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A Mixed and Non-Monotone Equilibria

Our theoretical analysis and experimental investigation focus on our model’s symmetric,

monotone, pure-strategy equilibrium. Our model admits many mixed and non-monotone

equilibria as well. Below we briefly explain why other equilibria arise and how they can be

constructed.

Given our baseline equilibrium characterization (Theorem 1), it is straightforward to

construct other equilibria. Recall that Corollary 3 concluded that the equilibrium payoff of

a trader with budget w > w∗
r is

Ur(w) = F (w∗
r)

N−1(ν∗
r−1 − w∗

r),

which is a constant value independent of his bid (above w∗
r). Therefore, given others’ strate-

gies, a trader in row r is indifferent among all bids in the range of b∗r(w) above w
∗
r . Conditional

on having a sufficient budget, he can plan to randomize his bid in this range. Provided that
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across bidder types the randomization replicates the original equilibrium bid distribution,

another equilibrium will obtain.

We can formalize this analysis further by defining a family of equilibria in distributional

strategies. Following Milgrom and Weber (1985), a distributional strategy ηri(b, w) for bidder

i in row r as a joint probability measure over bids and types. Let ν∗
r−1 and Ur(w) be defined

as in Theorem 1 and define w∗
r as in Corollary 1. It is straightforward to verify that any

family of ηri(w, b) satisfying the following conditions is an equilibrium of the trading game.

1. The support of ηri(w, b) is the set {(w, b) : 0 ≤ b ≤ w} ⊂ [0, w̄]× [0, w̄] = W ×B.

2. The marginal cumulative distribution of ηri(w, b) on W = [0, w̄] is F (w).

3. The marginal cumulative distribution of ηri(w, b) on B = [0, w̄] is

σri(b) =



















F (b) b < w∗
r

F (w∗
r) +

(

Ur(w∗

r)
ν∗
r−1

−b

)
1

N−1

b ∈ [w∗
r , b̄r)

1 b̄r ≤ b

where b̄r = ν∗
r−1 − U(w∗

r).

4. For all w < w∗
r , the (conditional) cumulative distribution of b is

σri(b|w) =







0 b < w

1 w ≤ b
.

Point 1 ensures that a trader bids less than his budget. Point 2 ensures the implied

distribution of budgets aligns with our model’s primitives. Point 3 describes the implied

distribution of bids. This marginal distribution coincides with the budget distribution for

bids below the critical value w∗
r . Finally, point 4 ensures that all agents with a low budget

expend all of their funds, as implied by utility maximization.
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B Trading Profits and Limited Liability

Per lab policy, our experimental protocol required subjects not to incur a loss. This limited

liability requirement affected trader payoffs as follows. If a trader in row r paid br for the

asset and resold it for br−1, his payoff was max{br−1− br, 0}. In this appendix we outline the

implications of this limited liability requirement. Specifically, we characterize the monotone

equilibrium analogous to that reported in Theorem 1 for the case of no limited liability. To

do so, we rely on the following lemma.

Lemma B.1. Let Hr−1(x) be the cumulative distribution function (c.d.f.) of the highest bid

placed by a trader in row r − 1. Suppose Hr−1(x) is continuous, admits a density hr−1(x),

and has support given by [0, x̄]. For all b ∈ [0, x̄], let

Vr(b) = F (b)N−1

∫ x̄

0

max{x− b, 0}hr−1(x)dx

= F (b)N−1

∫ x̄

b

(x− b)hr−1(x)dx

and assume that Vr(b) is single-peaked. Let Ũr(w) = max0≤b≤w Vr(b) and define b̃r(w) im-

plicitly as the solution to

Ũr(w) = F (w)N−1

∫ x̄

0

max
{

x− b̃r(w), 0
}

hr−1(x)dx.

= F (w)N−1

∫ x̄

b̃r(w)

(

x− b̃r(w)
)

hr−1(x)dx.

The function b̃r : [0, w̄] → [0, w̄] defines a symmetric, monotone equilibrium of the first price

auction among traders in row r given the limited liability constraint and the distribution of

expected bids placed by traders in row r − 1.

Proof. Suppose Vr(·) attaints its maximum at w̃r ∈ (0, x̄). Then,

Ũr(w) =







F (w)N−1
∫ x̄

w
(x− w)hr−1(x)dx w < w̃r

F (w̃r)
N−1

∫ x̄

w̃r
(x− w̃r)hr−1(x)dx w ≥ w̃r

Thus, for all w < w̃r, b̃r(w) = w. For all w ≥ w̃r, b̃r(w) is strictly increasing, less than w,

and continuous.

To verify that b̃r(w) characterizes a symmetric equilibrium it is sufficient to confirm that

3



when all traders in row r other than i bid according to that strategy, it is a best response

for trader i to also bid according to this strategy. There are two cases.

1. Suppose trader i has a budget wi < w̃r. Given the strategy followed by other bid-

ders, when i bids bi ≤ wi, his expected payoff is F (bi)
N−1

∫ x̄

bi
(x − bi)hr−1(x)dx. This

expression is increasing in bi. Hence b̃r(wi) = wi is the optimal bid.

2. Suppose trader i has a budget wi ≥ w̃r. By the preceding case, it follows that all

bids bi < w̃r are dominated by the bid w̃r. Of course, all bids exceeding b̃r(w̄), the

maximum bid submitted by any competing bidder, are also dominated. If bidder i

places a (feasible) bid of bi ∈ (w̃r, b̃r(w̄)], his expected payoff given the others’ strategy

is

Ũr(b̃
−1
r (bi)) = F (b̃−1

r (bi))
N−1

∫ x̄

bi

(x− bi)hr−1(x)dx.

Given the definition of b̃r(·), the preceding expression is a constant value equal to

F (w̃r)
N−1

∫ x̄

w̃r
(x−w̃r)hr−1(x)dx for all bi ∈ (w̃r, b̃r(w̄)]. Therefore, bidder i is indifferent

among all bids in the range of b̃r(w) above w̃r. Hence, b̃r(wi) is a best response.

Remark B.1. Applying Lemma B.1 inductively on a row-by-row basis defines an equilibrium

of the trading game as a whole.

We can employ Lemma B.1 and Remark B.1 to (numerically) compute the implied equi-

librium strategy in our experimental parameterization. We illustrate the first two steps of

this calculation below using notation parallel to that of Lemma B.1. There are three rows

(R = 3) with three traders each (N = 3). Budgets are uniformly distributed on the unit

interval, F (w) = w. (This is a convenient normalization.) We let b∗r(·) denote the monotone

equilibrium bidding strategy without limited liability (Theorem 1). We let b̃r(·) denote the

monotone equilibrium bidding strategy with limited liability.

Since the buyer pays a fixed value for the asset exceeding the maximum budget, no

calculations are required to characterize bidding of row 1 traders when they face limited

liability. The strategy from the baseline case applies:

b̃1(w) = b∗1(w) =







w w < 2
3

1− 4
27w2

2
3
≤ w

. (B.1)
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Given (B.1), the probability with which a trader in row places a bid less than x is given

by the cumulative distribution function (c.d.f.)







x x ∈
[

0, 2
3

]

2
3

√

1
3−3x

x ∈
(

2
3
, 23
27

]

.

Thus, the c.d.f. of the highest bid submitted by a bidder in row 1 is

H1(x) =







x3 x ∈
[

0, 2
3

]

8
27

[

1
3−3x

]3/2
x ∈

(

2
3
, 23
27

]

.

The associated probability density function (p.d.f.) is

h1(x) =







3x2 x ∈
[

0, 2
3

]

4
3

[

1
3−3x

]5/2
x ∈

(

2
3
, 23
27

]

.

Now, fix b ∈
[

0, 23
27

]

and define the following expression:

V2(b) = F (b)2
∫ 23

27

0

max{x− b, 0}h1(x)dx

= F (b)2
∫ 23

27

b

(x− b)h1(x)dx (B.2)

=







b2
[

19
27

− b+ b4

4

]

b ∈
[

0, 2
3

]

b2
[

5
9
+ 16

81
√
3−3b

− b
]

b ∈
(

2
3
, 23
27

]

We observe that V2(b) is strictly increasing for all b < 0.5005 and decreasing thereafter. We

define w̃2 = 0.5005. Let Ũ2(w) = max0≤b≤w V2(b). Noting the parallel with (B.2), define

b̃2(w) as the solution to

Ũ2(w) = F (w)2
∫ 23

27

b̃2(w)

(x− b̃2(w))h1(x)dx. (B.3)

The function b̃2(w) is continuous has the following properties. For all w < w̃2, b̃2(w) = w.

For all w ≥ w̃, b̃2(w) is strictly increasing.

For w < w̃∗
2, b̃2(w) = w. For w > w̃∗

r , there is no closed form solution for b̃2(w). However,
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we can solve (B.3) numerically on a grid of values for w. Using this numerical solution, or

a high-order polynomial approximation, we can compute the distribution H2(x). Repeating

the reasoning above, we can compute b̃3(w).

The strategies resulting from these calculations are illustrated in Figure 4.
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C Experiment Instructions

This appendix presents sample instructions from the “3×3” experiment treatment. Instruc-

tions for the “1× 3” and “2× 3” treatments were similar.

Instructions

This is an experiment in decision-making. Your payoffs will depend partly on your

decisions and on the decisions of the other participants and partly on chance. Funding for

this experiment has been provided by the University of California and by public and private

research foundations. Please pay careful attention to the instructions as a considerable

amount of money is (potentially) at stake.

Your participation in the experiment and any information about your payment will be

kept strictly confidential. Each participant will be assigned a participant ID number. This

number will be used to record all data, and only the person(s) making payments (not the

experimenters) will have both the list of participant ID numbers and names. Neither the

experimenters nor the other participants will be able to link you to any of your decisions.

Neither your name nor any other identifying information about you will be used in any final

reports of the study.

The entire experiment should be complete within an hour and a half. Your earnings in the

experiment will be $5 as a participation fee (simply for showing up on time) plus whatever

you earn in the experiment proper. You will be paid privately according to your participant

ID number as you leave the room at the end of the experiment. You are free to leave at any

time, but if you leave before the experiment is over, you will only receive the $5 show-up fee.

Details of how you will make decisions and receive payments will be provided below. During

the experiment we will speak in terms of experimental tokens instead of dollars. Your payoffs

will be calculated in terms of tokens and then translated at the end of the experiment into

dollars at the following rate:

1 Token = 1 Dollar

The instructions will be read aloud by the experimenter, and you may also ask questions if

anything is unclear. Once the experiment begins, we ask everyone to remain silent. In order

to keep your decisions private, please do not reveal your choices to any other participant.

If you have any questions, please raise your hand and an experimenter will approach your

desk.
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The experiment is divided into 50 independent and identical trading periods. In each

period, you will be asked to submit a bid (a price at which you are willing to buy) for a

single unit of an indivisible asset. Trades take place in an interconnected market represented

by a six-person network. You will only be able to trade with participants to whom you are

connected in this network.

The experiment starts by having the computer randomly assign each participant to one of

three rows: top, middle or bottom. You have an equal probability of being assigned to each

row and your row assignment will remain unchanged throughout the experiment. Before

the start of each period, you will be randomly assigned to one of the positions in one of

the networks. The positions are labeled with the letters A through I. The top row consists

of positions (A, B, C), the middle row consists of positions (D, E, F), and the bottom row

consists of positions (G, H, I).

Each period starts by having the computer randomly form nine-person networks by se-

lecting one participant of type-A, one of type-B, one of type-C, and so on. If you were

initially designated a top row player, you will be assigned to a top row position in one of the

networks, and similarly if you are a middle or bottom row player. Your type (A, B, C, D,

E, F, G, H, I) will be displayed in the top right hand corner of the program dialog window

(see attachment 1).

The networks formed in each period depend solely upon chance and are independent

of the networks formed in any of the other periods. That is, in any network each top-row

participant is equally likely to be chosen as type-A, type-B, or type-C participant for that

network, and similarly with middle-row and bottom-row participants. Note again that your

row assignment will remain unchanged throughout the experiment but your type and network

may change from period to period. The other participants in your network may also change

from period to period. In each period, your network depends solely on chance.

The network is displayed in the large window that appears in the center of the program

dialog window (see attachment 1). A line segment between any two types indicates that

they are connected and, hence, are allowed to trade. The arrowhead points from the seller

to the buyer. In the network used in this experiment, each of the types in the middle row

(D, E, F) can trade with all the types in the top and bottom rows, whereas the types in the

top row (A, B, C) and the bottom row (G, H, I) can only trade with the types in the middle

row (D, E, F).

The asset is initially held by a computer-generated seller. The computer-generated seller

is always willing to sell only one unit of the asset for a price of zero tokens. In addition,
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there is a computer-generated buyer who is always willing to buy one unit of the asset at a

price of 100 tokens. The computer-generated seller can only sell the unit to the types in the

top row (A, B, C). The computer-generated buyer can only buy the unit from the types in

the bottom row (G, H, I). Note that the computer-generated seller and buyer do not appear

in the network displayed in the program dialog window (see attachment 1).

A trading period

Next, we will describe in detail the process that will be repeated in all 50 trading periods

and the user interface that you will use to make your decisions. Each period starts by

having the computer randomly form six-person networks by selecting one participant of each

type (A, B, C, D, E, F, G, H, I). At the start of each period, each participant receives an

endowment of tokens. Each trading period starts by having the computer randomly select

the endowments from the set of numbers (including decimals) between 0 and 100. That

is, the endowment of type-A is equally likely to be any number between 0 and 100, the

endowment of type-B is equally likely to be any number between 0 and 100, and so on.

The endowments selected in each trading period are independent of each other and of the

endowments selected for any of the other trading periods. Note that other participants may

have a different endowment than you.

You will be informed only of your endowment. You will use the tokens in your endowment

to pay for the asset when you buy. In addition, you will receive others tokens in exchange

for the asset when you sell. All trades must move the asset “downward”:

• The types in the top row can only buy from the computer-generated seller and can

only sell to the middle row. For example, type A can buy from the computer generated

seller and can sell to types D, E or F.

• The types in the middle row can only buy from the top row and sell to the bottom

row. For example, type D can buy from types A, B or C and sell to types G, H or I.

• The types in the bottom row can only buy from the middle row and sell to the

computer-generated buyer. For example, type G can buy from types D, E or F and

sell to the computer-generated buyer.

In each period, you will be asked to submit a single bid to the sellers to whom you are

connected by the network, indicating the price at which you are willing to buy one unit of
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the asset. The bid of each participant cannot exceed her or his endowment. When you are

ready to make your decision, use the mouse to position the cursor in the Bid Input field on

the right of the dialog window (see attachment 1) and use the keyboard to enter the number

(including decimals) of tokens between 0 and your endowment that you wish to bid. Once

you have entered the bid, confirm your decisions by clicking the Submit button. Once you

have clicked the Submit button, your decisions cannot be revised.

Trades are executed sequentially. First, trades between the computer-generated seller

and the buyers in the top row take place, followed by trades between the seller in the top

row and the buyers in the middle row, followed by trades between the seller in the middle

row and the buyers in the bottom row, and finally trades between the seller in the bottom

row and the computer-generated buyer. At each stage, the asset is transferred from the seller

to the buyer with the highest bid. If two buyers tie for the highest bid, the asset will be

assigned to one of the buyers at random. The buyer pays the seller the number of tokens

equal to her or his bid.

After everyone has submitted a bid, you will observe the bids of all other participants, the

actual prices at which the asset was traded and the sequence of trades. This information is

displayed in the large window that appears in the center of the dialog window (see attachment

2). Endowments (E) are colored red, bids (B) are colored blue, and the actual prices (P)

at which the asset was traded are colored green. For reference, the price at which the

computer-generated seller is willing to sell the asset is indicated by CA. The bid of the

computer generated buyer is indicated by CB.

To move on to the next trading period, press the OK button on the bottom right hand

corner of the program dialog window (see attachment 2). Note that after one minute the

program will move automatically to the next period, but you will always be able to review the

results of this period later in the experiment by selecting this period and clicking on the View

Results button on the top right hand corner of the program dialog window (see attachment

2). Prior to each period, the computer will randomly form new groups of participants in

networks. The process will be repeated until all the 50 independent and identical trading

periods are completed. Throughout the experiment please pay careful attention to the

messages window at the bottom of the program dialog window (see attachment 1). At the

end of the last trading period, you will be informed the experiment has ended.

Payoffs

Your trading profit in each period can be summarized by the formula:
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trading profit = (sales revenue) - (cost).

The sales revenue is the actual price you received if you sold the asset and zero otherwise.

The cost is the bid price you paid if you bought the asset and zero otherwise. Your total

earnings in each trading period are equal to your trading profits, positive or negative. Your

final payoff in the experiment is determined as follows. At the end of the experiment, the

computer will randomly select one period in which to execute the trades “for real”.

• If you did not trade the asset in the period that is selected to be executed, you will

receive 10 tokens to keep.

• If you traded the asset in the period that is selected to be executed and your trading

profit is positive in that period, you will receive your trading profit plus 10 tokens to

keep.

• If you traded the asset in the period that is selected to be executed and your trading

profit is negative in that period, you will receive 10 tokens to keep.

At the end of the experiment, the tokens will be converted into money. Each token will

be worth $1. You will receive your payment as you leave the experiment.

If there are no further questions, you are ready to start. An instructor will approach

your desk and activate your program.
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Attachment 2
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D A Parametric Bidding Model

In this appendix we provide a complementary analysis of traders’ bidding strategies. Our

aim is to provide a parametric analysis augmenting our non-parametric results reported in

the main text. Specifically, we focus on and estimate the empirical bidding model

BIDit = min
{

BUDGETit, β0 + β1BUDGETit + β2BUDGET2
it + εit

}

(D.1)

where εit
iid
∼ N(0, σ2) is the error term.

The model defined in (D.1) draws directly on our theoretical model and anticipates

the binding nature of budget constraints. In (D.1), BIDit is the observed bid of subject i

in auction t, BUDGETit is his private endowment, and εit is an idiosyncratic error term.

Of course, {β·} are parameters. We include a higher order term in (D.1) to capture the

anticipated non-linearity in bidding strategies, as suggested by Corollary 1.

We estimate model (D.1) using the method of maximum likelihood and we report the

results in Table 1. We estimate (D.1) separately for each network, but we pool over sessions.

All parameters are statistically distinct from zero at conventional significance levels. (We

omit the customary asterisks for clarity.) The estimate of the parameter corresponding to

the model’s non-linear term, β̂2, is consistently negative across networks and rows suggesting

that the anticipated concavity of the monotone equilibrium bidding strategy is observed in

the data.

To gauge the qualitative implications of the specified model, in Figure 5 we plot the

implied bidding strategies along with 95% confidence bounds. This figure’s most striking

conclusion is the uniform ordering of bidding strategies across rows. This ordering is con-

sistent with both Corollary 1 and Prediction 1. In both the 2 × 3 and the 3 × 3 networks,

traders in rows closer to the final buyer bid uniformly more aggressively on average. The

95% confidence intervals for the bidding strategy of row 2 and row 3 traders in the 3 × 3

network overlap only at w ≈ 50 and w ≈ 100. Around these values of realized endowments,

the parameter estimates are based on fewer observations owing to censoring by the endow-

ment level and the upper bound on the endowment distribution. The observed ordering

of strategies is robust to alternative model specifications. For example, the same uniform

order of confidence bounds is observed under a linear specification of (D.1), i.e. where β2

is constrained to zero. We note that the resulting estimates closely correspond to the es-

timates presented in our main analysis. Estimated confidence bounds are also of a similar

magnitude.
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The estimates reported in Table 1, and which inform Figure D.1, are based on a pooled

sample across all sessions. To gauge our specification’s robustness, in Table 2 we estimate

model D.1 incorporating subject-level fixed effects. Comparing Tables 1 and 2, we observe

considerable consistency in both the signs and magnitudes of estimated values. (Statistical

significance is also maintained.)

Table 1: Maximum likelihood estimates of model (D.1).

Network 1× 3 2× 3 3× 3

Row 1 1 2 1 2 3

(Constant) β̂0 7.3119 11.4470 15.3368 7.5791 6.0228 6.8215

(1.0893) (1.0893) (1.4554) (1.2809) (0.9923) (1.2877)

(Linear) β̂1 1.1463 1.2374 0.9953 1.3367 1.1536 1.0948

(0.0440) (0.0584) (0.0564) (0.0516) (0.0415) (0.0525)

(Quadratic) β̂2 -0.0034 -0.0052 -0.0052 -0.0059 -0.0052 -0.0051

(0.0004) (0.0005) (0.0005) (0.0005) (0.0004) (0.0005)

σ̂ 9.0099 12.1743 14.0793 10.2166 9.5672 12.1402

(0.3088) (0.3980) (0.3528) (0.3577) (0.2480) (0.3308)

Obs. 1500 1800 1800 1500 1500 1500

Bootstrap standard errors in parenthesis. All values are statistically different from zero at the
5% level.

Table 2: Maximum likelihood estimates of model (D.1) with subject fixed effects.

Network 1× 3 2× 3 3× 3

Row 1 1 2 1 2 3

(Constant) β̂0 7.7607 11.9562 15.2937 7.4558 5.9040 6.8678

(1.1613) (1.4742) (1.3924) (1.2127) (0.9886) (1.2498)

(Linear) β̂1 1.1611 1.2265 0.9963 1.3420 1.1559 1.0933

(0.0445) (0.0570) (0.0554) (0.0491) (0.0415) (0.0519)

(Quadratic) β̂2 -0.0036 -0.0052 -0.0052 -0.0060 -0.0053 -0.0051

(0.004) (0.0005) (0.0005) (0.0005) (0.0004) (0.0005)

σ̂ 8.9894 12.0568 13.6932 9.8447 9.2718 11.8818

(0.3318) (0.3913) (0.3565) (0.3690) (0.2357) (0.3224)

Obs. 1500 1800 1800 1500 1500 1500

Bootstrap standard errors in parenthesis. All values are statistically different from zero at the
5% level.
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(c) Estimated bidding strategy in the 3× 3 network.

Figure D.1: Estimated monotone bidding strategies (95% confidence bounds).
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