The Interdisciplinary Center, Herzliya
 School of Economics Advanced Microeconomics
 Fall 2017

Confronting Theory with Experimental Data and vice versa

Risk and time preferences

The fundamental tradeoffs in life

People's attitudes towards risk, time and other people enter every realm of (financial) decision-making:

```
    risk \Longleftrightarrow return
today \Longleftrightarrow tomorrow
    self }\Longleftrightarrow\mathrm{ others
```

Risk, time and social preferences are thus important inputs into any broader measure of welfare and enter virtually every field of economics.

The touchstones of (financial) decision-making

Rational choice 'simply' requires consistent preferences over all possible alternatives, and choices that correspond to the most preferred alternative from the feasible set.

Insofar as preferences are rational, then the techniques of economic analysis may be brought to bear on modeling the decisions governed by these preferences.

Research questions

Consistency

- Is behavior under uncertainty consistent with the utility maximization model?

Structure

- Is behavior consistent with a utility function with some special structural properties?

Recoverability

- Can the underlying utility function be recovered from observed choices?

Extrapolation

- Given behavior in the laboratory, can we forecast behavior in other environments?

Foundations of Economic Analysis (1947)

Paul A. Samuelson (1915-2009) - the first American Nobel laureate in economics and the foremost (academic) economist of the 20th century (and the uncle of Larry Summers...).

FOUNDATIONS OF ECONOMIC ANALYSIS
With a new introdection
PAUL ANTHONY SAMUELSON
PAUL ANTHONY SAMUELSON
origimily pulitime of hamard Uniresity Prass

Formally, we represent the consumer's preferences by a binary relation \succsim defined on the set of consumption bundles.

For any pair of bundles x and y, if the consumer says that x is at least as good as y, we write

$$
x \succsim y
$$

and say that x is weakly preferred to y.

Bear in mind: economic theory often seeks to convince you with simple examples and then gets you to extrapolate. This simple construction works in wider (and wilder circumstances).

From the weak preference relation \succsim we derive two other relations on the set of alternatives:

- Strict performance relation

$$
x \succ y \text { if and only if } x \succsim y \text { and not } y \succsim x
$$

The phrase $x \succ y$ is read x is strictly preferred to y.

- Indifference relation

$$
x \sim y \text { if and only if } x \succsim y \text { and } y \succsim x
$$

The phrase $x \sim y$ is read x is indifferent to y.

The basic assumptions about preferences

The theory begins with three assumptions about preferences. These assumptions are so fundamental that we can refer to them as "axioms" of decision theory.
[1] Completeness

$$
x \succsim y \text { or } y \succsim x
$$

for any pair of bundles x and y.
[2] Transitivity

$$
\text { if } x \succsim y \text { and } y \succsim z \text { then } x \succsim z
$$

for any three bundles x, y and z.

Together, completeness and transitivity constitute the formal definition of rationality as the term is used in economics. Rational economic agents are ones who
have the ability to make choices [1], and whose choices display a logical consistency [2].
(Only) the preferences of a rational agent can be represented, or summarized, by a utility function (more later).

The third axiom about consumer's preferences for one bundle versus another is that "more is better" (goods are desirable).
[3] Monotonicity

$$
\text { if } x_{1} \geq y_{1} \text { and } x_{2} \geq y_{2} \text { then } x \succsim y
$$

for any pair of bundles x and y.

Decision making under uncertainty

- Uncertainty is a fact of life so people's attitudes towards risk enter every realm of economic decision-making.
- We must study individual behavior with respect to choice involving uncertainty.
- Models of decision making under uncertainty play a key role in every field of economics.

Objectives

- Illustrate that agents (consumers and managers) frequently make decisions with uncertain consequences.
- Facing uncertain choices, maximizing the Expected Utility is how agents ought to choose.
- Individual behavior is often contrary to the assumptions of Expected Utility Theory.

Life is full of lotteries :-(

$$
x:=\begin{gathered}
\nearrow_{1-p}^{p} \$ \$ \\
\hline
\end{gathered}
$$

A risky lottery (left) and an ambiguous lottery (right)

$$
x:=\begin{gathered}
\searrow_{1 / 2}^{1 / 2} \$ B
\end{gathered} \$ A \quad y:=\begin{gathered}
\nearrow \\
\nearrow_{1-?}^{\searrow} \$ B
\end{gathered}
$$

A compounded lottery

$$
\begin{aligned}
& \begin{array}{lcc}
& q^{\prime} & \$ A \\
& \searrow & \$ B \\
& 1-q &
\end{array} \\
& x:= \\
& \begin{array}{ccc}
\searrow & l_{\nearrow} & \$ C \\
& & \$ \\
& \\
& & \$ D
\end{array}
\end{aligned}
$$

The reduction of a compounded lottery

$$
\begin{aligned}
& { }^{q} \begin{array}{ll|l}
& & \mid \\
\nearrow & \$ A & \mid p q
\end{array} \\
& \stackrel{p}{\nearrow} \underset{1-q}{\searrow} \$ B \mid p(1-q) \\
& x:= \\
& \begin{array}{|cc|c}
\searrow & l^{l} \\
1-p & \$ C & (1-p) l \\
& \searrow & \$ D \\
\\
& & \\
1-l & & (1-p)(1-l)
\end{array}
\end{aligned}
$$

The paternity of decision theory and game theory (1944)

$$
\begin{aligned}
& x+z:=\quad \succ y+z:=
\end{aligned}
$$

von Neumann and Morgenstern Expected Utility Theory (EUT)

Allais (1953) I

- Choose between the two gambles:

Allais (1953) II

- Choose between the two gambles:

The (Marschak-Machina) probability triangle

Consider three monetary payouts H, M, and L where $H>M>L$

Risk profiling

A "complete" risk profiling requires knowing all possible comparisons like between A and B.

A topographic map

An indifference map of a loss-neutral (expected utility) individual

Expected Utility Theory (EUT) requires that indifference lines are parallel

A test of Expected Utility Theory (EUT)

EUT requires that indifference lines are parallel so one must choose either \boldsymbol{A} and \boldsymbol{C}, or \boldsymbol{B} and \boldsymbol{D}.

Loss neutral and more risk tolerant

Mr. Green is more risk tolerant than Mr. Blue who is more risk tolerant than Mr. Red. The aentlemen are loss neutral.

A new experimental design

An experimental design that has a couple of fundamental innovations over previous work:

- A selection of a bundle of contingent commodities from a budget set (a portfolio choice problem).
- A graphical experimental interface that allows for the collection of a rich individual-level data set.

The experimental computer program dialog windows

Rationality

Let $\left\{\left(p^{i}, x^{i}\right)\right\}_{i=1}^{50}$ be some observed individual data (p^{i} denotes the i-th observation of the price vector and x^{i} denotes the associated portfolio).

A utility function $u(x)$ rationalizes the observed behavior if it achieves the maximum on the budget set at the chosen portfolio

$$
u\left(x^{i}\right) \geq u(x) \text { for all } x \text { s.t. } p^{i} \cdot x^{i} \geq p^{i} \cdot x
$$

Revealed preference

A portfolio x^{i} is directly revealed preferred to a portfolio x^{j} if $p^{i} \cdot x^{i} \geq$ $p^{i} \cdot x^{j}$, and x^{i} is strictly directly revealed preferred to x^{j} if the inequality is strict.

The relation indirectly revealed preferred is the transitive closure of the directly revealed preferred relation.

Generalized Axiom of Revealed Preference (GARP) If x^{i} is indirectly revealed preferred to x^{j}, then x^{j} is not strictly directly revealed preferred (i.e. $p^{j} \cdot x^{j} \leq p^{j} \cdot x^{i}$) to x^{i}.

GARP is tied to utility representation through a theorem, which was first proved by Afriat (1967).

Afriat's Theorem The following conditions are equivalent:

- The data satisfy GARP.
- There exists a non-satiated utility function that rationalizes the data.
- There exists a concave, monotonic, continuous, non-satiated utility function that rationalizes the data.

Afriat's critical cost efficiency index (CCEI) The amount by which each budget constraint must be relaxed in order to remove all violations of GARP.

The CCEI is bounded between zero and one. The closer it is to one, the smaller the perturbation required to remove all violations and thus the closer the data are to satisfying GARP.

The construction of the CCEI for a simple violation of GARP

The agent is 'wasting' as much as $A / B<C / D$ of his income by making inefficient choices.

A benchmark level of consistency

A random sample of hypothetical subjects who implement the power utility function

$$
u(x)=\frac{x^{1-\rho}}{1-\rho}
$$

commonly employed in the empirical analysis of choice under uncertainty, with error.

The likelihood of error is assumed to be a decreasing function of the utility cost of an error.

More precisely, we assume an idiosyncratic preference shock that has a logistic distribution

$$
\operatorname{Pr}\left(x^{*}\right)=\frac{e^{\gamma \cdot u\left(x^{*}\right)}}{\int_{x: p \cdot x=1} e^{\gamma \cdot u(x)}},
$$

where the precision parameter γ reflects sensitivity to differences in utility.

If utility maximization is not the correct model, is our experiment sufficiently powerful to detect it?

The distributions of GARP violations $\mathbf{-} \rho=1 / 2$ and different Y

Bronnars' (1987) test ($\mathbf{\gamma}=0$)

Homo Economicus: equiprobable lotteries

Wealth differentials

\Longrightarrow The heterogeneity in wealth is not well-explained either by standard observables (income, education, family structure) or by standard unobservables (intertemporal substitution, risk tolerance).
\Longrightarrow If consistency with utility maximization in the experiment is a good proxy for (financial) $D M Q$ then the degree to which consistency differ across subjects should help explain wealth differentials.

5		(1)	(2)	(3)
	CCEI	$\begin{aligned} & \hline \hline 1.351^{* *} \\ & (0.566) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline 1.109^{* *} \\ & (0.534) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline 101888.0^{*} \\ & (52691.9) \\ & \hline \end{aligned}$
	Log 2008 household income	$\begin{gathered} \hline 0.584^{* * *} \\ (0.132) \end{gathered}$	$\begin{gathered} \hline 0.606 * * * \\ (0.126) \end{gathered}$	
	2008 household income			$\begin{gathered} 1.776 * * * \\ (0.4) \\ \hline \end{gathered}$
	Female	$\begin{gathered} \hline-0.313^{*} \\ (0.177) \end{gathered}$	$\begin{gathered} \hline-0.356 * * \\ (0.164) \end{gathered}$	$\begin{aligned} & \hline-32484.3^{*} \\ & (17523.9) \end{aligned}$
U	Partnered	$\begin{gathered} 0.652^{* * *} \\ (0.181) \end{gathered}$	$\begin{gathered} 0.595 * * * \\ (0.171) \end{gathered}$	$\begin{gathered} 46201.9 * * * \\ (17173.7) \end{gathered}$
ٍ	\# of children	$\begin{array}{r} 0.090 \\ (0.093) \\ \hline \end{array}$	$\begin{gathered} 0.109 \\ (0.086) \\ \hline \end{gathered}$	$\begin{gathered} 14078.6^{*} \\ (8351.5) \\ \hline \end{gathered}$
A	Age	Y	Y	Y
ज	Education	Y	Y	Y
.	Occupation	Y	Y	Y
	Constant	$\begin{gathered} \hline 6.292 \\ (6.419) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.469 \\ (3.598) \\ \hline \end{gathered}$	$\begin{gathered} \hline 76214.4 \\ (559677.5) \\ \hline \end{gathered}$
E	R^{2}	0.179	0.217	0.188
	\# of obs.	517	566	568

		(1)	(2)	(3)	(4)
	CCEI	$\begin{aligned} & \hline \hline 1.253^{*} \\ & (0.712) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline 1.401^{*} \\ & (0.729) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline 1.269^{*} \\ & (0.729) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.177^{* *} \\ & (0.583) \\ & \hline \end{aligned}$
	CCEI (combined dataset)	$\begin{aligned} & \hline 0.099 \\ & -0.38 \end{aligned}$			
	von Gaudecker et al. (2011)			$\begin{aligned} & \hline 0.927^{*} \\ & (0.485) \\ & \hline \end{aligned}$	
	Cognitive Reflection Test (CRT) CRT missing				0.120^{*} (0.071) -0.203 (0.237)
	Log 2008 household income	$\begin{gathered} \hline 0.586 * * * \\ (0.132) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.388^{*} \\ & (0.155) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.383^{*} \\ & (0.154) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.577 * * * \\ (0.132) \\ \hline \end{gathered}$
	Female	$\begin{aligned} & \hline-0.314^{*} \\ & (0.177) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.218 \\ & (0.212) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.207 \\ & (0.211) \\ & \hline \end{aligned}$	$\begin{gathered} \hline-0.292^{*} \\ (0.176) \\ \hline \end{gathered}$
	Partnered \# of children	$\begin{gathered} \hline 0.653^{* * *} \\ (0.181) \\ 0.089 \\ (0.093) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.907^{* * *} \\ (0.230) \\ 0.105 \\ (0.114) \\ \hline \end{gathered}$	$0.926^{* * *}$ (0.228) 0.096 (0.113)	$0.690^{* * *}$ (0.181) 0.091 (0.092) \mathbf{Y}
	Age	Y	Y	Y	Y
	Education	Y	Y	Y	Y
	Occupation	Y	Y	Y	Y
	Constant	$\begin{gathered} \hline 6.237 \\ (6.424) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 10.056 \\ & (6.976) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 8.355 \\ (6.990) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.855 \\ (6.464) \\ \hline \end{gathered}$
	R^{2}	0.177	0.225	0.232	0.181
	\# of obs.	517	326	326	517

| | | (1) | (2) | (3) |
| :--- | :---: | :---: | :---: | :---: |$c(4)$

		(5)	(6)	(7)	(8)
		Have stocks	Fraction in stocks	Have a house	Fraction in house
	CCEI	$\begin{gathered} \hline 0.167 \\ (0.163) \end{gathered}$	$\begin{gathered} \hline 0.001 \\ (0.050) \end{gathered}$	$\begin{gathered} \hline \hline 0.352^{* *} \\ (0.152) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.324^{* *} \\ (0.129) \\ \hline \end{gathered}$
	Log 2008 household income	$\begin{gathered} \hline 0.148^{* * *} \\ (0.031) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.013 \\ (0.009) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.134^{* * *} \\ (0.029) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.096^{* * *} \\ (0.024) \\ \hline \end{gathered}$
	Female	$\begin{gathered} \hline 0.007 \\ (0.050) \end{gathered}$	$\begin{gathered} \hline 0.009 \\ (0.013) \end{gathered}$	$\begin{gathered} \hline-0.038 \\ (0.050) \end{gathered}$	$\begin{aligned} & \hline-0.066 \\ & (0.043) \end{aligned}$
	Partnered	$\begin{gathered} 0.005 \\ (0.049) \end{gathered}$	$\begin{aligned} & -0.007 \\ & (0.014) \end{aligned}$	$\begin{gathered} 0.207 * * * \\ (0.051) \end{gathered}$	$\begin{gathered} 0.127 * * * \\ (0.044) \end{gathered}$
\#1	\# of children	$\begin{gathered} 0.003 \\ (0.026) \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ (0.007) \\ \hline \end{gathered}$	$\begin{gathered} 0.048^{* *} \\ (0.020) \\ \hline \end{gathered}$	$\begin{gathered} 0.063^{* * *} \\ (0.019) \\ \hline \end{gathered}$
-	Age	Y	Y	Y	Y
,	Education	Y	Y	Y	Y
-	Occupation	Y	Y	Y	Y
	Constant	$\begin{aligned} & \hline-3.152^{*} \\ & (1.856) \\ & \hline \end{aligned}$	$\begin{gathered} \hline-0.317 \\ (0.398) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-1.047 \\ & (1.760) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-1.151 \\ & (1.419) \\ & \hline \end{aligned}$
	R^{2}	0.079	0.002	0.148	0.123
	\# of obs.	514	514	479	479

Is there a development gap in rationality (IQ)?

Is there a development gap in rationality (CCEI)?

Individual-level data

Loss aversion/tolerance

Suppose the underlying utility function over portfolios takes the form

$$
\min \{\alpha u(x)+u(y), u(x)+\alpha u(y)\}
$$

where $\alpha \geq 1$ measures loss aversion and $u(\cdot)$ measures risk aversion using CRRA or CARA.

If $\alpha>1$ there is a kink at the point where $x=y$ and if $\alpha=1$ we have loss neutrality (standard EUT representation).

The indifference map of Gul (1991)

The indifference map of Gul (1991) in the Marschak-Machina triangle

Risk and loss tolerance

Ambiguity aversion

Ambiguity aversion

- The distinction between settings with risk and ambiguity dates back to at least the work of Knight (1921).
- Ellsberg (1961) countered the reduction of subjective uncertainty to risk with several thought experiments.
- A large theoretical literature (axioms over preferences) has developed models to accommodate this behavior.

Experiments à la Ellsberg

Consider the following four two-color Ellsberg-type urns (Halevy, 2007):
I. 5 red balls and 5 black balls
II. an unknown number of red and black balls
III. a bag containing 11 tickets with the numbers $0-10$; the number written on the drawn ticket determines the number of red balls
IV. a bag containing 2 tickets with the numbers 0 and 10 ; the number written on the drawn ticket determines the number of red balls

A model of ambiguity aversion and loss/disappointment aversion

- If both loss aversion and ambiguity aversion are present in the data, we need a structural model in order to disentangle the two effects.
- In order to allow for kinks at portfolios where $x_{s}=x_{s^{\prime}}$ for any $s \neq s^{\prime}$, we make use of the rank-dependent utility (RDU) model of Quiggin (1982).
- This is a generalization of the SEU model that replaces probabilities with decision weights when calculating the value of expected utility.
- In Quiggin (1982), the decision weight of each payout depends only on its (known) probability and its ranking position.

Following α-MEU, we assume that the unknown probabilities π_{1} and π_{3} are skewed using the weights α and $1-\alpha$:

$$
x_{\min }=\min \left\{x_{1}, x_{3}\right\}
$$

is given a probability weight $\frac{2}{3} \alpha$ and

$$
x_{\max }=\max \left\{x_{1}, x_{3}\right\}
$$

is given probability weight $\frac{2}{3}(1-\alpha)$ where the parameter $\frac{1}{2} \leq \alpha \leq 1$ measures the degree of ambiguity aversion.

The utility of a portfolio $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ takes the form
I. $x_{2} \leq x_{\text {min }}$

$$
\beta_{1} u\left(x_{2}\right)+\beta_{2} u\left(x_{\min }\right)+\left(1-\beta_{1}-\beta_{2}\right) u\left(x_{\max }\right)
$$

II. $x_{\text {min }} \leq x_{2} \leq x_{\text {max }}$

$$
\beta_{3} u\left(x_{\min }\right)+\left(\beta_{1}+\beta_{2}-\beta_{3}\right) u\left(x_{2}\right)+\left(1-\beta_{1}-\beta_{2}\right) u\left(x_{\max }\right)
$$

III. $x_{\text {max }} \leq x_{2}$

$$
\beta_{3} u\left(x_{\min }\right)+\beta_{4} u\left(x_{\max }\right)+\left(1-\beta_{3}-\beta_{4}\right) u\left(x_{2}\right)
$$

where

$$
\begin{aligned}
& \beta_{1}=w\left(\frac{1}{3}\right) \\
& \beta_{2}=w\left(\frac{2}{3} \alpha+\frac{1}{3}\right)-w\left(\frac{1}{3}\right) \\
& \beta_{3}=w\left(\frac{2}{3} \alpha\right) \\
& \beta_{4}=w\left(\frac{2}{3}\right)-w\left(\frac{2}{3} \alpha\right)
\end{aligned}
$$

and the mapping from the four parameters $\beta_{1}, \ldots, \beta_{4}$ to two parameters δ and γ is as follows:

$$
\begin{aligned}
& \beta_{1}=\frac{1}{3}+\gamma, \\
& \beta_{2}=\frac{1}{3}+\delta, \\
& \beta_{3}=\frac{1}{3}+\gamma+\delta, \\
& \beta_{4}=\frac{1}{3}-\delta .
\end{aligned}
$$

The parameter δ measures the degree of ambiguity aversion and the parameter γ measures the degree of loss aversion:
$-\delta \geq 0$ and $\gamma=0-$ kinked specification

- $\delta=0$ and $\gamma \geq 0$ - loss/disappointment aversion (Gul, 1991)
$-\delta=0$ and $\gamma=0$ - standard SEU representation.

The indifference curves will have kinks where $x_{s}=x_{s^{\prime}}$ and agents will choose portfolios that satisfy $x_{s}=x_{s^{\prime}}$ for a non-negligible set of prices.

Scatterplot of the estimated parameters - kinked specification

Scatterplot of the estimated parameters - smooth specification

Scatterplot of the estimated parameters - generalized kinked specification (ambiguity - horizontal axis / loss - vertical axis)

Econometric results

The vast majority of the subjects are well described by the loss- and ambiguity-neutral SEU model. The remainder appear to have a significant degree of loss and/or ambiguity aversion

		Ambiguity		
		Neutral	Averse	Total
Loss	Neutral	60.4	16.7	77.1
	Averse	18.1	4.9	22.9
	Total	78.5	21.5	

There is considerable heterogeneity in both $\hat{\delta}_{n}$ or $\hat{\gamma}_{n}$ and that their values are not correlated ($r^{2}=0.029$).

Time preferences

Mean CCEI scores: income in a few days and income 60 days after that

Mean CCEI scores: income in 60 days and income another 60 days after that

Stationarity, time invariance, and time consistency

- Time discount rates decline as tradeoffs are pushed into the temporal distance.
- Subjects often choose the larger and later of two rewards when both are distant in time, but prefer the smaller and earlier one as both rewards draw nearer to the present.
- Interpreted as non-constant time discounting, these preference reversals have important implications.
- Under standard assumptions, non-constant time discounting implies time-inconsistency - self-control problems and a demand for commitment thus emerge.

Stationarity

\succsim_{t} is stationary if for every $t, t^{\prime} \geq 0$ and $\Delta_{1}, \Delta_{2} \geq 0$

$$
\left(x, t+\Delta_{1}\right) \sim_{t}\left(x^{\prime}, t+\Delta_{2}\right) \Longleftrightarrow\left(x, t^{\prime}+\Delta_{1}\right) \sim_{t}\left(x^{\prime}, t^{\prime}+\Delta_{2}\right)
$$

Ranking does not depend on the distance from t. Tested in the standard static experiment.

Time invariance

$$
\begin{aligned}
& \{\succsim t\}_{t=1}^{T} \text { is time-invariant if for every } t, t^{\prime} \geq 0 \text { and } \Delta_{1}, \Delta_{2} \geq 0 \\
& \quad\left(x, t+\Delta_{1}\right) \sim_{t}\left(x^{\prime}, t+\Delta_{2}\right) \Longleftrightarrow\left(x, t^{\prime}+\Delta_{1}\right) \sim_{t^{\prime}}\left(x^{\prime}, t^{\prime}+\Delta_{2}\right) .
\end{aligned}
$$

Ranking does not depend on a calendar time (payments are evaluated relative to a "stopwatch time").

Time consistency

$$
\begin{aligned}
& \{\succsim t\}_{t=1}^{T} \text { is time-consistent if for every } t, t^{\prime} \geq 0 \text { and } \Delta_{1}, \Delta_{2} \geq 0 \\
& \quad\left(x, t+\Delta_{1}\right) \sim_{t}\left(x^{\prime}, t+\Delta_{2}\right) \Longleftrightarrow\left(x, t+\Delta_{1}\right) \sim_{t^{\prime}}\left(x^{\prime}, t+\Delta_{2}\right)
\end{aligned}
$$

Ranking does not change as the evaluation perspective changes from t to t^{\prime}. Time consistency precludes dynamic preference reversals.
\Longrightarrow These properties are pair-wise independent, but any two properties imply the third (Halevy, 2014)

A GARP test of stationarity

A non-parametric econometric approach for testing whether there is a single preference ordering that can rationalize all intertemporal choices (for a given subject):

- Combine dataset E with dataset L.
- Compute the consistency score for this combined dataset.
- Compare that number to the minimum score in each of the separate treatments.

The score for the combined dataset can be no bigger than the minimum of the scores for the separate datasets E and L.

The minimum (vertical axis) and combined (horizontal axis) CCEI scores

The minimum (vertical axis) and combined (horizontal axis) Varian (1990, 1991) scores

A statistical (permutation) test

To obtain a distribution for the test statistic under the null hypothesis (stationarity):
[1] Rearrange (permute) the choice, randomly reassigning the choice from dataset E or L to each budget line.
[2] Compute the consistency score for each permutation and construct the joint probability distribution of the min and max scores.
[3] Compare the actual min and max scores with their permutation distribution.

The relationship between permutation test and β

$\hat{\beta}$	Stationary	Nonstationary
$\hat{\beta}<1$	27	23
	54.0%	46.0%
$\hat{\beta}>1$	110	21
	64.0%	16.0%
Total	157%	10
	74.4%	33.3%

