violations. For example, the

18

Figure G.5: Completeness and rationality score of all subjects. Polynomials of degree
three are fit to the scatterplot for both EUT and ML.

non-expected utility function u(x1, x2) = x2 will rationalize these choices. However,
such choices are indeed mistakes due to the nature of the goods. Because the goods
associated with the experiment are Arrow securities, any choice allocating more to
the more expensive state than the cheaper state violates monotonicity with respect
to FOSD. Therefore, any choice such that log(p1/p2) < 0 and x1/(x1 + x2) < 0.5
violates FOSD. Unsurprisingly, ID 66 has 23 FOSD violations and ID 81 has 27
FOSD violations.

Subject ID 221 exclusively chooses the more expensive of the goods if prices are
sufficiently different, and equates the two goods when prices are similar. Like ID 66
and ID 81, this rule again consistently violates FOSD. However, it also consistently
violates WARP, as shown in Figure G.7. In the figure, two actual price configurations
of Subject ID 221 and associated decisions are plotted: round 12 in black and round
25 in blue. The log price ratio for the configurations are nearly identical in magnitude,
yet with opposite sign. Choosing the more expensive alternative generates a cycle in
revealed preference. Both points are available under the black price configuration,
implying that the black point is preferred to the blue point, and vice versa when
considering revealed preference from the blue price configuration. Subject ID 221
generates a total of 224 WARP violations, the most of any subject in the sample.

Overall, among the subjects considered, the rule explaining behavior is simple, yet
they violate basic principles of utility maximization in a way that does not appear
to be solely due to higher levels of randomness. Additionally, the behavior does
not appear to stem from a behavioral bias, but potentially instead as a mistake or

19

Figure G.6: The relationship between the log-price ratio and the token share for
subjects with the highest completeness differential between ML and EUT, in favor of
ML.

misunderstanding of the experiment.

20

Figure G.7: Price configurations and choices of rounds 12 (black) and 25 (blue) for
subject ID 221.

H Significant completeness differences

We address statistical uncertainty regarding win rates by calculating individual-
level completeness standard errors and conducting a two-sample t-test. The estimates
of standard errors come from Fudenberg et al. (2022a). Let k denote an arbitrary
fold of cross-validation, and let k(i) be a function mapping data observations to folds.
For a model FΘ, define the average fold k error as

∆̄Θ,k =
1

5

∑
k(i)=k

`
[
f ∗Θ(Bi), xi

]
The fold k sample variance is then defined as

σ̂2
∆Θ,k

=
1

4

∑
k(i)=k

[
`
[
f ∗Θ(Bi), xi

]
− ∆̄Θ,k

]2
The average sample variance across folds is

σ̂2
∆Θ

=
1

10

10∑
k=1

σ̂2
∆Θ,k

Define analogous measures ∆̄fnaive, k , σ̂
2
fnaive, k

, and σ̂2
fnaive

for the naive random
uniform decision rule.

21

The covariance estimator is defined as

σ̂∆Θ∆fnaive
=

1

10

10∑
k=1

1

4

∑
k(i) = k

[
`
[
f ∗Θ(Bi), xi

]
− ∆̄Θ,k

] [
`
[
fnaive(Bi), xi

]
− ∆̄naive,k

]
The variance estimator for completeness is then

σ̂2
κ =

σ̂2
∆Θ
− 2κ̂σ̂∆Θ∆fnaive

+ κ̂2σ̂2
fnaive[

ÊCV (f ∗Θ)
]2 ,

where ÊCV (fΘ) is the cross-validated mean squared error for f ∗Θ and κ̂ is the
estimate of completeness.

We naively assume independence between the completeness distributions – while
it is clear that the model estimates are correlated because they are evaluated on the
same data set, this bias should increase the number of subjects with “significant wins”
due to the assumed covariance of zero lowering the estimate of standard error. Of
the 956 subjects in the data set, only 13 have significant differences in completeness,
even with the naive independence assumption.

However, the main result that RDU outperforms economic models can still be
tested at the aggregate level. Of the 956 subjects in the data, 625 point estimates
indicate that RDU “wins” over the most complete machine learning model. A
binomial test rejects the null hypothesis that win rates are at least as high for the
most complete machine learning model than for RDU at the 1% level.

22

