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1 Introduction

Experimental economists have been studying markets for almost fifty years
(Smith, 1962, 1965). There is now a large literature on the properties of
experimental markets. One of the most robust findings is that, even with
relatively small numbers of traders, trade asymptotically approximates the
efficient, perfectly competitive equilibrium. Most of the experimental liter-
ature assumes that markets take the form of centralized auctions, in which
every trader can communicate directly with every other trader. It is true
that the competitive auction market serves as the standard paradigm in eco-
nomics. And there are examples of exchanges, such as the NYSE, that come
close to this theoretical ideal. However, there are many other markets where
intermediation and decentralized trade are the norm. Economists sometimes
assume that decentralized markets behave “as if” they were centralized auc-
tion markets and, in theoretical models, it can be shown that decentralized
trade does indeed lead to the perfectly competitive outcome under certain
conditions. But empirical evidence on this subject is scarce.
In this paper, we exploit the methods of experimental economics to ex-

plore the properties of a simple model of decentralized trade. Empirical
research can tap either real-world data from large-scale markets or small-
scale laboratory data. The strengths of data from the real world are its
relevance and availability. Its main weakness is that in real-world settings
we observe behavior, but not preferences, technologies, or private informa-
tion. In the laboratory, by contrast, we can control subjects’ preferences,
technology and private information. Consequently, laboratory data are espe-
cially useful for testing the efficiency of different market institutions and for
comparing market structures and institutions. The clarity that is achieved
by putting a market under the microscope is well worth the effort and the
necessary simplification.
We begin by extending the usual market paradigm by introducing a net-

work structure. The network determines the possible patterns of trade and
communication in the market. A centralized auction market corresponds to
the special case of a complete network, in which every trader is connected
to every other trader, that is, every trader can communicate and trade with
every other trader. Our market, by contrast, assumes an incomplete net-
work, in which many links are missing. Traders can only communicate and
trade with a subset of other traders, the ones to whom they are connected
by the network. The incompleteness of the network represents a potentially
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serious source of friction in the market. It is far from obvious that efficient
trade will be achieved when these frictions are present.
The market we study has a small number of traders, the networks are

simple, and the trading mechanism remains close to the well known auc-
tion paradigm. The experimental computer platform is stable and easy to
understand and provides us with an insight into the behavior of market par-
ticipants. Using this design, we can see how useful the theory is in interpret-
ing the observed behavior and study the efficiency of pricing and trade in a
variety of networks.
A single treatment will serve to illustrate the experimental design. In

this treatment, there are nine subjects arranged in the rectangular array
illustrated in Figure 1. There are nine nodes, arranged in three rows and three
columns. Each node represents a human trader and the edges between the
nodes indicate trading possibilities. In addition to the human traders, there is
a computer-generated seller (CGS) and a computer-generated buyer (CGB).
The network architecture in Figure 1 indicates that trades are restricted to
adjacent rows but, subject to these constraints, all possible trading links are
present. That is, each member of the top row can trade with the CGS and
with every member of the middle row; each member of the middle row can
trade with every member of the top and bottom rows; and each member of
the bottom row can trade with every member of the middle row and with
the CGB.

[Figure 1 here]

The CGS is endowed with a single unit of an indivisible asset. The nine
traders are endowed with 100 tokens each. Buyers use these tokens to pay
for the asset and sellers receive these tokens in exchange for the asset. The
CGB is also assumed to have an endowment of 100 tokens. The asset has no
value to the CGS or to the nine traders. The CGB values the asset at 100
tokens. So the surplus (gains from trade) generated by transferring the asset
from the CGS to the CGB is equal to 100 tokens. Each trader simultaneously
chooses a bid (the price at which he is willing to buy the asset) and an ask
(the price at which he is willing to sell the asset). The bids and asks must
lie between 0 and 100 tokens. The ask of the CGS is fixed at 0 and the bid
of the CGB is fixed at 100.
Once the bids and asks have been determined, trades are executed as

follows. Beginning at the top of the network, the CGS and the top row
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exchange the asset. The asset goes to the trader with the highest bid. If
two or more traders choose the highest bid, the asset is allocated randomly
between them (with equal probabilities). The top-row seller (the trader who
bought the asset from the CGS) sells the asset to the middle-row trader with
the highest bid that is at least as high as the seller’s ask. Again, ties are
broken randomly. If every bid is less than the seller’s ask, no trade takes place
and the game ends with the seller holding the asset. Exchange between the
middle and bottom rows is executed similarly. Finally, if the asset reaches
the bottom row, the asset will be transferred to the CGB because the CGB’s
bid of 100 is at least as great as the seller’s ask. When the asset is traded,
the transaction price (i.e., the price paid for the asset) is a weighted average
of the bid and the ask. The corresponding amount of tokens is transferred
from the buyer to the seller.
This example gives a good sense of the distinctive features of the experi-

mental design. First, it defines a normal form game. This allows us to make
precise theoretical predictions and compare them to the observed play of the
game. Secondly, because the game is played in normal form (and the subjects
choose strategies simultaneously), it can be played repeatedly in a relatively
short amount of time, generating a large data set. Thirdly, the platform is
sufficiently flexible to allow us to study a variety of network architectures,
transaction pricing rules, and payoff functions. The experimental design sec-
tion discusses in more detail the treatments that comprise our design.

Our results can be summarized under three headings:

• Convergence. Since the underlying trading game is essentially a Bertrand
pricing game, in any Nash equilibrium trade is efficient and the trans-
action prices are equal to 100 and trading profits are zero, except in the
top row, where the CGS is restricted to ask 0 and profits are 50. In all
treatments, the observed transaction prices start low and rise monoton-
ically towards the equilibrium price. The speed of convergence varies
across treatments. In some treatments, we do not observe complete
convergence when the experiment ends after 30 trading periods, but
overall the predictive power of the theory is impressive.

• Efficiency. Strategic uncertainty (about what other subjects will do)
inevitably requires a period of learning and during this period trades
may not be completed. Further, even later in the game, trade may
break down if subjects make mistakes about the prices that are likely
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to be bid or asked by their opponents. On the whole, trade is asymp-
totically efficient in the sense that it tends to be lower in the early
trading periods and rises as subjects become more confident about the
behavior of other subjects and as the prices bid and asked converge
to the competitive equilibrium prices. Given the incompleteness of the
networks, which requires intermediate trades, and the strategic form of
the game, which does not allow for recontracting, the subjects’ ability
to coordinate on an efficient outcome is quite striking.

• Sensitivity. We study a number of variants to test the sensitivity of the
results to the amount of competition (the number of columns in the
network), the pricing rule (the weights used in calculating the transac-
tion price), and the payoff function (the amount of trading losses de-
ducted from subjects’ earnings). Although convergence and efficiency
are somewhat sensitive to each of these changes, the equilibrium prop-
erties continue to have predictive power. Among other things, we note
that (i) less competition may lead to slower convergence and lower
efficiency, and (ii) trading losses and the bid-pricing rule reduce com-
petition by making bidders less aggressive and thus lower efficiency.

The rest of the paper is organized as follows. A discussion of the related
literature is provided in Section 2. We describe the theoretical model and
the experimental design in Section 3. The results are contained in Section
4. Some concluding remarks and important topics for further research are
contained in Section 5.

2 Related literature

Kranton and Minehart (2001) introduce the first model of exchange in net-
works. Gale and Kariv (2007) develop a model of financial networks and use
this model to investigate the role of costly intermediation (“frictions”) and
network architecture (“incompleteness”) in determining the efficiency of mar-
kets and the possibility of market breakdown. Gale and Kariv (2007) show
that, in the limit as the period length goes to zero and the market becomes
frictionless, the market outcome is efficient. Bosch-Domènech and Sunder
(2000) study an economy consisting of multiple interconnected markets. The
trading mechanism is the double auction. With the help of numerical simu-
lations, they show that, under certain conditions, equilibrium prices can be
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induced by zero-intelligence traders making random bids and asks, though
they might fail to achieve an efficient final allocation. In this paper, we test
the efficiency of pricing and trade using a variety of network architectures.
On the whole, the level of efficiency is very high, although it is sensitive to
the specification of the transaction price.
The present paper contributes to the enormous body of work on experi-

mental markets. Following the seminal papers of Forsythe, Palfrey and Plott
(1982, 1984), and Plott and Sunder (1982, 1988), numerous experimental pa-
pers analyze many aspects of asset markets.1 In these experiments, a double
auction or bid-ask market is typically used. The main conclusion from this
large body of experiments is that the double auction market produces effi-
cient allocations and prices, even with a very small number of traders, thus
providing experimental evidence that markets are an efficient mechanism for
allocating resources.
In contrast to the existing literature, our paper contributes to the sys-

tematic experimental study of the efficiency of trade in networks. Although
network experiments in economics are recent, there is now a substantial ex-
perimental literature on the economics of networks.2 To the best of our
knowledge, previous contributions have been quite different from ours. The
most closely related paper is by Charness, Corominas-Bosch and Fréchette
(2007), who investigate how the network structure affects the outcomes and
dynamics of ultimatum bargaining. Following the model of Corominas-Bosch
(2004), they decompose a network of buyers and sellers into two simple sub-
graphs and test whether it matters how a single edge is added between these
two groups of traders.

3 Theory, predictions and design

In this section, we describe the theory on which the experimental design is
based and the design itself.

1See Sunder (1995) for a comprehensive, if now somewhat dated, discussion of the
experimental work on asset markets.

2Kosfeld (2004) surveys the experimental work in economics.
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3.1 The trading game

The trading game consists of a finite number of players, indexed by k =
1, ..., K, arranged in a rectangular network consisting of m rows and n
columns. An example of a 3×3 network is illustrated in Figure 1 above. Hold-
ing the trading protocol, the pricing rule and the payoff function constant,
adding rows increases the amount of intermediation required to capture the
surplus available, whereas adding columns (i.e., adding players in each row)
increases the amount of competition. A single player is located at each node
and the edges connecting the nodes indicate that the corresponding players
can trade with each other. In addition to the human players, there are two
computer-generated players, called the computer-generated seller (CGS) and
the computer-generated buyer (CGB). The CGS has one unit of an indivisi-
ble asset which he is willing to sell for zero tokens and the CGS is willing to
buy the asset for v > 0 tokens.
The networks we consider are symmetric and satisfy the following prop-

erties. Only the players in the first row i = 1 can purchase the asset from
the CGS. The players in row i > 1 can buy the asset from any of the players
in row i − 1 and the players in row i < m can sell the asset to any of the
players in row i+1. Only players in the last row i = m can sell the asset to
the CGB. A strategy for each player k consists of the announcement of a bid
price (bk) at which he would be willing to purchase one unit of the asset and
an asking price (ak) at which he would be willing to sell one unit of the asset.
The bid and ask prices are restricted to the interval [0, v] so the strategy set
for player k is simply Sk = [0, v] × [0, v] and the set of strategy profiles is
S = S1 × · · · × SK .
Trades are executed as follows. The asset is transferred from the CGS to

the row 1 player who has the highest bid. If there is more than one player
with the highest bid, the asset is allocated randomly among the winning
bidders. The player who receives the asset pays the CGS an amount equal
to αbk where bk is the winning bid and 0 ≤ α ≤ 1 is a constant. In each row
1 < i < m, trade is only possible if the asset is held by one of the players
in row i − 1, whom we call the seller. Trade takes place if at least one bid
in row i is greater than or equal to the seller’s asking price. The asset is
transferred to the highest bidder. If more than one player has the highest
bid, the asset is allocated randomly among the winning bidders. The player
who receives the asset transfers an amount equal to αbk + (1− α) ak0, where
bk is the winning bid and ak0 is the seller’s asking price. If no bid is at least
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as high as the seller’s asking price, no trade takes place and the asset remains
with the seller. If a player in row m receives the asset, he sells it to the CGB
for a price equal to αv + (1− α) ak, where ak is the seller’s asking price.
A player’s payoff is equal to his trading profit, that is, the amount he

receives from selling the asset minus the amount he pays for it. A player
who does not manage to buy the asset receives a payoff of zero. A player
who buys the asset for a positive price and fails to sell it receives a negative
payoff. Denote a typical player’s strategy by σk = (ak, bk) and a strategy
profile by σ = {σk} = (a, b), where a = {ak} and b = {bk}. Denote player
k’s payoff by πk (σ) = πk (a, b). A Nash equilibrium is a strategy profile σ∗

such that for any player k,

πk (σ
∗) ≥ πk

¡
σk, σ

∗
−k
¢

for any σk ∈ Sk. It is not hard to see that the usual Bertrand competition
result holds.

Theorem 1 (Nash equilibrium) Suppose that there are at least two play-
ers in each row (n ≥ 2). Then, in any Nash equilibrium, the asset passes, by
means of a sequence of trades, from the CGS to the CGB — in other words,
the market is efficient — and in each equilibrium trade the transaction price
is equal to v, except for the first row, where the transaction price is αv.

The normal-form game described above has an important advantage from
the point of view of laboratory experiments. Since all strategies are chosen
simultaneously and the outcome is calculated by the computer, the normal-
form game can be played much more quickly than corresponding extensive-
form games. This allows us to gather a large amount of data in a reasonable
period of time. There is a close relationship between the normal form and
the “natural” extensive form game. Suppose that trades occur sequentially,
with perfect information at each stage. First, the CGS and the first row
buyers announce their bids and trade is executed in the usual way. Then
the first row seller (assuming trade has been completed) and the second row
buyers announce their ask and bids, respectively, and trade is executed in
the usual way. This procedure is repeated until trade fails to take place or
the asset reaches the CGB. The difference between this extensive-form game
and our normal-form game is that, in the former, traders know the history of
trade and condition their strategies on it, whereas, in the latter, strategies are
necessarily history independent. In fact, if we restrict attention to subgame
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perfect equilibria in which traders use history independent strategies, the
equilibrium outcome of the extensive-form game will be the same as the
outcome of some Nash equilibrium of the normal-form game.

3.2 Experimental design

Our experimental design employs three network structures (3× 3, 3× 2, and
2× 3), two pricing rules (α = 0.5, and α = 1) and two payoff functions (de-
fined in equations (1) and (2) below). Each treatment consists of a network
structure, a pricing rule and a payoff function. We study three combinations
of payoff functions and pricing rules and these are applied to each of the
three network structures. The groups of three treatments based on a single
payoff function and pricing rule and the three different networks are referred
to as the baseline, bid-price and loss treatments described below. The ask of
the CGS is always fixed at zero and the bid of the CGB is fixed at v = 100.
The human traders are endowed with 100 tokens each. Figure 2 summarizes
the experimental design.

[Figure 2 here]

The three baseline treatments use the mean-price rule (α = 0.5) and
the payoff function

payoff = 10 +max {0, trading profits} , (1)

where trading profits (positive or negative) are defined as the difference be-
tween the revenue from selling the asset (zero if the asset was not sold) and
the cost of buying the asset (zero if the asset was not purchased).
The payoff function (1) can be interpreted as a model of professional

traders who receive bonuses when trading profits are positive, but do not
suffer losses when trading profits are negative. As a matter of experimental
design, the payoff function represents a compromise between two conflicting
objectives. In experimental markets, subjects whose earnings at the end of
a trading period are negative are usually considered “bankrupt” and barred
from trading in future periods. Unfortunately, bankruptcy is impractical in
a trading network where each subject occupies a different node: eliminating
bankrupt traders would break up the network and disrupt trade. The risk of
bankruptcy can be avoided if we treat the entire endowment of 100 tokens
as the subject’s property in each period. Then, since a subject cannot lose
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more than 100 tokens in a single period, he can never be bankrupt. But this
creates another problem: now a subject can earn 100 tokens by not trading.
What incentive does he have to risk losses by trading? The payoff function
(1) is a compromise that avoids bankruptcy and still provides an incentive
to trade, by subtracting the endowment from the trader’s earnings and also
limiting the losses.
Within the baseline treatments, we are testing the sensitivity of the sub-

jects’ behavior with respect to variations in the network structure. The
remaining treatments are designed to test their sensitivity to changes in the
pricing rule and the payoff function. The three bid-price treatments test
the robustness of the results of the baseline treatments to a change in the
definition of the transactions price by setting it equal to the winning bid
(α = 1). The loss treatments test the robustness of the results of the
baseline treatments to a change in the definition of the payoff function by
substituting the payoff function

payoff = 50 +max {−40, trading profit} . (2)

for the definition in equation (1).
Compared to the function defined by (1), the payoff function in (2) has

a higher constant term and a higher limit on the trading losses that can
be deducted, as depicted in Figure 3 below. If a subject makes a trading
loss of more than 40 tokens, his payoff will be equal to 10 tokens. If the
trading profit is non-negative, his payoff will be at least 50 tokens, that is, 40
tokens more than under payoff function (1). In effect, we are increasing the
amount of the endowment the trader can keep to 50 tokens while increasing
the maximum loss the trader can bear to 40 tokens. The fact that the subject
can now earn 50 tokens for sure by not trading creates a significant risk of
loss from trading. Under payoff function (2), payoffs are higher, other things
being equal, but the incentive to trade may be smaller.

[Figure 3 here]

3.3 Experimental procedures

All the experimental sessions were conducted at the Center for Experimental
Social Science (C.E.S.S.) at New York University (NYU). The subjects were
recruited from the undergraduate student body of the College of Arts and
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Sciences at NYU. Subjects read the instructions silently, after which the in-
structions were read aloud by one of the experiment administrators. Subjects
were invited to ask questions during the verbal instruction period. No sub-
ject reported difficulty understanding the procedures or using the computer
interface. Each experimental session lasted a little more than one hour. A $5
participation fee and subsequent earnings, which averaged about $20, were
paid in private at the end of the session.
Each experimental session consisted of 30 independent trading periods.

The experimental treatment was held constant throughout a given experi-
mental session. At the beginning of each session, each subject was randomly
and independently assigned to one row of the network. This determined his
type, which remained constant throughout the experiment. At the beginning
of each trading period, the computer would randomly form networks by as-
signing subjects to the various nodes in the network. Top row subjects were
assigned to top row nodes, middle row types to middle row nodes, and so
on, but the assignments were otherwise random and subjects had an equal
probability of being selected for each node and network. Subjects were in-
formed of the network structure, the trading protocol, the pricing rule, and
the payoff function.
At the beginning of a trading period, subjects would be informed of the

position in the network to which they were assigned and then would be asked
to choose a bid price (the price at which they were willing to buy one unit of
an asset) and an ask price (the price at which they were willing to sell one
unit of the asset). Each subject had an initial endowment of 100 tokens and
was allowed to choose any number (including decimals) between 0 and 100
as a bid or ask price. Subjects knew the asking price of the CGS (0 tokens)
and the bid price of the CGB (100 tokens).
The computer program dialog window is shown in the sample experi-

mental instructions which are reproduced in Online Appendix I. The main
features of the computer interface are: the large window at the left of the
screen, which displays the network and the price and trading information;
the View Results button in the top right corner of the screen, which allows
subjects to recall the price and trading information from any previous trad-
ing period; the Bid and Ask fields at the right of the screen, where subjects
enter the prices at which they are willing to buy and sell; and the message
window in the lower left corner of the screen.
In each period, subjects are required to enter their bids and asks in the

respective fields and click the Submit button. After all subjects have entered
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a bid and ask price, the computer executes the feasible trades according to
the trading protocol. Subjects are then shown the resulting transactions
and bid and ask prices in their network. When they are ready to begin the
next trading period, subjects click the OK button. When all subjects have
clicked the OK button, the next trading period begins. After this process
has been repeated 30 times, the experiment ends, the computer selects one
trading period at random, where each period has an equal probability of
being chosen, and the subject is paid an amount based on the number of
tokens earned in that period. Payoffs are calculated in terms of tokens and
then converted into dollars. Each token is worth $1.
The experiments provide us with a rich set of data. The diagram below

summarizes the experimental dataset. The entries of the form a/b/c represent
the number of subjects (a), the number of observations on different networks
(b), and total of individual decisions (c).

Treatment # of obs.
3× 3 54/180/1620

Baseline 3× 2 36/180/1080
2× 3 54/270/1620

3× 3 54/180/1620
Bid-price 3× 2 36/180/1080

2× 3 36/180/1080

3× 3 54/180/1620
Loss 3× 2 30/150/900

2× 3 30/150/900

4 Experimental results

In this section, we present our experimental results concerning the conver-
gence of prices to equilibrium values, the efficiency of trade, and the sensi-
tivity of the observed behavior to variations in networks, payoff functions,
and pricing rules. The aim of the analysis is to provide insights into how
experimental networks behave, as well as to test the usefulness of the theory
for interpreting behavior in the laboratory.
The novel feature of our design is the presence of intermediation. We

first explore the effect of intermediation, measured by the number of rows in
the network, and competition, measured by the number of columns in the
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network, on bid and ask prices. Then we compare the levels of efficiency,
measured by the fraction of completed trades, across treatments.

4.1 The data

We begin by providing an overview of some important features of the exper-
imental data. Each experiment consists of 30 trading periods. To facilitate
comparisons across treatments, instead of showing the data from each trad-
ing period, we have grouped the trading periods into terciles, corresponding
to early periods (1-10), intermediate periods (11-20) and late periods (21-30).
To economize on space, Online Appendix II presents the data for each tercile
as a separate sub-panel. Each cell contains the mean and standard deviation
over the tercile, the treatment, and the row of the m × n network used in
the treatment. Appendix II also presents the data, trading period by trading
period, in graphical form.3

Panel A shows the average winning bids and Panel B shows the average
maximum bids. If the winning bid is less than the ask, no trade occurs and
the winning bid is not defined. In that case, the average winning bid will be
different from the average maximum bid because of the missing observation.
Panel C shows the average seller’s asks. The seller’s ask is the asking price
of the winning bidder. Thus, we are calculating means of bid and asks for
the same population of subjects in Tables 1A and 1C.4

Panel D shows the average transaction price. The transaction price cor-
responding to row i is the actual amount paid for the asset by the subject
in row i. If no trade occurs, the transaction price is not defined and is not
included in the average. Recall that the pricing rule in the baseline and loss
treatments is α = 0.5 and that the CGS always asks 0. These two facts im-
ply that the transaction price in the first row is never more than 50. Finally,
Panel E displays, row by row, the fraction of completed trades. The first row
is excluded because there is no possibility of incomplete trade in that row.

3Since we set the transaction price equal to the bid price (α = 1) in the bid-price
treatments, we only report the evolution of the average winning bids and the fraction of
completed trades.

4We include the average maximum bids, as well as the average winning bids, to give a
better picture of the evolution of bidding behavior. Some of the volatility in the average
winning bid series is caused by dropping observations when there is no trade. When it
comes to asking prices, only the seller’s ask is relevant. We record it here whether or not
the seller is successful in making a sale.
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From the data in Appendix II and our observations in the laboratory, we
draw four broad conclusions:

• First, the experimental platform is stable and easy to understand. It
generates a large amount of data in a short amount of time, allowing
us to test the equilibrium predictions of the theory.

• Secondly, although strategic uncertainty (about what other subjects
will do) necessitates a period of learning, in most treatments, subjects
rapidly converge to equilibrium prices and trade is generally efficient.

• Thirdly, the time path of prices is qualitatively similar across treat-
ments: bid and ask prices start low and rise monotonically toward
their equilibrium values as subjects become more confident about the
behavior of other subjects.

• Finally, although the results are qualitatively similar, the speed of con-
vergence does vary among the different treatments. The observed dif-
ferences are quite intuitive: convergence is slower, other things being
equal, if there is more intermediation or less competition, if the trans-
action price equals the winning bid (rather than the average of the
winning bid and ask), or if there is a higher limit on losses from trad-
ing that can be deducted.

4.2 Convergence

Since in every network there are two or three bidders in each row, the theoret-
ical model suggests that any equilibrium of the trading game is efficient and
the transaction prices equal 100 tokens (except for the first row in each net-
work in the baseline and loss treatments, where the transaction price equals
50 tokens because the seller’s ask is fixed at 0 tokens).
In an experimental setting, there are many reasons why we do not at

first observe the equilibrium transaction prices. Perhaps the most important
reason is strategic uncertainty: a subject bidding for an asset has little infor-
mation about the price at which he can re-sell the asset, unless he happens
to be in the bottom row and can sell the asset to the CGB for the price of
100. Uncertainty about the resale price may cause subjects to shave their
bids in order to protect themselves against the possibility of selling at a loss,
or failing to sell at all.
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Although subjects are randomly matched with different subjects each
period, they learn from experience and their uncertainty gradually diminishes
as the trading game is repeated. As a result, the effectiveness of competition
may be expected to increase and cause the transaction price to converge to
the equilibrium price. Result 1 summarizes the time paths of the average
winning bid, ask and transaction prices across treatments.

Result 1 (convergence) In the baseline treatments, the average winning
bid and ask prices are initially far below their equilibrium values, but
they converge rapidly after several periods. Transaction prices, being
the average of winning bids and asks, also converge rapidly to the equi-
librium values.
There are small differences between the rates of convergence in the bid-
price and loss treatments based on the 3×3 and 2×3 networks and the
corresponding baseline treatments, especially in the second and third ter-
ciles. The rates of convergence in the the bid-price and loss treatments
based on the 3× 2 network are much slower than in the corresponding
baseline treatment and, in most cases, prices fail to converge completely
by the end of 30 trading periods.

The relevant support for Result 1 comes from Appendix II. In the baseline
treatments, the average winning bids converge very fast, especially in the 3×3
and 2× 3 networks, where all bids are within one percent of the equilibrium
bid of 100 in the second and third terciles. The average seller’s asks converge
more slowly, but almost all reach the neighborhood of equilibrium by the
third tercile. The maximum bids should show similar time paths (in practice,
the time paths are almost identical once we aggregate by tercile). Overall,
given subjects’ uncertainty about the possibility of reselling the asset, it takes
remarkably little time for prices to converge.
The bid-price treatments differ from the baseline treatments only in set-

ting the transaction price equal to the successful bid (α = 1). Intuitively, this
could slow convergence by making subjects less willing to bid aggressively.
Nevertheless, the rates of convergence are quite similar under bid-price and
average-price rules, with the exception of the bottom row of the 2 × 3 net-
work, where the average winning bids are lower in the bid-price treatment
than in the baseline treatment.
The loss treatments use a payoff function that deducts more trading losses

from subjects’ earnings than in the other treatments. Consequently, one
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might expect that price convergence will be slower than in the baseline treat-
ments – or that convergence will be incomplete – because the possibility of
substantial trading losses makes subjects less willing to bid aggressively for
the asset. Convergence is slower in the loss treatments based on the 3 × 3
and 2×3 networks than in the corresponding baseline treatments, but prices
very rapidly reach the neighborhood of the equilibrium price. In the 3 × 2
loss treatment, by contrast, the prices are lower and the gap between the
3×2 loss treatment and the 3×2 baseline treatment often widens over time.
Furthermore, in the 3×2 loss treatment, convergence to the equilibrium price
is incomplete at the end of the experiment and it is not clear whether further
repetitions would lead to complete convergence. We can thus conclude that
full price convergence occurs in most but not all treatments.
Next, we look more closely at the sensitivity of pricing behavior to the

network architecture by comparing behavior in corresponding rows across
networks and in different rows within a given network, holding other aspects
of the treatment constant. We first examine the pricing behavior of subjects
belonging to corresponding rows across networks.

4.3 Intermediation

The 3× 3 and 2× 3 networks differ only in the number of rows. The more
rows, the greater the amount of intermediation required to transfer the asset
from the CGS to the CGB. One might expect that more intermediation would
reduce the speed of convergence to the equilibrium price, but that does not
appear to be the case. In fact, in all treatments, the pricing behavior is
quite robust to variation in the number of rows in the network. Result 2
summarizes the behavioral regularities in this regard by comparing average
winning bids and sellers’ asks in rows that have similar positions relative to
the CGB.

Result 2 (intermediation) In all treatments, there are small differences
in rates of convergence of the average winning bids and sellers’ asks to
their equilibrium values in the corresponding rows of the 3×3 and 2×3
networks, that is, the bottom rows of the 3×3 and 2×3 networks, and
the top and middle rows of the 3× 3 and 2× 3 networks, respectively.

The support for Result 2 comes again from Appendix II. We reorganize
the relevant information in Table 1 below. For the bid prices, the only case
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where differences in the rates of convergences are substantial is during the
first tercile.5 For the ask prices, there is also some variation in the first tercile,
but in later terciles the corresponding rows have similar prices, except for the
curious drop in asking prices in the middle row of the 3×3 baseline treatment
in the last tercile. Apart from this small difference, the asks in corresponding
rows do not differ across networks after the first tercile. Note that we do not
include the asks in the bid-price treatments (middle panel), since transaction
prices do not depend on the seller’s ask. We also do not include the asks in
the bottom rows in each network in the other treatments, since subjects very
quickly realized that they could ask for 100 tokens from the CGB.

[Table 1 here]

4.4 Competition

In the 3× 3 and 2× 3 networks, there are three bidders (n = 3) in each row.
In theory, Bertrand competition will guarantee an equilibrium price of 100
as long as there are at least two bidders in each row. In the laboratory, we
do not necessarily expect perfectly competitive behavior when the number
of bidders is small. It is therefore of particular interest to see whether prices
reach the neighborhood of the competitive price when we reduce the number
of subjects in each row. We compare, row by row, the pricing behavior in the
3×3 networks with the pricing behavior in the corresponding 3×2 networks.
Considerable differences in pricing behavior are observed, as the next result
reports.

Result 3 (competition) With few exceptions, competition increases the
bid and ask prices in any given row. As a result, other things being
equal, the rates of convergence to the equilibrium price are slower in
the 3×2 network than in the corresponding 3×3 network. In the 3×2
bid-price and loss treatments, prices generally fail to converge to their
equilibrium values by the end of 30 trading periods.

5As a benchmark, we also studied an auction treatment (a single session with 15 sub-
jects), which is identical to the baseline treatment except that it only uses the 1×3 network
so the successful buyer knows that he can always sell the asset to the CGB for the price of
100. The absence of uncertainty in the auction treatment guarantees aggressive bidding
in line with the predictions of equilibrium, that is, convergence to the equilibrium price
occurs in the first few trading periods and the bids remain at that level throughout the
game, apart from occasional experimental deviations.
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Support for Result 3 is also based on the data from Appendix II. In Table
2 below, we compare, row by row, the relevant data from Appendix II on
the average winning bids and sellers’ asks. We again do not include the asks
in the bid-price treatments and in the bottom rows in each network in the
baseline and loss treatments. Bid and ask prices show the same time profile
when competition is high (n = 3) as when it is low (n = 2), though the
levels are different and the general pattern is that competition increases the
price in any given row, with the exception of the curious drop in the seller’s
asks in the middle row of the 3 × 3 baseline treatment. We thus conclude
that, overall, less competition does make a difference, especially in the bid-
price and loss treatments where behavior do not reach the neighborhood of
equilibrium at the end of the experiment when competition is low.

[Table 2 here]

4.5 Spreads

Another interesting feature of the pricing behavior is the spread between
adjacent rows of a given network, other things being equal. Again, the critical
factor is the uncertainty about resale as measured by the distance from the
CGB. Except for the bottom-row buyer, who can resell the asset to the CGB
for the price of 100, subjects cannot be sure of the price at which they can
resell the asset. This strategic uncertainty tends to depress the bids and asks,
and suggests that, in the 3 × 3 and 3 × 2 networks, the transaction prices
between the first row seller and the second row buyer will be lower than the
transaction prices between the second row seller and the third row buyer.
Our next result confirms this conjecture. The evidence is again provided
in Appendix II. We present the relevant data from Appendix II in Table 3,
which compares the average transaction prices across rows within a given
network and tercile. Since the ask of the CGS is fixed at 0 and the bid of the
CGB is fixed at 100, we restrict attention to comparing transaction prices
between the second and third rows in the 3× 3 and 3× 2 networks.

Result 4 (spreads) The average transaction prices in a given network are
increasing in the row index for each network and in each tercile, with
the exception of the 3× 3 baseline treatment, where in the third tercile
the average transaction price is considerably lower in the bottom row
than in the middle row.

18



[Table 3 here]

4.6 Efficiency

Efficiency is one of the main concerns in the study of trading in networks.
Trade is efficient if and only if the asset reaches the CGB, so that the surplus
is realized. Transaction prices affect the distribution of the surplus but have
no impact on efficiency. In this section we assess the efficiency of trade overall
and its sensitivity to the various treatments.
Incompleteness of networks is a potentially important market friction.

The greater the incompleteness of the network, the more intermediation is
required to capture gains from trade and achieve an efficient outcome. Recall
that trade between two rows requires that at least one bid is higher than
or equal to the seller’s ask. Thus, strategic uncertainty (about what other
subjects will do) inevitably requires a period of learning and during this
period trades may not be completed. Furthermore, even after a considerable
amount of trade has occurred, trade may break down if subjects are too
aggressive and misjudge the prices that are likely to be bid or asked by their
opponents.
The completion rates, that is, the fraction of trades completed within a

given network and tercile, are reported in Table 4. As usual, the data are
taken from Appendix II above. Recall that the first row is excluded because
there is no possibility of incomplete trades in that row.

[Table 4 here]

Other things being equal, the level of efficiency is generally highest in
the 2 × 3 treatments (where the degree of intermediation is lower than in
the 3× 3 network) and lowest in the 3× 2 treatments (where the degree of
competition is lower than in the 3×3 network). Thus, we conclude that more
intermediation or less competition can lower the efficiency of trade. In the
3 × 3 baseline treatment, the level of efficiency increases markedly through
the three terciles. It increases through the first two terciles in the 3 × 2
baseline treatment, but is quite high and essentially flat in the 2× 3 baseline
treatment. This suggests that it takes subjects longer to learn to coordinate
when there is more intermediation.
Comparing corresponding networks in the baseline and bid-price treat-

ments shows that changing the transaction pricing rule from the average of
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the winning bid and ask to the winning bid price reduces efficiency in all
networks. In the 3× 2 bid-price treatment, efficiency increases sharply from
the first to the second tercile and increases modestly between the second and
third terciles, and in the 2× 3 bid-price treatment, efficiency is again quite
high and essentially flat. The most interesting feature of the bid-price treat-
ments is that efficiency declines sharply from the first to the third tercile in
the 3 × 3 network, but it is the aberrant behavior of a few individuals in a
single session that accounts for most of this drop in efficiency. The effect
of even a few anomalous subjects can propagate through the network as a
change in prices in one part of the network affects what traders are prepared
to bid and ask elsewhere.
In the loss treatments, efficiency is overall lower than in the baseline treat-

ments, as one would expect. Also note that in the 3× 2 loss treatment, effi-
ciency increases and then decreases, whereas in the 3× 2 baseline treatment,
efficiency is steadily increasing over time. This discussion is summarized in
our last result.

Result 5 (efficiency) The levels of efficiency appear to be lower when there
is more intermediation or less competition. Further, the trading rules
are important for efficiency: when the transaction price is equal to the
bid price or subjects experience trading losses, the level of efficiency
appears to be lower.

5 Concluding remarks

In this paper we have examined the robustness of market behavior to changes
in network architecture, payoff functions, and pricing rules. We restricted our
attention to rectangular arrays with symmetric structures. The advantage
of this network architecture is that all nodes in a row are essentially the
same, allowing us to randomize the assignment of subjects across nodes and
networks and to pool the data that we collected. Nevertheless, there are many
other network architectures that would be interesting to study, particularly
asymmetric networks.
Among the many phenomena that could be studied using this platform,

the impact of uncertainty on trade is one of the most interesting. Here we
mention three possibilities.

• Random endowments. A trader’s endowment places an upper limit on
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what he can bid for an asset and serves as a “liquidity constraint.”
Random endowments introduce liquidity shocks that will change pric-
ing both directly, by constraining bids, and indirectly by reducing com-
petition for bidders and lowering resale prices for intermediaries.

• Random graphs. Random graphs are intrinsically interesting because
they introduce uncertainty about the availability of counterparties to
trade with. They also give rise to interesting strategic phenomena.
For example, if the number of bidders in an auction is uncertain and
with positive probability the number of bidders is one, the only equi-
librium involves mixed strategies. Further, the effects of randomness
can propagate through the network.

• Random values. Uncertainty about the values assigned to the asset
by the CGS and the CGB introduces uncertainty about the probabil-
ity of trade and the possibility of learning the value of the asset over
time. Our framework can provide insight into how these important
phenomena will be affected by network architectures.

While the small networks we studied are insightful, especially in exper-
imental contexts, the development of the theory depends on properties of
networks that can be generalized. In order to determine which factors are
important in explaining market behavior, it will be necessary to investigate
a large class of networks in the laboratory. Fortunately, our experimental
design enables us to do this systematically and efficiently.
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Treatment/
row

3×3/3-2×3/2 97.1 - 90.0 99.9 - 99.9 100.0 - 100.0
3×3/2-2×3/1 88.2 - 82.5 99.9 - 100.0 100.0 - 100.0

Asks 3×3/2-2×3/1 82.8 - 70.7 91.6 - 87.8 81.0 - 94.3

Treatment/
row

3×3/3-2×3/2 66.9 - 95.0 94.9 - 98.7 99.4 - 99.4
3×3/2-2×3/1 63.6 - 90.0 92.8 - 98.4 98.4 - 99.4

Treatment/
row

3×3/3-2×3/2 96.4 - 88.2 98.1 - 99.0 99.6 - 100.0
3×3/2-2×3/1 79.8 - 65.3 97.1 - 90.2 98.2 - 99.4

Asks 3×3/2-2×3/1 64.8 - 74.0 95.0 - 93.7 96.1 - 96.9

Bids

Table 1: The effect of intermediation
(Average winning bids and seller's asks)

A: Baseline

21-301-10 11-20
Trading periods

Bids

C: Loss
Trading periods

1-10 11-20 21-30

Bids

B: Bid-price
Trading periods

1-10 11-20 21-30



Treatment/
row

3×3/1-3×2/1 77.6 - 36.6 99.9 - 65.0 100.0 - 91.3
3×3/2-2×3/2 88.2 - 58.6 99.9 - 78.5 100.0 - 91.4
3×3/3-3×2/3 97.1 - 84.4 99.9 - 96.6 100.0 - 98.8
3×3/2-3×2/2 73.9 - 50.3 85.9 - 71.5 95.4 - 87.4
3×3/2-2×3/2 82.8 - 70.9 91.6 - 89.2 81.0 - 96.4

Treatment/
row

3×3/1-3×2/1 51.0 - 39.9 84.8 - 58.9 95.4 - 70.2
3×3/2-2×3/2 63.6 - 65.0 92.8 - 77.4 98.4 - 85.1
3×3/3-3×2/3 66.9 - 79.1 94.9 - 86.6 99.4 - 91.4

Treatment/
row

3×3/1-3×2/1 65.0 - 28.6 92.1 - 35.6 94.0 - 49.8
3×3/2-2×3/2 79.8 - 53.3 97.1 - 62.2 98.2 - 69.8
3×3/3-3×2/3 96.4 - 70.0 98.1 - 73.9 99.6 - 80.0
3×3/2-3×2/2 53.2 - 43.7 83.0 - 53.1 87.4 - 60.8
3×3/2-2×3/2 79.4 - 64.8 95.0 - 69.0 96.1 - 75.7

Bids

Bids

Asks

B: Bid-price
Trading periods

1-10 11-20 21-30

Trading periods
C: Loss

Asks

1-10 11-20 21-30

Bids

Table 2: The effect of competition
(Average winning bids and seller's asks)

A: Baseline

21-301-10 11-20
Trading periods



Treatment/
row

3×3/2-3×3/3 81.0 - 88.6 92.9 - 95.3 97.7 - 90.2
3×2/2-3×2/3 54.4 - 77.6 75.0 - 92.7 89.4 - 97.5

Treatment/
row

3×3/2-3×3/3 63.1 - 66.7 91.8 - 93.5 97.3 - 96.7
3×2/2-3×2/3 65.0 - 79.1 77.4 - 86.6 85.1 - 91.4

Treatment/
row

3×3/2-3×3/3 66.5 - 87.6 90.1 - 96.4 92.8 - 97.9
3×2/2-3×2/3 48.5 - 66.5 57.6 - 71.0 65.3 - 76.5

1-10 11-20 21-30

A: Baseline

B: Bid-price

C: Loss

1-10 11-20
Trading periods

Trading periods

Table 3: Price spreads
(Average transaction prices)

Trading periods
1-10 11-20 21-30

21-30



1-10 11-20 21-30
3×3 0.72 0.88 0.97
3×2 0.67 0.87 0.88
2×3 0.93 0.99 0.96
3×3 0.67 0.58 0.48
3×2 0.55 0.75 0.78
2×3 0.90 0.87 0.85
3×3 0.72 0.82 0.87
3×2 0.64 0.78 0.70
2×3 0.92 0.98 0.94
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(by treatment and tercile)
Table 4: The efficiency of trade
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Figure 1: The 3×3 network 
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Figure 2: The experimental design 
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Figure 3: The payoff functions 
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