Appendix I Charness-Rabin model

We use definitions that stem from the model of Charness and Rabin (2002) who consider the following simple formulation of the preferences of self:

$$u_s(\pi_s, \pi_o) \equiv (1 - \rho r - \sigma s)\pi_s + (\rho r + \sigma s)\pi_o,$$

where r = 1 (s = 1) if $\pi_s > \pi_o$ $(\pi_s < \pi_o)$ and zero otherwise. Notice that proportionally increasing ρ and σ indicates a decrease in self-interestedness whereas increasing the ratio ρ/σ indicates an increase in concerns for increasing aggregate payoffs rather than reducing differences in payoffs. Thus, the parameters ρ and σ allow for a range of different distributional preferences:

- (i) competitive preferences ($\sigma \leq \rho < 0$), where utility increases in the difference $\pi_s \pi_o$, are consistent only with the competitive allocation $\pi^c = (\pi_s^s, 0);$
- (ii) narrow self-interest or selfish preferences ($\sigma = \rho = 0$), where utility depends only on π_s , are consistent with any allocation π where $\pi_s = \pi_s^s$;
- (iii) difference aversion preferences ($\sigma < 0 < \rho < 1$), where utility is increasing in π_s and decreasing in the difference $\pi_s - \pi_o$, are generally consistent with the allocations π^s and π^e if $\pi^e_s = \pi^o_s$;
- (iv) social welfare preferences $(0 < \sigma \le \rho \le 1)$, where utility is increasing in both π_s and π_o , are only consistent with π^s and π^o .

To provide a clearer intuition, Figure AI1 illustrates difference aversion and social welfare preferences and depicts the range of solutions when $\pi^e \in \Pi^3$. A typical indifference curve for difference averse preferences is represented in the left panel $(MRS_{os} > 0 \text{ for } \pi_s < \pi_o)$ and for social welfare preferences in the right panel $(MRS_{os} < 0 \text{ for } \pi_s < \pi_o)$. In these cases, the difference aversion optimum is π^s or π^e whereas the social-welfare optimum is π^s or π^o . Also notice that many allocations are not consistent with any of the above prototypical preferences. For example, any allocation $\pi \in \Pi^3$ is not consistent with any of these preferences unless $\pi = \pi^e$.

Figure AI1: An example of the preferences of Charness and Rabin (2002)

Instances of social preferences and the range of solutions when $\pi^e \in \prod^3$. A typical indifference curve of a difference aversion function is represented in the left panel and of a social-welfare function in the right panel. The difference aversion optimum is π^e whereas the social-welfare optimum is π^o .