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Appendix A: Construction of spending in the app data 

This appendix discusses the data and provides details on how we prepare the data for analyses.  

We received anonymized data directly from the personal financial management service 

provider (app).  The process by which the company acquires the data can differ across users, 

account providers (e.g., Bank of America, Wells Fargo) and time. For some account providers, the 

data are scraped from the website of an account provider, and in other cases a direct feed is received 

from the account provider. All account numbers and other personal identifying information is 

removed by the app company before we receive the data.  Otherwise, we receive the data exactly 

as it is received by the app.  The table below summarizes the key variables in the data that are used 

in our analysis:  
User_id - Anonymous identifier constructed by the personal 

financial management service 
Posted_date - Date a transaction was recorded 

Account_Provider_Id - An identifier for a specific account provider (e.g. Bank of 
America) 

Account_Type - An indicator for whether an account is a checking account, 
savings account, credit card, or other account. 

Transaction_Amount - The amount of the transaction 

Is_Credit - Whether the transaction was a credit or a debit 

Transaction_Description - A string variable describing the transaction. 

Our cleaning processes proceeds in steps outlined below:  

I. Remove likely duplicates +/- 3 days  

Because the data may include pending transactions, a given spending may show up multiple times 

in different transactions.  For instance, if a transaction was pending on one day, and posted the 

next day, we could see a duplicate recording of the same transaction in the data, which would not 

reflect actual spending.   

Some account providers indicate whether a transaction is pending or posted, and we first 

remove all transactions that are flagged as pending, or contain the word “pending” in the 

transaction string.  Since many account providers do not indicate whether a transaction is pending, 

and since this information also varies across time, we deal with this problem by removing 

transactions that are duplicates on the dimensions of {User_Id, Account_Provider_Id, 

Account_Type, Is_Credit, Transaction_Amount, Transaction_Description} over a 3 day window. 

This removes approximately 5% of transactions.  Some of these transactions could be non-
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duplicates (for instance, if someone buys the exact same item every day), and so these transactions 

will also be removed by this procedure.  Using the data with likely duplicates removed, we next 

proceed to calculate total spending and total income, which we aggregate to the weekly level. 

II. Construct variables used in analysis and aggregate to weekly level 

The transactions contain every single inflow and outflow from a household’s account, some of 

which are not “consumption.”  Two problematic types of transactions are transfers across accounts 

and credit card payments.  In most cases, transfers across accounts can be identified from the 

transaction strings, since they are commonly flagged as “transfer,” “xfer,” “tfr,” “xfr” or “trnsfr.” 

We remove all transactions with these words appearing in their description.  

Credit card payments reflect lagged spending that we have already included in our measure 

of total spending, since we can see the individual purchases that make up the credit card payment 

on the credit card.  Therefore, we wish to identify and remove these payments. We identify credit 

card payments as debits appearing on a non-credit-card account that also appears as a credit to a 

credit card, and remove these.   

We also remove the largest transaction greater than $1,000 in a weekly window, since these 

transactions appear to be predominantly credit card payments and transfers missed by our 

procedure.   As a caveat, this likely also removes mortgage payments (committed spending), 

extremely large durables purchases (such as a down payment on a car, although we would still see 

car payments), and payments on tax liabilities.   To summarize, our measure of “total spending” 

used in this paper is defined as:  

{Total spending} = {Total Account Debits} – {Flagged Duplicates} – {Transfers} – 

{Credit Card Payments} – {Largest Transaction > $1,000 (if any)}.  

 

Finally, we address the issue of accounts that become unlinked from the app or are not 

properly synchronising.  If an account goes out of sync for a period of up to two weeks, the app 

will generally be able to backfill these transactions.  Longer periods will result in missing spending.  

Unfortunately, there is no indicator in the data when an account is not syncing.  We identify non-

syncing credit cards as cards that carry an account balance for longer than a month, but have no 

interest charges or payments.  To ensure the quality of our spending data, we drop users in the 

weeks where credit cards that ever amounted to 10 percent or more of their overall weekly 

spending are flagged as nonsyncing based on the above criteria.    
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Appendix B: Machine Learning Classification of Transactions 

As discussed in Appendix 1, the data we receive contain raw transaction strings.  These transaction 

strings differ across account providers in their context.  We wish to identify spending that comes 

from gasoline. Identifying to which of a set of categories an observation belongs, based on 

information in the transaction descriptions, is a classic “classification” problem in machine 

learning.   

We seek a simple machine learning (ML) model to identify gasoline spending in the data.   

For this to work, we require a “training” set of data containing observations whose category 

membership is known.  Fortunately, two account providers in our data categorize the transactions 

into merchant category codes (MCCs) directly in the transaction strings. These two cards represent 

about 3% of all transactions.  As discussed in the text, it is virtually impossible to separate out our 

main MCC of interest, 5541, “Automated Fuel Dispensers” from MCC code 5542, “Service 

Stations,” which in practice covers gasoline stations with convenience stores.1 Because 

distinguishing gasoline purchases classified as 5542 or 5541 is nearly impossible with the 

information in transaction descriptions,2 we group transactions with these two codes together.  

Before proceeding with the details of the machine learning model, it is useful to discuss an 

alternative approach that identifies all gasoline stations in the data through string matching 

techniques.  To see why this is infeasible, consider that the 100 most popular gasoline station 

strings cover approximately 50% of the total market share in the transactions where we know the 

MCC codes. Scaling up is costly: to get 90 percent of the market share, we would need to search 

for over 30,000 strings (Appendix Figure 1). Moreover, since other spending can often have similar 

transaction descriptions, it is hard to know what strings minimize noise while maximizing 

predictive power.  The machine learning algorithm thus helps discipline the approach of what 

transaction strings contain the most useful information. The machine learning procedure proceeds 

in 3 steps: training, testing, and application.  

Machine learning requires both a “training” data set—data actually used to fit a 

classification model-—and a “testing” data set to evaluate the out of sample performance of the 

model. In the training step, we build a prediction model using data with the MCC codes (i.e. data 

                                                 
1 To be clear, “Service Stations” do not include services such as auto repairs, motor oil change, etc.  
2 E.g., a transaction string with word “Chevron” or “Exxon” could be classified as either MCC 5541 or MCC 5542. 
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where classification is known). We use the larger of the two account providers as the training data 

set, and test the performance of the model on the smaller account. We explicitly set aside the 

second card as the training data set because transaction strings, which we will feed into the model 

to classify the data, can differ across account providers. Therefore, if we train on data from the two 

accounts, we may fit our two cards extremely well, but we may have a poor “out of sample” fit of 

our model.  

The classification algorithm we use is known as a random forest classifier, which fits a 

number of separate decision trees. A decision tree is a series of classification rules that ultimately 

lead to a classification of a purchase as gasoline or not.  The rules, determined by the algorithm, 

minimizes the decrease in accuracy when a particular model “feature” is removed.  The features 

we use are the transaction values and individual words in the transaction strings (this approach is 

known as “bag of words”), after some basic string cleaning.  We limit the number of features to 

20,000 words, and transaction amounts rounded to the nearest 50 cents. An example decision tree 

is shown in Appendix Figure 2.   

In this example, the most important single word is “oil.”  If a transaction string contains 

the word oil, the classification rule is to move to the right, otherwise the rule is to move to the left. 

If the string does not contain the word oil, the next most important single word is “exxonmobil.” 

The tree keeps going until all the data are classified.   

Whether a transaction is classified as gasoline spending or not is simply the majority vote 

over a number of decision trees. This is known as a “white box algorithm” because the model 

determines optimal decision rules that we can see. We use prebuilt packages from the python 

machine learning toolkit.3  

The results of the model are shown in Appendix Table B.1. The model predicts 

292,997/(292,997+26,553) = 92% of automated fuel dispenser and service station transactions. 

The ratio of misclassfications to correct classifications is (30,080+26,553)/292,997=19%.  

In summary, the ML approach is able to correctly classify over 90% of gasoline spending 

in the test data. If a human were to do this, she would need to identify over 30,000 strings.  In 

                                                 
3 Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011. 

http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
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addition, the model correctly classifies over 99.5% of the gasoline stations that would have been 

captured in an alternative approach of identifying the 100 largest gasoline stations by market share. 

 

Appendix Figure B.1 
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Appendix Table B.1. Confusion Matrix 

 Actual gasoline spending 
No Yes 

Pr
ed

ic
te

d 
ga

so
lin

e 
sp

en
di

ng
  No 2,741,524 26,553 

Yes 30,080 292,997 

Notes: Table shows the four possible outcomes for our testing data set which is not used in any 
way to train the model, as described in the text. The rows “Predicted gasoline spending” refer to 
the binary prediction from the model as not gasoline, “no,” or gasoline, “yes”. Actual gasoline 
refers to the “truth,” which is known for the case of our testing dataset.   
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Appendix C. Additional Tables and Figures 

Appendix Figure C.1. Distribution of Ratio of Gasoline to Non-Gasoline Spending, 2013Q1-
2014Q4 

 
Note: the figure shows the quarterly gasoline to non-gasoline spending distribution in the app 
data and the CEX interview survey (solid lines), and the same ratio calculated over all of 2013 
(dashed lines).  
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Appendix Figure C.2. Dynamics of gasoline prices across metropolitan areas 

 

Notes: The figure plots time series of gasoline prices (all types) to major metropolitan areas. All 
series are from the FRED© database (mnemonics: CUUR0000SETB01, CUURA422SETB01, 
CUURA320SETB01,  CUURA207SETB01, CUURA318SETB01,  CUURA101SETB01) and 
normalized to be equal to 100 in 2010.  
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Appendix Table C.2. Gelman et al. (2014) 

 

Source: Gelman et al. (2014) 
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Appendix D: Marginal Propensity to Consumer in Partial Equilibrium versus General 

Equilibrium Effects 

In this appendix, we link the marginal propensity to consume (MPC) to structural parameters and 
explore how partial equilibrium MPC is potentially related to general equilibrium effect of gasoline 
price changes. In this exercise, we vary the price of gasoline holding everything else constant.   
 
Partial equilibrium  
Consumer a household that solves the following problem 

max𝑚𝑚(𝑐𝑐1) + 𝑢𝑢(𝑐𝑐2) − 𝑣𝑣(𝐿𝐿) 
𝑠𝑠. 𝑡𝑡.   𝑐𝑐1 + 𝑝𝑝2𝑐𝑐2 = 𝑤𝑤𝐿𝐿 

where 𝑐𝑐1 is the numeraire good (or “non-gasoline spending”; we normalize 𝑝𝑝1 = 1), 𝑐𝑐2 is 
“gasoline”, 𝐿𝐿 is labor, 𝑤𝑤 is wages, and functions 𝑚𝑚,𝑢𝑢, 𝑣𝑣 describe how the household values goods 
and leisure. In a popular case, 𝑚𝑚(𝑐𝑐1) = 𝑐𝑐1 so that the utility is quasi-linear. Because this is a partial 
equilibrium model, we take wages as given.  

 
The first-order conditions yield:   

𝑚𝑚′(𝑐𝑐1) = 𝜆𝜆 
𝑢𝑢′(𝑐𝑐2) = 𝑝𝑝2𝜆𝜆 
𝑣𝑣′(𝐿𝐿) = 𝑤𝑤𝜆𝜆 

 
After log-linearization of these FOCs and the budget constraint, we have (assume 𝑤𝑤 is fixed) 

�̌�𝑐1 = 𝜖𝜖1�̌�𝜆 
�̌�𝑐2 = 𝜖𝜖2(�̌�𝜆 + �̌�𝑝2) 

𝑣𝑣′′(𝐿𝐿)𝐿𝐿
𝑣𝑣′(𝐿𝐿) 𝐿𝐿� = 𝜂𝜂−1𝐿𝐿� = �̌�𝜆 

�̌�𝑐1 =
𝑤𝑤𝐿𝐿
𝑐𝑐1
𝐿𝐿� −

𝑝𝑝2𝑐𝑐2
𝑐𝑐1

(�̌�𝑝2 + �̌�𝑐2) = (1 + 𝑠𝑠)𝐿𝐿� − 𝑠𝑠(�̌�𝑝2 + �̌�𝑐2) 

where 𝑠𝑠 ≡ 𝑝𝑝2𝑐𝑐2
𝑐𝑐1

 and 𝑤𝑤𝑤𝑤
𝑐𝑐1

= 𝑐𝑐1+𝑝𝑝2𝑐𝑐2
𝑐𝑐1

= 1 + 𝑠𝑠 and 𝜂𝜂 = �𝑣𝑣
′′(𝑤𝑤)𝑤𝑤
𝑣𝑣′(𝑤𝑤)

�
−1

 is the Frisch labor supply elasticity, 

𝜖𝜖2 ≡
𝑢𝑢′(𝑐𝑐2)

𝑢𝑢′′(𝑐𝑐2)𝑐𝑐2
< 0 and 𝜖𝜖1 ≡

𝑚𝑚′(𝑐𝑐1)
𝑚𝑚′′(𝑐𝑐1)𝑐𝑐1

< 0. Note that the first two conditions imply that �̌�𝑐2 = 𝜖𝜖2
𝜖𝜖1
�̌�𝑐1 +

𝜖𝜖2�̌�𝑝2. 
 
It follows that  

�̌�𝑐1 = (1 + 𝑠𝑠)𝐿𝐿� − 𝑠𝑠(�̌�𝑝2 + �̌�𝑐2) = (1 + 𝑠𝑠)𝜂𝜂�̌�𝜆 − 𝑠𝑠 �
𝜖𝜖2
𝜖𝜖1
�̌�𝑐1 + (1 + 𝜖𝜖2)�̌�𝑝2� 

=
(1 + 𝑠𝑠)𝜂𝜂

𝜖𝜖1
�̌�𝑐1 − 𝑠𝑠 �

𝜖𝜖2
𝜖𝜖1
�̌�𝑐1 + (1 + 𝜖𝜖2)�̌�𝑝2� = �

(1 + 𝑠𝑠)𝜂𝜂
𝜖𝜖1

− 𝑠𝑠
𝜖𝜖2
𝜖𝜖1
� �̌�𝑐1 − 𝑠𝑠(1 + 𝜖𝜖2)�̌�𝑝2 ⇒ 

�̌�𝑐1 = −
𝑠𝑠(1 + 𝜖𝜖2)

1 − (1 + 𝑠𝑠)𝜂𝜂
𝜖𝜖1

+ 𝑠𝑠 𝜖𝜖2𝜖𝜖1

�̌�𝑝2 = −
𝑠𝑠(1 + 𝜖𝜖2)

�1 − (1 + 𝑠𝑠)𝜂𝜂
𝜖𝜖1

+ 𝑠𝑠 𝜖𝜖2𝜖𝜖1
� × 𝑠𝑠 × (1 + 𝜀𝜀)

× 𝑠𝑠 × (1 + 𝜀𝜀) × �̌�𝑝2 ⇒ 
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𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐶𝐶 = −
𝑠𝑠(1 + 𝜖𝜖2)

�1 − (1 + 𝑠𝑠)𝜂𝜂
𝜖𝜖1

+ 𝑠𝑠 𝜖𝜖2𝜖𝜖1
� × 𝑠𝑠 × (1 + 𝜀𝜀)

× 𝑠𝑠 × (1 + 𝜀𝜀) × 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔 

where (1 + 𝜀𝜀) is estimated from the regressing 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝑝𝑝2𝑐𝑐2) on 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝2. Note that this equation 
provides structural interpretation of our specification (2) in the paper.  
 
We know from the derivation above that  

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝑝𝑝2𝑐𝑐2) = �̌�𝑐2 + �̌�𝑝2 =
𝜖𝜖2
𝜖𝜖1
�̌�𝑐1 + (1 + 𝜖𝜖2)�̌�𝑝2 

= −
𝜖𝜖2
𝜖𝜖1

𝑠𝑠(1 + 𝜖𝜖2)

1 − (1 + 𝑠𝑠)𝜂𝜂
𝜖𝜖1

+ 𝑠𝑠 𝜖𝜖2𝜖𝜖1

�̌�𝑝2 + (1 + 𝜖𝜖2)�̌�𝑝2 

=
(1 + 𝜖𝜖2) �1 − (1 + 𝑠𝑠)𝜂𝜂

𝜖𝜖1
�

1 − (1 + 𝑠𝑠)𝜂𝜂
𝜖𝜖1

+ 𝑠𝑠 𝜖𝜖2𝜖𝜖1

�̌�𝑝2 

So that (1 + 𝜀𝜀) =
(1+𝜖𝜖2)�1−(1+𝑠𝑠)𝜂𝜂

𝜖𝜖1
�

1−(1+𝑠𝑠)𝜂𝜂
𝜖𝜖1

+𝑔𝑔𝜖𝜖2𝜖𝜖1
> 0. Also note that (1 + 𝜀𝜀) < (1 + 𝜖𝜖2). 

Hence, marginal propensity to consume (MPC) is equal to  

𝑀𝑀𝑃𝑃𝐶𝐶 =
𝑠𝑠(1 + 𝜖𝜖2)

�1 − (1 + 𝑠𝑠)𝜂𝜂
𝜖𝜖1

+ 𝑠𝑠 𝜖𝜖2𝜖𝜖1
� × 𝑠𝑠 × (1 + 𝜀𝜀)

 

=
𝑠𝑠(1 + 𝜖𝜖2)

�1 − (1 + 𝑠𝑠)𝜂𝜂
𝜖𝜖1

+ 𝑠𝑠 𝜖𝜖2𝜖𝜖1
� × 𝑠𝑠

×
1 − (1 + 𝑠𝑠)𝜂𝜂

𝜖𝜖1
+ 𝑠𝑠 𝜖𝜖2𝜖𝜖1

(1 + 𝜖𝜖2) �1 − (1 + 𝑠𝑠)𝜂𝜂
𝜖𝜖1

�
 

=
1

1 − (1 + 𝑠𝑠)𝜂𝜂
𝜖𝜖1

> 0 

In the case of quasi-linear utility, 𝜖𝜖1 = −∞ and 𝑀𝑀𝑃𝑃𝐶𝐶 = 1.  
 
General equilibrium  
In the general equilibrium version of the model, we consider two sectors. The first sector (sector 
A) produces consumer goods. The second sector (sector B) produces gasoline. Gasoline is 
consumed by households working in both sectors. Gasoline is also a production input in the first 
sector. We assume that households cannot move across sectors, which is likely a reasonable 
approximation in the short-to-medium run. The mass of households in sector A is 𝑞𝑞. The mass of 
households in sector B is 1 − 𝑞𝑞. The economy is closed. 
 
Households in sector A solve the following maximization problem:  

max𝑚𝑚(𝑐𝑐1𝐴𝐴) + 𝑢𝑢(𝑐𝑐2𝐴𝐴) − 𝑣𝑣(𝐿𝐿𝐴𝐴) 
𝑠𝑠. 𝑡𝑡.   𝑐𝑐1𝐴𝐴 + 𝑝𝑝2𝑐𝑐2𝐴𝐴 = 𝑤𝑤𝐴𝐴𝐿𝐿𝐴𝐴 
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where 𝑐𝑐1 is the numeraire good (or “non-gasoline spending”; we normalize 𝑝𝑝1 = 1), 𝑐𝑐2 is 
“gasoline”, 𝐿𝐿 is labor, 𝑤𝑤 is wages. After log-linearization of first-order conditions and the budget 
constraint, we have 

�̌�𝑐1𝐴𝐴 = 𝜖𝜖1𝐴𝐴�̌�𝜆𝐴𝐴 
�̌�𝑐2𝐴𝐴 = 𝜖𝜖2𝐴𝐴(�̌�𝜆𝐴𝐴 + �̌�𝑝2) 

𝑣𝑣′′(𝐿𝐿)𝐿𝐿
𝑣𝑣′(𝐿𝐿) 𝐿𝐿�𝐴𝐴 = 𝜂𝜂𝐴𝐴−1𝐿𝐿�𝐴𝐴 = �̌�𝜆𝐴𝐴 + 𝑤𝑤�𝐴𝐴 

�̌�𝑐1𝐴𝐴 =
𝑤𝑤𝐴𝐴𝐿𝐿𝐴𝐴

𝑐𝑐1𝐴𝐴
�𝐿𝐿�𝐴𝐴 + 𝑤𝑤�𝐴𝐴� −

𝑝𝑝2𝑐𝑐2𝐴𝐴

𝑐𝑐1𝐴𝐴
(�̌�𝑝2 + �̌�𝑐2𝐴𝐴) = (1 + 𝑠𝑠𝐴𝐴)�𝐿𝐿�𝐴𝐴 + 𝑤𝑤�𝐴𝐴� − 𝑠𝑠𝐴𝐴(�̌�𝑝2 + �̌�𝑐2) 

where 𝑠𝑠𝐴𝐴 ≡ 𝑝𝑝2𝐴𝐴𝑐𝑐2𝐴𝐴

𝑐𝑐1𝐴𝐴
 and 𝑤𝑤

𝐴𝐴𝑤𝑤𝐴𝐴

𝑐𝑐1𝐴𝐴
= 𝑐𝑐1𝐴𝐴+𝑝𝑝2𝐴𝐴𝑐𝑐2𝐴𝐴

𝑐𝑐1𝐴𝐴
= 1 + 𝑠𝑠𝐴𝐴 and 𝜂𝜂𝐴𝐴 = �𝑣𝑣

′′(𝑤𝑤)𝑤𝑤
𝑣𝑣′(𝑤𝑤)

�
−1

 is the Frisch labor supply 

elasticity, 𝜖𝜖2𝐴𝐴 ≡
𝑢𝑢′(𝑐𝑐2)

𝑢𝑢′′(𝑐𝑐2)𝑐𝑐2
< 0 and 𝜖𝜖1𝐴𝐴 ≡

𝑚𝑚′(𝑐𝑐1)
𝑚𝑚′′(𝑐𝑐1)𝑐𝑐1

< 0. Note that the first two conditions imply that 

�̌�𝑐2𝐴𝐴 = 𝜖𝜖2𝐴𝐴

𝜖𝜖1𝐴𝐴
�̌�𝑐1𝐴𝐴 + 𝜖𝜖2𝐴𝐴�̌�𝑝2. 

 
 
Households in sector B solve the following maximization problem:  

max𝑚𝑚(𝑐𝑐1𝐵𝐵) + 𝑢𝑢(𝑐𝑐2𝐵𝐵) − 𝑣𝑣(𝐿𝐿𝐵𝐵) 
𝑠𝑠. 𝑡𝑡.   𝑐𝑐1𝐵𝐵 + 𝑝𝑝2𝑐𝑐2𝐵𝐵 = 𝑤𝑤𝐵𝐵𝐿𝐿𝐵𝐵 

After log-linearization of first-order conditions and the budget constraint, we have 
�̌�𝑐1𝐵𝐵 = 𝜖𝜖1𝐵𝐵�̌�𝜆𝐵𝐵 

�̌�𝑐2𝐵𝐵 = 𝜖𝜖2𝐵𝐵(�̌�𝜆𝐵𝐵 + �̌�𝑝2) 
𝑣𝑣′′(𝐿𝐿)𝐿𝐿
𝑣𝑣′(𝐿𝐿) 𝐿𝐿�𝐵𝐵 = 𝜂𝜂𝐵𝐵−1𝐿𝐿�𝐵𝐵 = �̌�𝜆𝐵𝐵 + 𝑤𝑤�𝐵𝐵 

�̌�𝑐1𝐵𝐵 =
𝑤𝑤𝐵𝐵𝐿𝐿𝐵𝐵

𝑐𝑐1𝐵𝐵
�𝐿𝐿�𝐵𝐵 + 𝑤𝑤�𝐵𝐵� −

𝑝𝑝2𝑐𝑐2𝐵𝐵

𝑐𝑐1𝐵𝐵
(�̌�𝑝2 + �̌�𝑐2𝐵𝐵) = (1 + 𝑠𝑠𝐵𝐵)�𝐿𝐿�𝐵𝐵 + 𝑤𝑤�𝐵𝐵� − 𝑠𝑠𝐵𝐵(�̌�𝑝2 + �̌�𝑐2) 

where 𝑠𝑠𝐵𝐵 ≡ 𝑝𝑝2𝑐𝑐2𝐵𝐵

𝑐𝑐1𝐵𝐵
 and 𝑤𝑤

𝐵𝐵𝑤𝑤𝐵𝐵

𝑐𝑐1𝐵𝐵
= 𝑐𝑐1𝐵𝐵+𝑝𝑝2𝑐𝑐2𝐵𝐵

𝑐𝑐1𝐵𝐵
= 1 + 𝑠𝑠𝐵𝐵 and 𝜂𝜂𝐵𝐵 = �𝑣𝑣

′′(𝑤𝑤)𝑤𝑤
𝑣𝑣′(𝑤𝑤)

�
−1

 is the Frisch labor supply 

elasticity, 𝜖𝜖2𝐵𝐵 ≡
𝑢𝑢′(𝑐𝑐2)

𝑢𝑢′′(𝑐𝑐2)𝑐𝑐2
< 0 and 𝜖𝜖1𝐵𝐵 ≡

𝑚𝑚′(𝑐𝑐1)
𝑚𝑚′′(𝑐𝑐1)𝑐𝑐1

< 0. Note that the first two conditions imply that 

�̌�𝑐2𝐵𝐵 = 𝜖𝜖2𝐵𝐵

𝜖𝜖1𝐵𝐵
�̌�𝑐1𝐵𝐵 + 𝜖𝜖2𝐵𝐵�̌�𝑝2. 

 
Production in sector A is characterized by constant return to scale and perfect competition: 

𝑌𝑌1 = �𝐿𝐿𝐴𝐴𝛼𝛼𝑂𝑂1−𝛼𝛼� ⇒ 𝑌𝑌�1 = 𝛼𝛼𝐿𝐿�𝐴𝐴 + (1 − 𝛼𝛼)𝑂𝑂�  
where 𝑂𝑂 is gasoline used in production of good 1. Perfect competition means 𝑝𝑝1 = 𝑀𝑀𝐶𝐶1. Given 
normalization 𝑝𝑝1 = 1, we have 𝑀𝑀𝐶𝐶1 = 1. Given the Cobb-Douglass production function, we find 
that 𝑀𝑀𝐶𝐶� = 𝛼𝛼𝑤𝑤�𝐴𝐴 + (1 − 𝛼𝛼)�̌�𝑝2. This means that  

𝑤𝑤�𝐴𝐴 = −�
1 − 𝛼𝛼
𝛼𝛼 � �̌�𝑝2. 
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Production in sector B is also characterized by constant return to scale (production function is 
linear in labor) and perfect competition: 

𝑌𝑌2 = 𝐿𝐿𝐵𝐵 ⇒ 𝑌𝑌�2 = 𝐿𝐿�𝐵𝐵 
𝑤𝑤𝐵𝐵 = 𝑀𝑀𝑃𝑃𝐿𝐿 = 𝑀𝑀𝐶𝐶 = 𝑝𝑝2 ⇒ 𝑤𝑤�𝐵𝐵 = �̌�𝑝2 

Market clearing in sector A:  

𝑌𝑌1 = 𝑞𝑞𝑐𝑐1𝐴𝐴 + (1 − 𝑞𝑞)𝑐𝑐1𝐵𝐵 ⇒ 𝑌𝑌�1 = �
𝑞𝑞𝑐𝑐1𝐴𝐴

𝑌𝑌1
� �̌�𝑐1𝐴𝐴 + �

(1 − 𝑞𝑞)𝑐𝑐1𝐵𝐵

𝑌𝑌1
� �̌�𝑐1𝐵𝐵 

Market clearing in sector B:  

𝑌𝑌2 = 𝑞𝑞𝑐𝑐2𝐴𝐴 + (1 − 𝑞𝑞)𝑐𝑐2𝐵𝐵 + 𝑞𝑞𝑂𝑂 ⇒ 𝑌𝑌�2 = �
𝑞𝑞𝑐𝑐2𝐴𝐴

𝑌𝑌2
� �̌�𝑐2𝐴𝐴 + �

(1 − 𝑞𝑞)𝑐𝑐2𝐵𝐵

𝑌𝑌2
� �̌�𝑐2𝐵𝐵 + �

𝑞𝑞𝑂𝑂
𝑌𝑌2
�𝑂𝑂�  

where 𝑞𝑞𝑂𝑂 is the total amount of oil consumed in production of good 1 (each firm in this sector 
consumes 𝑂𝑂 and 𝑞𝑞 is the mass of firms in the sector).  
 
Now we derive MPC for each group of households:  

�̌�𝑐1𝐴𝐴 = −
(1 + 𝑠𝑠𝐴𝐴)(1 + 𝜂𝜂𝐴𝐴) �1 − 𝛼𝛼

𝛼𝛼 � + 𝑠𝑠𝐴𝐴(1 + 𝜖𝜖2𝐴𝐴)

1 − (1 + 𝑠𝑠𝐴𝐴)𝜂𝜂𝐴𝐴
𝜖𝜖1𝐴𝐴

+ 𝑠𝑠𝐴𝐴𝜖𝜖2𝐴𝐴
𝜖𝜖1𝐴𝐴

�̌�𝑝2 

Clearly, 𝜕𝜕𝑐𝑐1̌
𝐴𝐴

𝜕𝜕𝑝𝑝�2
< 0.  

𝐿𝐿�𝐴𝐴 = 𝜂𝜂��̌�𝜆𝐴𝐴 + 𝑤𝑤�𝐴𝐴� = −𝜂𝜂 ×
�1 − 𝛼𝛼

𝛼𝛼 � (1 + 𝜖𝜖1𝐴𝐴) − 𝑠𝑠𝐴𝐴
𝛼𝛼 (1 + 𝜖𝜖2𝐴𝐴)

𝜖𝜖1𝐴𝐴 − (1 + 𝑠𝑠𝐴𝐴)𝜂𝜂𝐴𝐴 + 𝑠𝑠𝐴𝐴𝜖𝜖2𝐴𝐴
�̌�𝑝2 

 
We can generate 𝜕𝜕𝑤𝑤

�𝐴𝐴
𝜕𝜕𝑝𝑝�2

< 0 if demand for good “1” is sufficiently elastic (i.e., 𝜖𝜖1𝐴𝐴 < −1), which 

seems a reasonable assumption. With utility quasi-linear 𝑐𝑐1, we have 𝐿𝐿�𝐴𝐴 = −𝜂𝜂 �1−𝛼𝛼
𝛼𝛼
� �̌�𝑝2. 

 
 
The sensitivity of group A’s total spending on gasoline to the price of gasoline is  
 

�̌�𝑝2 + �̌�𝑐2𝐴𝐴 =
(1 + 𝜖𝜖2𝐴𝐴)𝜖𝜖1𝐴𝐴 − 𝜖𝜖2𝐴𝐴(1 + 𝑠𝑠) �1 − 𝛼𝛼

𝛼𝛼 � − (1 + 𝑠𝑠)𝜂𝜂𝐴𝐴 �1 + 𝜖𝜖2𝐴𝐴
𝛼𝛼 �

𝜖𝜖1𝐴𝐴 − (1 + 𝑠𝑠𝐴𝐴)𝜂𝜂𝐴𝐴 + 𝑠𝑠𝐴𝐴𝜖𝜖2𝐴𝐴
�̌�𝑝2 

 

Hence, (1 + 𝜀𝜀𝐴𝐴) =
�1+𝜖𝜖2𝐴𝐴�𝜖𝜖1𝐴𝐴−𝜖𝜖2𝐴𝐴(1+𝑔𝑔)�1−𝛼𝛼𝛼𝛼 �−(1+𝑔𝑔)𝜂𝜂𝐴𝐴�1+𝜖𝜖2

𝐴𝐴

𝛼𝛼 �

𝜖𝜖1𝐴𝐴−�1+𝑔𝑔𝐴𝐴�𝜂𝜂𝐴𝐴+𝑔𝑔𝐴𝐴𝜖𝜖2𝐴𝐴
. 

 
The MPC we define in the paper is  
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�̌�𝑐1𝐴𝐴 = −
(1 + 𝑠𝑠𝐴𝐴)(1 + 𝜂𝜂𝐴𝐴) �1 − 𝛼𝛼

𝛼𝛼 � + 𝑠𝑠𝐴𝐴(1 + 𝜖𝜖2𝐴𝐴)

1 − (1 + 𝑠𝑠𝐴𝐴)𝜂𝜂𝐴𝐴
𝜖𝜖1𝐴𝐴

+ 𝑠𝑠𝐴𝐴𝜖𝜖2𝐴𝐴
𝜖𝜖1𝐴𝐴

�̌�𝑝2 

= −
(1 + 𝑠𝑠𝐴𝐴)(1 + 𝜂𝜂𝐴𝐴) �1 − 𝛼𝛼

𝛼𝛼 � + 𝑠𝑠𝐴𝐴(1 + 𝜖𝜖2𝐴𝐴)

1 − (1 + 𝑠𝑠𝐴𝐴)𝜂𝜂𝐴𝐴
𝜖𝜖1𝐴𝐴

+ 𝑠𝑠𝐴𝐴𝜖𝜖2𝐴𝐴
𝜖𝜖1𝐴𝐴

×
1

(1 + 𝜀𝜀𝐴𝐴) ×
1
𝑠𝑠𝐴𝐴

× 𝑠𝑠𝐴𝐴 × (1 + 𝜀𝜀𝐴𝐴) × �̌�𝑝2 

 
That is,  

𝑀𝑀𝑃𝑃𝐶𝐶𝐴𝐴 =
(1 + 𝑠𝑠𝐴𝐴)(1 + 𝜂𝜂𝐴𝐴) �1 − 𝛼𝛼

𝛼𝛼 � + 𝑠𝑠𝐴𝐴(1 + 𝜖𝜖2𝐴𝐴)

1 − (1 + 𝑠𝑠𝐴𝐴)𝜂𝜂𝐴𝐴
𝜖𝜖1𝐴𝐴

+ 𝑠𝑠𝐴𝐴𝜖𝜖2𝐴𝐴
𝜖𝜖1𝐴𝐴

×
1

(1 + 𝜀𝜀𝐴𝐴) ×
1
𝑠𝑠𝐴𝐴

 

=
1 + (1 + 𝑠𝑠𝐴𝐴)

𝑠𝑠𝐴𝐴
(1 + 𝜂𝜂𝐴𝐴)
1 + 𝜖𝜖2𝐴𝐴

�1 − 𝛼𝛼
𝛼𝛼 �

1 − 𝜖𝜖2𝐴𝐴
𝜖𝜖1𝐴𝐴

× (1 + 𝑠𝑠𝐴𝐴)
(1 + 𝜖𝜖2𝐴𝐴) × 1 − 𝛼𝛼 + 𝜂𝜂

𝛼𝛼 − (1 + 𝑠𝑠𝐴𝐴)
(1 + 𝜖𝜖2𝐴𝐴)

𝜂𝜂
𝜖𝜖1𝐴𝐴

 

=
1 + (1 + 𝑠𝑠𝐴𝐴)

𝑠𝑠𝐴𝐴
(1 + 𝜂𝜂𝐴𝐴)
1 + 𝜖𝜖2𝐴𝐴

�1 − 𝛼𝛼
𝛼𝛼 �

1 − 𝜂𝜂𝐴𝐴(1 + 𝑠𝑠𝐴𝐴)
𝜖𝜖1𝐴𝐴

− 𝜖𝜖2𝐴𝐴
𝜖𝜖1𝐴𝐴

× (1 + 𝑠𝑠𝐴𝐴)
(1 + 𝜖𝜖2𝐴𝐴) × 1 − 𝛼𝛼

𝛼𝛼

 

For comparison, in the partial equilibrium model (effectively 𝛼𝛼 = 1) we had  

𝑀𝑀𝑃𝑃𝐶𝐶 =
1

1 − (1 + 𝑠𝑠)𝜂𝜂
𝜖𝜖1

< 1 

Note that the general equilibrium MPC for this group is greater than the partial equilibrium MPC 
because �1+𝑔𝑔

𝐴𝐴�
𝑔𝑔𝐴𝐴

(1+𝜂𝜂𝐴𝐴)
1+𝜖𝜖2𝐴𝐴

�1−𝛼𝛼
𝛼𝛼
� > 0 and   𝜖𝜖2

𝐴𝐴

𝜖𝜖1𝐴𝐴
× �1+𝑔𝑔𝐴𝐴�

�1+𝜖𝜖2𝐴𝐴�
× 1−𝛼𝛼

𝛼𝛼
> 0 (provided 𝜖𝜖2𝐴𝐴 > −1).  

 
Doing a similar derivation for group B, we find that  

�̌�𝑐1𝐵𝐵 =
(1 + 𝑠𝑠𝐵𝐵)(1 + 𝜂𝜂𝐵𝐵) − 𝑠𝑠𝐵𝐵(1 + 𝜖𝜖2𝐵𝐵)

𝜖𝜖1𝐵𝐵 − (1 + 𝑠𝑠𝐵𝐵)𝜂𝜂𝐵𝐵 + 𝑠𝑠𝐵𝐵𝜖𝜖2𝐵𝐵
𝜖𝜖1𝐵𝐵�̌�𝑝2 

Note that �̌�𝑐1𝐵𝐵 increases in �̌�𝑝2.  
 
Employment for these agents increases in response to a shock in 𝑝𝑝2 if their demand for good “1” 
is sufficiently elastic:  

𝐿𝐿�𝐵𝐵 = 𝜂𝜂
1 + 𝜖𝜖1𝐵𝐵

𝜖𝜖1𝐵𝐵 − (1 + 𝑠𝑠𝐵𝐵)𝜂𝜂𝐵𝐵 + 𝑠𝑠𝐵𝐵𝜖𝜖2𝐵𝐵
�̌�𝑝2 

With utility quasi-linear in 𝑐𝑐1 (i.e., 𝜖𝜖1𝐵𝐵 = −∞) , we have 𝐿𝐿�𝐵𝐵 = 𝜂𝜂𝐵𝐵�̌�𝑝2. 
 
 
Now the sensitivity of group B’s total spending on gasoline to the price of gasoline is  
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�̌�𝑝2 + �̌�𝑐2𝐵𝐵 = �̌�𝑝2 +
𝜖𝜖2𝐵𝐵

𝜖𝜖1𝐵𝐵
�̌�𝑐1𝐵𝐵 + 𝜖𝜖2𝐵𝐵�̌�𝑝2 

= (1 + 𝜖𝜖2𝐵𝐵)�̌�𝑝2 −
𝜖𝜖2𝐵𝐵

𝜖𝜖1𝐵𝐵
(1 + 𝑠𝑠𝐵𝐵)(1 + 𝜂𝜂𝐵𝐵) − 𝑠𝑠𝐵𝐵(1 + 𝜖𝜖2𝐵𝐵)

𝜖𝜖1𝐵𝐵 − (1 + 𝑠𝑠𝐵𝐵)𝜂𝜂𝐵𝐵 + 𝑠𝑠𝐵𝐵𝜖𝜖2𝐵𝐵
𝜖𝜖1𝐵𝐵�̌�𝑝2 

= (1 + 𝜖𝜖2𝐵𝐵)

⎩
⎨

⎧𝜖𝜖1𝐵𝐵 − (1 + 𝑠𝑠𝐵𝐵)𝜂𝜂𝐵𝐵 + 𝜖𝜖2𝐵𝐵(1 + 𝑠𝑠𝐵𝐵)(1 + 𝜂𝜂𝐵𝐵)
(1 + 𝜖𝜖2𝐵𝐵)

𝜖𝜖1𝐵𝐵 − (1 + 𝑠𝑠𝐵𝐵)𝜂𝜂𝐵𝐵 + 𝑠𝑠𝐵𝐵𝜖𝜖2𝐵𝐵
⎭
⎬

⎫
�̌�𝑝2 

Hence,  
 

(1 + 𝜀𝜀𝐵𝐵) = (1 + 𝜖𝜖2𝐵𝐵)

⎩
⎨

⎧𝜖𝜖1𝐵𝐵 − (1 + 𝑠𝑠𝐵𝐵)𝜂𝜂𝐵𝐵 + 𝜖𝜖2𝐵𝐵(1 + 𝑠𝑠𝐵𝐵)(1 + 𝜂𝜂𝐵𝐵)
(1 + 𝜖𝜖2𝐵𝐵)

𝜖𝜖1𝐵𝐵 − (1 + 𝑠𝑠𝐵𝐵)𝜂𝜂𝐵𝐵 + 𝑠𝑠𝐵𝐵𝜖𝜖2𝐵𝐵
⎭
⎬

⎫
> (1 + 𝜖𝜖2𝐵𝐵) 

 
It follows that MPC for type B is  

𝑀𝑀𝑃𝑃𝐶𝐶𝐵𝐵 = −
�1 + 𝑠𝑠𝐵𝐵

𝑠𝑠𝐵𝐵 � �1 + 𝜂𝜂𝐵𝐵
1 + 𝜖𝜖2𝐵𝐵

� − 1

1 − (1 + 𝑠𝑠𝐵𝐵) 𝜂𝜂
𝐵𝐵

𝜖𝜖1𝐵𝐵
+ �𝜖𝜖2

𝐵𝐵

𝜖𝜖1𝐵𝐵
� (1 + 𝑠𝑠𝐵𝐵)(1 + 𝜂𝜂𝐵𝐵)

(1 + 𝜖𝜖2𝐵𝐵)

 

The denominator is positive (𝜖𝜖2𝐵𝐵 > −1). The numerator is positive too (𝜖𝜖2𝐵𝐵 > −1). Thus, this MPC 
is negative and can be greater than one in absolute magnitude. For example, with infinitely elastic 
demand for good “1” (i.e., quasi-linear utility in 𝑐𝑐1), we have  

𝑀𝑀𝑃𝑃𝐶𝐶𝐵𝐵 = −��
1 + 𝑠𝑠𝐵𝐵

𝑠𝑠𝐵𝐵
� �

1 + 𝜂𝜂𝐵𝐵

1 + 𝜖𝜖2𝐵𝐵
� − 1� < 0 

which can be less than -1 provided that the share good “2” in the consumption basket of type B 
agent (𝑠𝑠𝐵𝐵) is sufficiently small.  
 
The aggregate employment depends on the relative strength of employment responses across 
sectors:  

𝐿𝐿� = 𝑞𝑞𝐿𝐿�𝐴𝐴 + (1 − 𝑞𝑞)𝐿𝐿�𝐵𝐵 
 
For the case with quasi-linear utility, we have 𝐿𝐿�𝐴𝐴 = −𝜂𝜂𝐴𝐴 �1−𝛼𝛼

𝛼𝛼
� �̌�𝑝2 and 𝐿𝐿�𝐵𝐵 = 𝜂𝜂𝐵𝐵�̌�𝑝2. Output is likely 

to decrease in response to a hike in oil prices. First, one can proxy inelastic supply of gasoline with 
inelastic supply of labor, that is 𝜂𝜂𝐵𝐵 ≈ 0 and hence 𝐿𝐿�𝐴𝐴 (which has a clear sign) drives aggregate 
employment. Second, 1 − 𝑞𝑞 is small and, thus, it would take very large employment effects in 
sector 2 to drive aggregate employment.  
 
The aggregate 𝑀𝑀𝑃𝑃𝐶𝐶������ = 𝑞𝑞𝑀𝑀𝑃𝑃𝐶𝐶𝐴𝐴 + (1 − 𝑞𝑞)𝑀𝑀𝑃𝑃𝐶𝐶𝐵𝐵. Note that 𝑀𝑀𝑃𝑃𝐶𝐶𝐴𝐴 and 𝑀𝑀𝑃𝑃𝐶𝐶𝐵𝐵 have different 
signs. Depending on parameter values, partial equilibrium MPC can be greater or smaller than the 
aggregate 𝑀𝑀𝑃𝑃𝐶𝐶������.  


