
UC Berkeley
Haas School of Business

Game Theory
(EMBA 296 & EWMBA 211)

Summer 2015

Preliminaries

Block 1
May 22, 2015



Game theory

• Game theory is about what happens when decision makers (spouses, work-
ers, managers, presidents) interact.

• In the past fifty years, game theory has gradually became a standard lan-
guage in economics.

• The power of game theory is its generality and (mathematical) precision.



• Because game theory is rich and crisp, it could unify many parts of social
science.

• The spread of game theory outside of economics has suffered because of
the misconception that it requires a lot of fancy math.

• Game theory is also a natural tool for understanding complex social and
economic phenomena in the real world.



The paternity of game theory 

 

  
 

 



 
 

   
 

  



What is game theory good for?

Q Is game theory meant to predict what decision makers do, to give them
advice, or what?

A The tools of analytical game theory are used to predict, postdict (explain),
and prescribe.

Remember: even if game theory is not always accurate, descriptive failure
is prescriptive opportunity!
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As Milton Friedman said famously observed “theories do not have to be
realistic to be useful.” A theory can be useful in three ways:

 descriptive (how people actually choose)

 prescriptive (as a practical aid to choice)

 normative (how people ought to choose)



Aumann (1987):

“Game theory is a sort of umbrella or ‘unified field’ theory for the
rational side of social science, where ‘social’ is interpreted broadly,
to include human as well as non-human players (computers, animals,
plants).”



Game theory in practice 

 

 

 

Farhan  Zaidi,  the  General Manager  of  the  LA  Dodgers  (PHD  in  economics  from  UC 
Berkeley), and the person Billy Beane called “absolutely brilliant.” 

  

   



Three examples

Example I: Hotelling’s electoral competition game

— There are two candidates and a continuum of voters, each with a fa-
vorite position on the interval [0 1].

— Each voter’s distaste for any position is given by the distance between
the position and her favorite position.

— A candidate attracts the votes off all citizens whose favorite positions
are closer to her position.



Hotelling with two candidates class experiment 
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Hotelling with three candidates class experiment 
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Example II: Keynes’s beauty contest game

— Simultaneously, everyone choose a number (integer) in the interval
[0 100].

— The person whose number is closest to 23 of the average number
wins a fixed prize.



John Maynard Keynes (1936):

“It is not a case of choosing those [faces] that, to the best of one’s
judgment, are really the prettiest, nor even those that average opin-
ion genuinely thinks the prettiest. We have reached the third degree
where we devote our intelligences to anticipating what average opinion
expects the average opinion to be. And there are some, I believe, who
practice the fourth, fifth and higher degrees.”

=⇒ self-fulfilling price bubbles!



Beauty contest results 

 
Portfolio Economics Caltech Caltech

Managers PhDs students trustees
Mean 24.3 27.4 37.8 21.9 42.6
Median 24.4 30.0 36.5 23.0 40.0
Fraction
choosing zero

High
school (US)

Mean 36.7 46.1 42.3 37.9 32.4
Median 33.0 50.0 40.5 35.0 28.0
Fraction
choosing zero 3.8%

Wharton

3.0% 2.0% 0.0% 0.0%

7.4% 2.7%

UCLAGermany Singapore

CEOs

7.7% 12.5% 10.0%
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Example III: the centipede game (graphically resembles a centipede insect) 
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The centipede game class experiment 

 

 

Down      0.311 

Continue, Down    0.311 

Continue, Continue, Down   0.267 

Continue, Continue, Continue   0.111 

 

Eye movements can tell us a lot about how people play this game (and others). 



Types of games

We study four groups of game theoretic models:

I strategic games

II extensive games (with perfect and imperfect information)

III repeated games

IV coalitional games



Side note I: individual preferences

Consider some (finite) set of alternatives (   ).

— Formally, we represent the decision-maker’s preferences by a binary
relation % defined on the set of consumption bundles.

— For any pair of bundles  and , if the decision-maker says that  is
at least as good as , we write

 % 

and say that  is weakly preferred to .

Bear in mind: economic theory often seeks to convince you with simple
examples and then gets you to extrapolate. This simple construction works
in wider (and wilder circumstances).



From the weak preference relation % we derive two other relations on the
set of alternatives:

— Strict performance relation

 Â  if and only if  %  and not  % 

The phrase  Â  is read  is strictly preferred to .

— Indifference relation

 ∼  if and only if  %  and  % 

The phrase  ∼  is read  is indifferent to .



Side note II: individual rationality

Economic theory begins with two assumptions about preferences. These
assumptions are so fundamental that we can refer to them as “axioms” of
decision theory.

[1] Completeness

 %  or  % 

for any pair of bundles  and .

[2] Transitivity

if  %  and  %  then  % 

for any three bundles ,  and .



Together, completeness and transitivity constitute the formal definition of
rationality as the term is used in economics. Rational economic agents are
ones who

have the ability to make choices [1], and whose choices display a logical
consistency [2].

(Only) the preferences of a rational agent can be represented, or summa-
rized, by a utility function.



Strategic games

A strategic game consists of

— a set of players (decision makers)

— for each player, a set of possible actions

— for each player, preferences over the set of action profiles (outcomes).

In strategic games, players move simultaneously. A wide range of situations
may be modeled as strategic games.



A two-player (finite) strategic game can be described conveniently in a
so-called bi-matrix.

For example, a generic 2×2 (two players and two possible actions for each
player) game

 
 1 2 1 2
 1 2 12

where the two rows (resp. columns) correspond to the possible actions of
player 1 (resp. 2).



For example, rock-paper-scissors (over a dollar):

  
 0 0 −1 1 1−1
 1−1 0 0 −1 1
 −1 1 1−1 0 0

Each player’s set of actions is {  } and the set of
action profiles is

{    }



In rock-paper-scissors

 ∼1  ∼1  Â1  ∼1  ∼1  Â1  ∼1  ∼1 

and

 ∼2  ∼2  ≺2  ∼2  ∼2  ≺2  ∼2  ∼2 

This is a zero-sum or a strictly competitive game.



Classical 2× 2 games

• The following simple 2×2 games represent a variety of strategic situations.

• Despite their simplicity, each game captures the essence of a type of strate-
gic interaction that is present in more complex situations.

• These classical games “span” the set of almost all games (strategic equiv-
alence).



Game I: Prisoner’s Dilemma

 
 3 3 0 4
 4 0 1 1

A situation where there are gains from cooperation but each player has an
incentive to “free ride.”

Examples: team work, duopoly, arm/advertisement/R&D race, public goods,
and more.



Game II: Battle of the Sexes (BoS)

 
 2 1 0 0
 0 0 1 2

Like the Prisoner’s Dilemma, Battle of the Sexes models a wide variety of
situations.

Examples: political stands, mergers, among others.



Game III-V: Coordination, Hawk-Dove, and Matching Pennies

 
 2 2 0 0
 0 0 1 1

 
 3 3 1 4
 4 1 0 0

 
 1−1 −1 1
 −1 1 1−1



Best response and dominated actions

Action  is player 1’s best response to action  player 1 if it is the optimal
choice when 1 conjectures that 2 will play .

In any game, player 1’s action 0 is strictly dominated if it is never a best
response (inferior no matter what the other players do).

In the Prisoner’s Dilemma, for example, action is strictly dominated
by action  . As we will see, a strictly dominated action is not used in
any Nash equilibrium.



Nash equilibrium

Nash equilibrium () is a steady state of the play of a strategic game —
no player has a profitable deviation given the actions of the other players.

Put differently, a  is a set of actions such that all players are doing
their best given the actions of the other players.



Conclusions

Adam Brandenburger:

There is nothing so practical as a good [game] theory. A good theory
confirms the conventional wisdom that “less is more.” A good theory
does less because it does not give answers. At the same time, it does a
lot more because it helps people organize what they know and uncover
what they do not know. A good theory gives people the tools to
discover what is best for them.




