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Oligopoly
(preface to game theory)

• Another form of market structure is oligopoly — a market in which only a
few firms compete with one another, and entry of new firms is impeded.

• The situation is known as the Cournot model after Antoine Augustin
Cournot, a French economist, philosopher and mathematician (1801-1877).

• In the basic example, a single good is produced by two firms (the industry
is a “duopoly”).



Cournot’s oligopoly model (1838)

— A single good is produced by two firms (the industry is a “duopoly”).

— The cost for firm  = 1 2 for producing  units of the good is given
by  (“unit cost” is constant equal to   0).

— If the firms’ total output is  = 1 + 2 then the market price is

 = −

if  ≥  and zero otherwise (linear inverse demand function). We
also assume that   .



The inverse demand function 
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To find the Nash equilibria of the Cournot’s game, we can use the proce-
dures based on the firms’ best response functions.

But first we need the firms payoffs (profits):

1 = 1 − 11
= (−)1 − 11
= (− 1 − 2)1 − 11
= (− 1 − 2 − 1)1

and similarly,

2 = (− 1 − 2 − 2)2



Firm 1’s profit as a function of its output 
(given firm 2’s output) 
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To find firm 1’s best response to any given output 2 of firm 2, we need
to study firm 1’s profit as a function of its output 1 for given values of
2.

Using calculus, we set the derivative of firm 1’s profit with respect to 1
equal to zero and solve for 1:

1 =
1

2
(− 2 − 1)

We conclude that the best response of firm 1 to the output 2 of firm 2

depends on the values of 2 and 1.



Because firm 2’s cost function is 2 6= 1, its best response function is
given by

2 =
1

2
(− 1 − 2)

A Nash equilibrium of the Cournot’s game is a pair (∗1 
∗
2) of outputs

such that ∗1 is a best response to 
∗
2 and 

∗
2 is a best response to 

∗
1.

From the figure below, we see that there is exactly one such pair of outputs

∗1 =
+2−21

3 and ∗2 =
+1−22

3

which is the solution to the two equations above.



The best response functions in the Cournot's duopoly game 
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Nash equilibrium comparative statics 
(a decrease in the cost of firm 2) 

 
A question: what happens when consumers are willing to pay more (A 
increases)? 
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In summary, this simple Cournot’s duopoly game has a unique Nash equi-
librium.

Two economically important properties of the Nash equilibrium are (to
economic regulatory agencies):

[1] The relation between the firms’ equilibrium profits and the profit they
could make if they act collusively.

[2] The relation between the equilibrium profits and the number of firms.



[1] Collusive outcomes: in the Cournot’s duopoly game, there is a pair of out-
puts at which both firms’ profits exceed their levels in a Nash equilibrium.

[2] Competition: The price at the Nash equilibrium if the two firms have the
same unit cost 1 = 2 =  is given by

 ∗ = − ∗1 − ∗2

=
1

3
(+ 2)

which is above the unit cost . But as the number of firm increases, the
equilibrium price deceases, approaching  (zero profits!).



Stackelberg’s duopoly model (1934)

How do the conclusions of the Cournot’s duopoly game change when the
firms move sequentially? Is a firm better off moving before or after the
other firm?

Suppose that 1 = 2 =  and that firm 1 moves at the start of the game.
We may use backward induction to find the subgame perfect equilibrium.

— First, for any output 1 of firm 1, we find the output 2 of firm 2

that maximizes its profit. Next, we find the output 1 of firm 1 that
maximizes its profit, given the strategy of firm 2.



Firm 2

Since firm 2 moves after firm 1, a strategy of firm 2 is a function that
associate an output 2 for firm 2 for each possible output 1 of firm 1.

We found that under the assumptions of the Cournot’s duopoly game Firm
2 has a unique best response to each output 1 of firm 1, given by

2 =
1

2
(− 1 − )

(Recall that 1 = 2 = ).



Firm 1

Firm 1’s strategy is the output 1 the maximizes

1 = (− 1 − 2 − )1 subject to 2 =
1
2(− 1 − )

Thus, firm 1 maximizes

1 = (− 1 − (
1

2
(− 1 − ))− )1 =

1

2
1(− 1 − )

This function is quadratic in 1 that is zero when 1 = 0 and when
1 = − . Thus its maximizer is

∗1 =
1

2
(− )



Firm 1’s (first‐mover) profit in Stackelberg's duopoly game 
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We conclude that Stackelberg’s duopoly game has a unique subgame per-
fect equilibrium, in which firm 1’s strategy is the output

∗1 =
1

2
(− )

and firm 2’s output is

∗2 =
1

2
(− ∗1 − )

=
1

2
(− 1

2
(− )− )

=
1

4
(− )

By contrast, in the unique Nash equilibrium of the Cournot’s duopoly game

under the same assumptions (1 = 2 = ), each firm produces
1

3
(− ).



The subgame perfect equilibrium of Stackelberg's duopoly game 
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Bertrand’s oligopoly model (1883)

In Cournot’s game, each firm chooses an output, and the price is deter-
mined by the market demand in relation to the total output produced.

An alternative model, suggested by Bertrand, assumes that each firm
chooses a price, and produces enough output to meet the demand it faces,
given the prices chosen by all the firms.

=⇒ As we shell see, some of the answers it gives are different from the answers
of Cournot.



Suppose again that there are two firms (the industry is a “duopoly”) and
that the cost for firm  = 1 2 for producing  units of the good is given
by  (equal constant “unit cost”).

Assume that the demand function (rather than the inverse demand function
as we did for the Cournot’s game) is

() = − 

for  ≥  and zero otherwise, and that    (the demand function in
PR 12.3 is different).



Because the cost of producing each until is the same, equal to , firm 

makes the profit of  −  on every unit it sells. Thus its profit is

 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
( − )(− ) if   
1

2
( − )(− ) if  = 

0 if   

where  is the other firm.

In Bertrand’s game we can easily argue as follows: (1 2) = ( ) is the
unique Nash equilibrium.



Using intuition,

— If one firm charges the price , then the other firm can do no better
than charge the price .

— If 1   and 2  , then each firm  can increase its profit by
lowering its price  slightly below .

=⇒ In Cournot’s game, the market price decreases toward  as the number of
firms increases, whereas in Bertrand’s game it is  (so profits are zero)
even if there are only two firms (but the price remains  when the number
of firm increases).



Avoiding the Bertrand trap

If you are in a situation satisfying the following assumptions, then you will
end up in a Bertrand trap (zero profits):

[1] Homogenous products

[2] Consumers know all firm prices

[3] No switching costs

[4] No cost advantages

[5] No capacity constraints

[6] No future considerations



Problem set V

PR 12 — exercises 3-7.




