Reichman University
 Tiomkin School of Economics

 Advanced Microeconomics

 Advanced Microeconomics
 Spring 2024

Confronting Theory with Experimental Data and vice versa Lectures 1 \& 2: Risk and Time Preferences

Shachar Kariv
University of California—Berkeley

The Mecca of behavioral economics

George A. Akerlof (2001) and Daniel Kahneman (2002)

Integration of economic analysis with fundamental insights from cognitive psychology, in particular regarding behavior under uncertainty, thereby laying the foundation for a new field of research.

Michael Lewis' "The Undoing Project: A Friendship That Changed Our Minds"

Prologue

Many people think that economists view people as being super-rational and find the material to be highly theoretical and not very "realistic".
... theories do not have to be realistic to be useful...

Even though the assumptions are pretty unrealistic, the theory predicts behavior well and is quite useful.

A theory can be useful in three ways:
A. descriptive (how people actually choose)
B. prescriptive (as a practical aid to choice)
C. normative (how people ought to choose)

The fundamental tradeoffs in life

People's attitudes towards risk, time and other people enter every realm of (financial) decision-making:

```
    risk \Longleftrightarrow return
today \Longleftrightarrow tomorrow
    self }\Longleftrightarrow\mathrm{ others
```

Risk, time and social preferences are thus important inputs into any broader measure of welfare and enter virtually every field of economics.

Four types questions concerning preferences

I Consistency

- Is behavior consistent with a model of utility maximization?

II Structure

- What are the structural properties of the underlying utility function?

III Recoverability

- Can underlying preferences be recovered from observed choices?

IV Linkages

- What are the linkages between preferences in various environments?

Foundations of Economic Analysis (1947)

Paul A. Samuelson (1915-2009) - the first American Nobel laureate in economics and the foremost (academic) economist of the 20th century (and the uncle of Larry Summers...).

FOUNDATIONS OF ECONOMIC ANALYSIS
With a new introdection
PAUL ANTHONY SAMUELSON
PAUL ANTHONY SAMUELSON
origimily pulitime of hamard Uniresity Prass

Formally, we represent the consumer's preferences by a binary relation \succsim defined on the set of consumption bundles.

For any pair of bundles x and y, if the consumer says that x is at least as good as y, we write

$$
x \succsim y
$$

and say that x is weakly preferred to y.

Bear in mind: economic theory often seeks to convince you with simple examples and then gets you to extrapolate. This simple construction works in wider (and wilder circumstances).

From the weak preference relation \succsim we derive two other relations on the set of alternatives:

- Strict performance relation

$$
x \succ y \text { if and only if } x \succsim y \text { and not } y \succsim x
$$

The phrase $x \succ y$ is read x is strictly preferred to y.

- Indifference relation

$$
x \sim y \text { if and only if } x \succsim y \text { and } y \succsim x
$$

The phrase $x \sim y$ is read x is indifferent to y.

The basic assumptions about preferences

The theory begins with three assumptions about preferences. These assumptions are so fundamental that we can refer to them as "axioms" of decision theory.
[1] Completeness

$$
x \succsim y \text { or } y \succsim x
$$

for any pair of bundles x and y.
[2] Transitivity

$$
\text { if } x \succsim y \text { and } y \succsim z \text { then } x \succsim z
$$

for any three bundles x, y and z.

Together, completeness and transitivity constitute the formal definition of rationality as the term is used in economics. Rational economic agents are ones who
have the ability to make choices [1], and whose choices display a logical consistency [2].
(Only) the preferences of a rational agent can be represented, or summarized, by a utility function (more later).

The third axiom about consumer's preferences for one bundle versus another is that "more is better" (goods are desirable).
[3] Monotonicity

$$
\text { if } x_{1} \geq y_{1} \text { and } x_{2} \geq y_{2} \text { then } x \succsim y
$$

for any pair of bundles x and y.

Decision making under uncertainty

- Uncertainty is a fact of life so people's attitudes towards risk enter every realm of economic decision-making.
- We must study individual behavior with respect to choice involving uncertainty.
- Models of decision making under uncertainty play a key role in every field of economics.

The Senator Gravel Edition

Pentagon Papers

The Defense Department History of United States Decisionmaking on
VIETNAM
VOLUME ONE

Wive Che Washington Jost

- I have an urn with 1000 balls in it. Some of the balls are red and some are blue. All the balls are the same size and weight, and they are not distinguishable in any way except in color.
- I will let you reach into this urn without looking and drew out one of these balls. I want to know your preferences between investments (gambles) based on the outcome of this random event.
[1] There are precisely 500 red balls in the urn. Would you rather (fill the blank)
(a) get \$__ for sure
(b) get $\$ 100,000$ if the ball drawn from the urn is red and $\$ 0$ if it is blue.
[1] There are precisely 500 red balls in the urn. Would you rather (fill the blank)
(a) get \$__ for sure
(b) get $\$ 100,000$ if the ball drawn from the urn is red and $\$ 0$ if it is blue.
[2] There are precisely 500 red balls in the urn. Would you rather (fill the blank)
(a) lose $\$$ \qquad for sure
(b) lose $\$ 100,000$ if the ball drawn from the urn is red and $\$ 0$ if it is blue.
[1] There are precisely 500 red balls in the urn. Would you rather (fill the blank)
(a) get \$__ for sure
(b) get $\$ 100,000$ if the ball drawn from the urn is red and $\$ 0$ if it is blue.
[2] There are precisely 500 red balls in the urn. Would you rather (fill the blank)
(a) lose \$ \qquad for sure
(b) lose $\$ 100,000$ if the ball drawn from the urn is red and $\$ 0$ if it is blue.
[3] The number of red balls in the urn is unknown. Would you rather (fill the blank)
(a) get \$ \qquad for sure
(b) get $\$ 100,000$ if the ball drawn from the urn is red and $\$ 0$ if it is blue.

Life is full of lotteries :-(

$$
x:=\begin{gathered}
\nearrow_{1-p}^{p} \$ \$ \\
\hline
\end{gathered}
$$

A risky lottery (left) and an ambiguous lottery (right)

$$
x:=\begin{gathered}
\searrow_{1 / 2}^{1 / 2} \$ B
\end{gathered} \$ A \quad y:=\begin{gathered}
\nearrow \\
\nearrow_{1-?}^{\searrow} \$ B
\end{gathered}
$$

A compounded lottery

$$
\begin{aligned}
& \begin{array}{lcc}
& q^{\prime} & \$ A \\
& \searrow & \$ B \\
& 1-q &
\end{array} \\
& x:= \\
& \begin{array}{ccc}
\searrow & l_{\nearrow} & \$ C \\
& & \$ \\
& \\
& & \$ D
\end{array}
\end{aligned}
$$

The reduction of a compounded lottery

$$
\begin{aligned}
& { }^{q} \begin{array}{ll|l}
& & \mid \\
\nearrow & \$ A & \mid p q
\end{array} \\
& \stackrel{p}{\nearrow} \underset{1-q}{\searrow} \$ B \mid p(1-q) \\
& x:= \\
& \begin{array}{|cc|c}
\searrow & l^{l} \\
1-p & \$ C & (1-p) l \\
& \searrow & \$ D \\
\\
& & \\
1-l & & (1-p)(1-l)
\end{array}
\end{aligned}
$$

The paternity of decision theory and game theory (1944)

$$
\begin{aligned}
& x+z:=\quad \succ y+z:=
\end{aligned}
$$

von Neumann and Morgenstern Expected Utility Theory (EUT)

Allais (1953) I

- Choose between the two gambles:

Allais (1953) II

- Choose between the two gambles:

The (Marschak-Machina) probability triangle

Consider three monetary payouts H, M, and L where $H>M>L$

Risk profiling

A "complete" risk profiling requires knowing all possible comparisons like between A and B.

An indifference map of a loss-neutral (expected utility) individual

Expected Utility Theory (EUT) requires that indifference lines are parallel

Loss neutral and more risk tolerant

Mr. Green is more risk tolerant than Mr. Blue who is more risk tolerant than Mr. Red. The aentlemen are loss neutral.

A test of Expected Utility Theory (EUT)

EUT requires that indifference lines are parallel so one must choose either \boldsymbol{A} and \boldsymbol{C}, or \boldsymbol{B} and \boldsymbol{D}.

What have we learned from à la Allais experiments (Camerer, 1995)?

- ...EU violations are much smaller (though still statistically significant) when subjects choose between gambles that all lie inside the triangle...
- ...due to nonlinear weighting of the probabilities near zero (as the rank dependent weighting theories and prospect theory predict)...
- ...the only theories that can explain the evidence of mixed fanning, violation of betweeness, and approximate EU maximization inside the triangle...

A not-so-new experimental design

An experimental design that has a couple of innovations:

- A selection of a bundle of contingent commodities from a budget set (a portfolio choice problem).
- A large menu of decision problems that are representative, in the statistical sense and in the economic sense.
- A graphical experimental interface that allows for the collection of a rich individual-level data set.
\Rightarrow Build on Nishimura, Ok and Quah (2017), and Polisson, Quah and Renou (2020) and (1) allow subjects to make choices over three-dimensional budget sets, and (2) study choice under ambiguity.

2D experimental interface

3D experimental interface

Individual behaviors

Token Shares for Subject ID 35
$\mathrm{TS}_{\text {cheapest }}=1$
$\mathrm{TS}_{2 \text { nd cheapest }}=1$
$\mathrm{TS}_{3 \text { rd cheapest }}=1$

Token Shares for Subject ID 13

Token Shares for Subject ID 25

$$
\mathrm{TS}_{\text {cheapest }}=1
$$

Token Shares for Subject ID 27
$\mathrm{TS}_{\text {cheapest }}=1$

Token Shares for Subject ID 52

$$
\mathrm{TS}_{\text {cheapest }}=1
$$

Rationality

Let $\left\{\left(p^{i}, x^{i}\right)\right\}_{i=1}^{50}$ be some observed individual data (p^{i} denotes the i-th observation of the price vector and x^{i} denotes the associated portfolio).

A utility function $u(x)$ rationalizes the observed behavior if it achieves the maximum on the budget set at the chosen portfolio

$$
u\left(x^{i}\right) \geq u(x) \text { for all } x \text { s.t. } p^{i} \cdot x^{i} \geq p^{i} \cdot x
$$

Revealed preference

A portfolio x^{i} is directly revealed preferred to a portfolio x^{j} if $p^{i} \cdot x^{i} \geq$ $p^{i} \cdot x^{j}$, and x^{i} is strictly directly revealed preferred to x^{j} if the inequality is strict.

The relation indirectly revealed preferred is the transitive closure of the directly revealed preferred relation.

Generalized Axiom of Revealed Preference (GARP) If x^{i} is indirectly revealed preferred to x^{j}, then x^{j} is not strictly directly revealed preferred (i.e. $p^{j} \cdot x^{j} \leq p^{j} \cdot x^{i}$) to x^{i}.

GARP is tied to utility representation through a theorem, which was first proved by Afriat (1967).

Afriat's Theorem The following conditions are equivalent:

- The data satisfy GARP.
- There exists a non-satiated utility function that rationalizes the data.
- There exists a concave, monotonic, continuous, non-satiated utility function that rationalizes the data.

Afriat's critical cost efficiency index (CCEI) The amount by which each budget constraint must be relaxed in order to remove all violations of GARP.

The CCEI is bounded between zero and one. The closer it is to one, the smaller the perturbation required to remove all violations and thus the closer the data are to satisfying GARP.

The construction of the CCEI for a simple violation of GARP

The agent is 'wasting' as much as $A / B<C / D$ of his income by making inefficient choices.

Homo Economicus: equiprobable lotteries

Wealth differentials

\Longrightarrow The heterogeneity in wealth is not well-explained either by standard observables (income, education, family structure) or by standard unobservables (intertemporal substitution, risk tolerance).
\Longrightarrow If consistency with utility maximization in the experiment is a good proxy for (financial) $D M Q$ then the degree to which consistency differ across subjects should help explain wealth differentials.

5		(1)	(2)	(3)
	CCEI	$\begin{aligned} & \hline \hline 1.351^{* *} \\ & (0.566) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline 1.109^{* *} \\ & (0.534) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline 101888.0^{*} \\ & (52691.9) \\ & \hline \end{aligned}$
	Log 2008 household income	$\begin{gathered} \hline 0.584^{* * *} \\ (0.132) \end{gathered}$	$\begin{gathered} \hline 0.606 * * * \\ (0.126) \end{gathered}$	
	2008 household income			$\begin{gathered} 1.776 * * * \\ (0.4) \\ \hline \end{gathered}$
	Female	$\begin{gathered} \hline-0.313^{*} \\ (0.177) \end{gathered}$	$\begin{gathered} \hline-0.356 * * \\ (0.164) \end{gathered}$	$\begin{aligned} & \hline-32484.3^{*} \\ & (17523.9) \end{aligned}$
U	Partnered	$\begin{gathered} 0.652^{* * *} \\ (0.181) \end{gathered}$	$\begin{gathered} 0.595 * * * \\ (0.171) \end{gathered}$	$\begin{gathered} 46201.9 * * * \\ (17173.7) \end{gathered}$
ٍ	\# of children	$\begin{array}{r} 0.090 \\ (0.093) \\ \hline \end{array}$	$\begin{gathered} 0.109 \\ (0.086) \\ \hline \end{gathered}$	$\begin{gathered} 14078.6^{*} \\ (8351.5) \\ \hline \end{gathered}$
A	Age	Y	Y	Y
ज	Education	Y	Y	Y
.	Occupation	Y	Y	Y
	Constant	$\begin{gathered} \hline 6.292 \\ (6.419) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.469 \\ (3.598) \\ \hline \end{gathered}$	$\begin{gathered} \hline 76214.4 \\ (559677.5) \\ \hline \end{gathered}$
E	R^{2}	0.179	0.217	0.188
	\# of obs.	517	566	568

		(1)	(2)	(3)	(4)
	CCEI	$\begin{aligned} & \hline \hline 1.253^{*} \\ & (0.712) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline 1.401^{*} \\ & (0.729) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline 1.269^{*} \\ & (0.729) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.177^{* *} \\ & (0.583) \\ & \hline \end{aligned}$
	CCEI (combined dataset)	$\begin{aligned} & \hline 0.099 \\ & -0.38 \end{aligned}$			
	von Gaudecker et al. (2011)			$\begin{aligned} & \hline 0.927^{*} \\ & (0.485) \\ & \hline \end{aligned}$	
	Cognitive Reflection Test (CRT) CRT missing				0.120^{*} (0.071) -0.203 (0.237)
	Log 2008 household income	$\begin{gathered} \hline 0.586 * * * \\ (0.132) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.388^{*} \\ & (0.155) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.383^{*} \\ & (0.154) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.577 * * * \\ (0.132) \\ \hline \end{gathered}$
	Female	$\begin{aligned} & \hline-0.314^{*} \\ & (0.177) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.218 \\ & (0.212) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.207 \\ & (0.211) \\ & \hline \end{aligned}$	$\begin{gathered} \hline-0.292^{*} \\ (0.176) \\ \hline \end{gathered}$
	Partnered \# of children	$\begin{gathered} \hline 0.653^{* * *} \\ (0.181) \\ 0.089 \\ (0.093) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.907^{* * *} \\ (0.230) \\ 0.105 \\ (0.114) \\ \hline \end{gathered}$	$0.926^{* * *}$ (0.228) 0.096 (0.113)	$0.690^{* * *}$ (0.181) 0.091 (0.092) \mathbf{Y}
	Age	Y	Y	Y	Y
	Education	Y	Y	Y	Y
	Occupation	Y	Y	Y	Y
	Constant	$\begin{gathered} \hline 6.237 \\ (6.424) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 10.056 \\ & (6.976) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 8.355 \\ (6.990) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.855 \\ (6.464) \\ \hline \end{gathered}$
	R^{2}	0.177	0.225	0.232	0.181
	\# of obs.	517	326	326	517

| | | (1) | (2) | (3) |
| :--- | :---: | :---: | :---: | :---: |$c(4)$

		(5)	(6)	(7)	(8)
		Have stocks	Fraction in stocks	Have a house	Fraction in house
	CCEI	$\begin{gathered} \hline 0.167 \\ (0.163) \end{gathered}$	$\begin{gathered} \hline 0.001 \\ (0.050) \end{gathered}$	$\begin{gathered} \hline \hline 0.352^{* *} \\ (0.152) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.324^{* *} \\ (0.129) \\ \hline \end{gathered}$
	Log 2008 household income	$\begin{gathered} \hline 0.148^{* * *} \\ (0.031) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.013 \\ (0.009) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.134^{* * *} \\ (0.029) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.096^{* * *} \\ (0.024) \\ \hline \end{gathered}$
	Female	$\begin{gathered} \hline 0.007 \\ (0.050) \end{gathered}$	$\begin{gathered} \hline 0.009 \\ (0.013) \end{gathered}$	$\begin{gathered} \hline-0.038 \\ (0.050) \end{gathered}$	$\begin{aligned} & \hline-0.066 \\ & (0.043) \end{aligned}$
	Partnered	$\begin{gathered} 0.005 \\ (0.049) \end{gathered}$	$\begin{aligned} & -0.007 \\ & (0.014) \end{aligned}$	$\begin{gathered} 0.207 * * * \\ (0.051) \end{gathered}$	$\begin{gathered} 0.127 * * * \\ (0.044) \end{gathered}$
\#1	\# of children	$\begin{gathered} 0.003 \\ (0.026) \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ (0.007) \\ \hline \end{gathered}$	$\begin{gathered} 0.048^{* *} \\ (0.020) \\ \hline \end{gathered}$	$\begin{gathered} 0.063^{* * *} \\ (0.019) \\ \hline \end{gathered}$
-	Age	Y	Y	Y	Y
,	Education	Y	Y	Y	Y
-	Occupation	Y	Y	Y	Y
	Constant	$\begin{aligned} & \hline-3.152^{*} \\ & (1.856) \\ & \hline \end{aligned}$	$\begin{gathered} \hline-0.317 \\ (0.398) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-1.047 \\ & (1.760) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-1.151 \\ & (1.419) \\ & \hline \end{aligned}$
	R^{2}	0.079	0.002	0.148	0.123
	\# of obs.	514	514	479	479

A comprehensive nonparametric test

Test complete representations of preferences rather than focusing on individual axiom(s) (comprehensive) and make no auxiliary functional form assumptions (nonparametric):

- utility maximization (rationalizability)
- stochastically monotone utility maximization (FOSD-rationalizability)
- expected utility maximization (EU-rationalizability)

Ambiguity aversion

Ambiguity aversion

- The distinction between settings with risk and ambiguity dates back to at least the work of Knight (1921).
- Ellsberg (1961) countered the reduction of subjective uncertainty to risk with several thought experiments.
- A large theoretical literature (axioms over preferences) has developed models to accommodate this behavior.

Experiments à la Ellsberg

Consider the following four two-color Ellsberg-type urns (Halevy, 2007):
I. 5 red balls and 5 black balls
II. an unknown number of red and black balls
III. a bag containing 11 tickets with the numbers $0-10$; the number written on the drawn ticket determines the number of red balls
IV. a bag containing 2 tickets with the numbers 0 and 10 ; the number written on the drawn ticket determines the number of red balls

Time preferences

Mean CCEI scores: income in a few days and income 60 days after that

Mean CCEI scores: income in 60 days and income another 60 days after that

Stationarity, time invariance, and time consistency

- Time discount rates decline as tradeoffs are pushed into the temporal distance.
- Subjects often choose the larger and later of two rewards when both are distant in time, but prefer the smaller and earlier one as both rewards draw nearer to the present.
- Interpreted as non-constant time discounting, these preference reversals have important implications.
- Under standard assumptions, non-constant time discounting implies time-inconsistency - self-control problems and a demand for commitment thus emerge.

Stationarity

\succsim_{t} is stationary if for every $t, t^{\prime} \geq 0$ and $\Delta_{1}, \Delta_{2} \geq 0$

$$
\left(x, t+\Delta_{1}\right) \sim_{t}\left(x^{\prime}, t+\Delta_{2}\right) \Longleftrightarrow\left(x, t^{\prime}+\Delta_{1}\right) \sim_{t}\left(x^{\prime}, t^{\prime}+\Delta_{2}\right)
$$

Ranking does not depend on the distance from t. Tested in the standard static experiment.

Time invariance

$$
\begin{aligned}
& \{\succsim t\}_{t=1}^{T} \text { is time-invariant if for every } t, t^{\prime} \geq 0 \text { and } \Delta_{1}, \Delta_{2} \geq 0 \\
& \quad\left(x, t+\Delta_{1}\right) \sim_{t}\left(x^{\prime}, t+\Delta_{2}\right) \Longleftrightarrow\left(x, t^{\prime}+\Delta_{1}\right) \sim_{t^{\prime}}\left(x^{\prime}, t^{\prime}+\Delta_{2}\right) .
\end{aligned}
$$

Ranking does not depend on a calendar time (payments are evaluated relative to a "stopwatch time").

Time consistency

$$
\begin{aligned}
& \{\succsim t\}_{t=1}^{T} \text { is time-consistent if for every } t, t^{\prime} \geq 0 \text { and } \Delta_{1}, \Delta_{2} \geq 0 \\
& \quad\left(x, t+\Delta_{1}\right) \sim_{t}\left(x^{\prime}, t+\Delta_{2}\right) \Longleftrightarrow\left(x, t+\Delta_{1}\right) \sim_{t^{\prime}}\left(x^{\prime}, t+\Delta_{2}\right)
\end{aligned}
$$

Ranking does not change as the evaluation perspective changes from t to t^{\prime}. Time consistency precludes dynamic preference reversals.
\Longrightarrow These properties are pair-wise independent, but any two properties imply the third (Halevy, 2014)

Stationarity

Exponential vs. quasi-hyperbolic

What can we learn from machine learning?!

- Economics revolves around constructing parameter estimates of the underlying utility function and using those to forecast behavior in new situations.
- Machine learning algorithms are built solely for the purpose of extrapolation by seeking functions that predict better than economic models out of sample.
\Longrightarrow The entire promise of machine learning rests on the assumption (promise?) that it is better than the classical theory-driven approach for extrapolation...

Completeness and restrictiveness

Fudenberg et al. $(2020,2022)$ propose a method to use machine learning techniques to evaluate prediction accuracy and flexibility:

- The completeness of a model is the fraction of the predictable variation in the data that the model captures.
- The restrictiveness of a model discern completeness due to the "right" regularities by evaluating its completeness on arbitrary data.
\Longrightarrow An unrestrictive model can be complete on any possible data, so the fact that it is complete on the actual data is uninstructive.

ECON relative
ECON winrate over ML by
improvement over ML by

Model	Average Completeness	ECON Win Rate Against Model	ECON winrate over ML by quartile of economic rationality				improvement over ML by quartile of economic rationality				Restrictiveness
			1st	2nd	3rd	4th	1st	2nd	3rd	4th	
ECON	$\begin{gathered} 89.8 \% \\ {[89.1 \%, 90.5 \%]} \end{gathered}$	-	-	-	-	-	-	-	-	-	23.4%
LASSO	$\begin{gathered} 78.0 \% \\ {[76.9 \%, 79.0 \%]} \end{gathered}$	88.6\%	71.3\%	91.2\%	93.8\%	98.3\%	5.0\%	9.2\%	11.8%	21.6\%	29.3\%
LASSO+	$\begin{gathered} 78.3 \% \\ {[77.2 \%, 79.3 \%]} \end{gathered}$	87.3\%	65.8\%	91.2\%	94.2\%	98.3\%	3.4%	9.1\%	11.9%	21.7\%	27.1\%
Ridge	$\begin{gathered} 82.1 \% \\ {[81.2 \%, 82.9 \%]} \end{gathered}$	88.0\%	67.9\%	88.3\%	96.3\%	99.6\%	1.6\%	6.1\%	8.1\%	15.2\%	27.1\%
Mean	$\begin{gathered} 86.9 \% \\ {[86.1 \%, 87.7 \%]} \end{gathered}$	84.4\%	77.1\%	88.3\%	85.8\%	86.5\%	2.7\%	3.7\%	2.7\%	2.5\%	17.4\%
Linear	$\begin{gathered} 83.6 \% \\ {[82.5 \%, 84.6 \%]} \end{gathered}$	86.5\%	80.8\%	85.8\%	87.1\%	92.4\%	10.1\%	5.7\%	4.4\%	4.5\%	7.6\%
SVR	$\begin{gathered} 86.0 \% \\ {[85.2 \%, 86.8 \%]} \end{gathered}$	88.5\%	80.0\%	90.4\%	87.5\%	96.2\%	3.6\%	3.9\%	3.3%	4.4\%	15.1\%
RF	$\begin{gathered} 88.4 \% \\ {[87.7 \%, 89.1 \%]} \end{gathered}$	79.8\%	69.6\%	78.7\%	80.4\%	90.7\%	0.3\%	1.6\%	1.6\%	2.1\%	16.8\%
NN	$\begin{gathered} 79.7 \% \\ {[78.4 \%, 80.8 \%]} \end{gathered}$	91.2\%	79.6\%	90.0\%	95.8\%	99.6\%	5.7\%	9.0\%	9.2\%	16.8\%	20.4\%

Takeaways

1. Violations of independence need not be the most important factors when it comes to failures of EU under risk (and ambiguity).
2. Instead, the failures appear to be more basic - conditional on obeying GARP and FOSD, the majority of subjects also obey EU.
\Rightarrow Light paternalism - even light paternalistic policies should only be put into play when welfare judgments tend to be relatively straight-forward (Loewenstein and Haisley, 2008).
