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— Logistics...

— 4 ‘simple’ games

“... everything should be made as simple as possible, but no sim-
pler...” — Albert Einstein —

— Nash equilibrium

— The tragedy of the commons

— Oligopolistic competition

— Food for thought...



Contact information

Instructor: Shachar Kariv

— Office: Dept. of Economics 505 Evans Hall (just for wishful thinking...)

— Phone: 510-643-0712

— E-mail: kariv@berkeley.edu

GSI: Sara Neff

— E-mail: sara_neff@rady.ucsd.edu



Office hours

• Online office hours (Skype or Zoom) by appointment (sign-up via bCourses).

• You can also e-mail me and Sara any question, and we will try to respond
promptly.

• I’d also be happy to discuss with you any issues beyond the course work,
not necessarily of game-theoretic substance.



Reading material

• The only required (and recommended) textbook for the course is:

Steven Tadelis, Game Theory: An Introduction. Princeton Univer-
sity Press.

• The book presents the main topics a level (more than) suitable for our
purposes.

• No pre-lecture reading assignments!!!



Problem sets

1. The course will rely heavily on problem sets. Each block a problem set will
be assigned and will generally be due the following block.

2. The problem sets are meant to be learning tools and thus will not be
counted for the course grade. All questions in the problem sets are a
required material.

3. There are no group assignments. Please work on the problem sets with
each other (and with me and the GSI). Complete answer keys will be
distributed.



Grading

• Grading will be based only on a final exam (2-3 hours).

• The exam will be open-book and will be based on problem set type ques-
tions.



It must be fun (and most of it must also be useful)

Feedback, Feedback, Feedback!



Guys, it’s time for some game theory… 

 



 

 

 

 

 

 

What’s game theory? 



Game theory

• Game theory is about what happens when decision makers (spouses, work-
ers, managers, presidents) interact.

• In the past fifty years, game theory has gradually became a standard lan-
guage in economics.

• The power of game theory is its generality and (mathematical) precision.



• Because game theory is rich and crisp, it could unify many parts of social
science.

• The spread of game theory outside of economics has suffered because of
the misconception that it requires a lot of fancy math.

• Game theory is also a natural tool for understanding complex social and
economic phenomena in the real world.



The paternity of game theory 

 

  
 

 



 
 

   
 

  



What is game theory good for?

Q Is game theory meant to predict what decision makers do, to give them
advice, or what?

A The tools of analytical game theory are used to predict, postdict (explain),
and prescribe.

Remember: even if game theory is not always accurate, descriptive failure
is prescriptive opportunity!



As Milton Friedman said famously observed “theories do not have to be
realistic to be useful.” A theory can be useful in three ways:

 descriptive (how people actually choose)

 prescriptive (as a practical aid to choice)

 normative (how people ought to choose)



Aumann (1987):

“Game theory is a sort of umbrella or ‘unified field’ theory for the
rational side of social science, where ‘social’ is interpreted broadly,
to include human as well as non-human players (computers, animals,
plants).”



Adam Brandenburger:

There is nothing so practical as a good [game] theory. A good theory
confirms the conventional wisdom that “less is more.” A good theory
does less because it does not give answers. At the same time, it does a
lot more because it helps people organize what they know and uncover
what they do not know. A good theory gives people the tools to
discover what is best for them.





 

 

 

Farhan Zaidi, the General Manager of the SF Giants and previously the LA 
Dodgers (PHD in economics from UC Berkeley), and the person Billy Beane called 
“absolutely brilliant.” 



 

 

 

 

 

 

Four ‘simple’ games 



Four examples

Example I: Hotelling’s electoral competition game

— There are two candidates and a continuum of voters, each with a fa-
vorite position on the interval [0 1].

— Each voter’s distaste for any position is given by the distance between
the position and her favorite position.

— A candidate attracts the votes off all citizens whose favorite positions
are closer to her position.



Hotelling with two candidates class experiment 
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Hotelling with three candidates class experiment 
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John Maynard Keynes 
1883-1946 

 

 



Example II: Keynes’s beauty contest game

— Simultaneously, everyone choose a number (integer) in the interval
[0 100].

— The person whose number is closest to 23 of the average number
wins a fixed prize.



John Maynard Keynes (1936):

“It is not a case of choosing those [faces] that, to the best of one’s
judgment, are really the prettiest, nor even those that average opin-
ion genuinely thinks the prettiest. We have reached the third degree
where we devote our intelligences to anticipating what average opinion
expects the average opinion to be. And there are some, I believe, who
practice the fourth, fifth and higher degrees.”

=⇒ self-fulfilling price bubbles!



Beauty contest results 

 
Portfolio Economics Caltech Caltech

Managers PhDs students trustees
Mean 24.3 27.4 37.8 21.9 42.6
Median 24.4 30.0 36.5 23.0 40.0
Fraction
choosing zero

High
school (US)

Mean 36.7 46.1 42.3 37.9 32.4
Median 33.0 50.0 40.5 35.0 28.0
Fraction
choosing zero 3.8%

Wharton

3.0% 2.0% 0.0% 0.0%

7.4% 2.7%

UCLAGermany Singapore

CEOs

7.7% 12.5% 10.0%
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Example III: the centipede game (graphically resembles a centipede insect) 
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The centipede game class experiment 

 

 

Down      0.311 

Continue, Down    0.311 

Continue, Continue, Down   0.267 

Continue, Continue, Continue   0.111 

 

Eye movements can tell us a lot about how people play this game (and others). 



Example IV: auctions

From Babylonia to eBay, auctioning has a very long history.

Babylon:

- women at marriageable age.

Athens, Rome, and medieval Europe:

- rights to collect taxes, dispose of confiscated property, lease of land
and mines,

and many more...



The word “auction” comes from the Latin augere, meaning “to increase.”

The earliest use of the English word “auction” given by the Oxford English
Dictionary dates from 1595 and concerns an auction “when will be sold
Slaves, household goods, etc.”

In this era, the auctioneer lit a short candle and bids were valid only if
made before the flame went out — Samuel Pepys (1633-1703) —



• Auctions, broadly defined, are used to allocate significant economics re-
sources.

Examples: works of art, government bonds, offshore tracts for oil ex-
ploration, radio spectrum, and more.

• Auctions take many forms. A game-theoretic framework enables to under-
stand the consequences of various auction designs.

• Game theory can suggest the design likely to be most effective, and the
one likely to raise the most revenues.



Types of auctions

Sequential / simultaneous

Bids may be called out sequentially or may be submitted simultaneously
in sealed envelopes:

— English (or oral) — the seller actively solicits progressively higher bids
and the item is soled to the highest bidder.

— Dutch — the seller begins by offering units at a “high” price and reduces
it until all units are soled.

— Sealed-bid — all bids are made simultaneously, and the item is sold to
the highest bidder.



First-price / second-price

The price paid may be the highest bid or some other price:

— First-price — the bidder who submits the highest bid wins and pay a
price equal to her bid.

— Second-prices — the bidder who submits the highest bid wins and pay
a price equal to the second highest bid.

Variants: all-pay (lobbying), discriminatory, uniform, Vickrey (William
Vickrey, Nobel Laureate 1996), and more.



Private-value / common-value

Bidders can be certain or uncertain about each other’s valuation:

— In private-value auctions, valuations differ among bidders, and each
bidder is certain of her own valuation and can be certain or uncertain
of every other bidder’s valuation.

— In common-value auctions, all bidders have the same valuation, but
bidders do not know this value precisely and their estimates of it vary.





 
 
 
 
 
 
 

Nash equilibrium 



Types of games

We study four groups of game theoretic models:

I strategic games

II extensive games (with perfect and imperfect information)

III repeated games

IV coalitional games



Strategic games

A strategic game consists of

— a set of players (decision makers)

— for each player, a set of possible actions

— for each player, preferences over the set of action profiles (outcomes).

In strategic games, players move simultaneously. A wide range of situations
may be modeled as strategic games.



A two-player (finite) strategic game can be described conveniently in a
so-called bi-matrix.

For example, a generic 2×2 (two players and two possible actions for each
player) game

 
 1 2 1 2
 1 2 12

where the two rows (resp. columns) correspond to the possible actions of
player 1 (resp. 2).



Applying the definition of a strategic game to the 2×2 game above yields:

— Players: {1 2}

— Action sets: 1 = {} and 2 = {}

— Action profiles (outcomes):

 = 1 ×2 = {() () () ()}

— Preferences: %1and %2are given by the bi-matrix.



Rock-Paper-Scissors
(over a dollar)

  
 0 0 −1 1 1−1
 1−1 0 0 −1 1
 −1 1 1−1 0 0

Each player’s set of actions is {  } and the set of
action profiles is

{    }



In rock-paper-scissors

 ∼1  ∼1  Â1  ∼1  ∼1  Â1  ∼1  ∼1 

and

 ∼2  ∼2  ≺2  ∼2  ∼2  ≺2  ∼2  ∼2 

This is a zero-sum or a strictly competitive game.



Classical 2× 2 games

• The following simple 2×2 games represent a variety of strategic situations.

• Despite their simplicity, each game captures the essence of a type of strate-
gic interaction that is present in more complex situations.

• These classical games “span” the set of almost all games (strategic equiv-
alence).



Game I: Prisoner’s Dilemma

 
 3 3 0 4
 4 0 1 1

A situation where there are gains from cooperation but each player has an
incentive to “free ride.”

Examples: team work, duopoly, arm/advertisement/R&D race, public goods,
and more.



Game II: Battle of the Sexes (BoS)

 
 2 1 0 0
 0 0 1 2

Like the Prisoner’s Dilemma, Battle of the Sexes models a wide variety of
situations.

Examples: political stands, mergers, among others.



Game III-V: Coordination, Hawk-Dove, and Matching Pennies

 
 2 2 0 0
 0 0 1 1

 
 3 3 1 4
 4 1 0 0

 
 1−1 −1 1
 −1 1 1−1



Best response and dominated actions

Action  is player 1’s best response to action  player 2 if  is the optimal
choice when 1 conjectures that 2 will play .

Player 1’s action  is strictly dominated if it is never a best response
(inferior to  no matter what the other players do).

In the Prisoner’s Dilemma, for example, action is strictly dominated
by action  . As we will see, a strictly dominated action is not used in
any Nash equilibrium.



Nash equilibrium

Nash equilibrium () is a steady state of the play of a strategic game —
no player has a profitable deviation given the actions of the other players.

Put differently, a  is a set of actions such that all players are doing
their best given the actions of the other players.



 



Mixed strategy Nash equilibrium in the BoS

Suppose that, each player can randomize among all her strategies so
choices are not deterministic:

 1− 
 

   (1− )
1−   (1− ) (1− )(1− )

Let  and  be the probabilities that player 1 and 2 respectively assign to
the strategy Ball.



Player 2 will be indifferent between using her strategy and  when player
1 assigns a probability  such that her expected payoffs from playing 
and  are the same. That is,

1+ 0(1− ) = 0+ 2(1− )
 = 2− 2
∗ = 23

Hence, when player 1 assigns probability ∗ = 23 to her strategy  and
probability 1− ∗ = 13 to her strategy , player 2 is indifferent between
playing  or  any mixture of them.



Similarly, player 1 will be indifferent between using her strategy  and 
when player 2 assigns a probability  such that her expected payoffs from
playing  and  are the same. That is,

2 + 0(1− ) = 0 + 1(1− )
2 = 1− 
∗ = 13

Hence, when player 2 assigns probability ∗ = 13 to her strategy  and
probability 1− ∗ = 23 to her strategy , player 2 is indifferent between
playing  or  any mixture of them.



In terms of best responses:

1() =

⎧⎪⎨⎪⎩
 = 1    13

 ∈ [0 1]   = 13
 = 0    13

2() =

⎧⎪⎨⎪⎩
 = 1    23

 ∈ [0 1]   = 23
 = 0    23

The  has two Nash equilibria in pure strategies {() ( )} and
one in mixed strategies {(23 13)}. In fact, any game with a finite
number of players and a finite number of strategies for each player has
Nash equilibrium (Nash, 1950).



The tragedy of the commons



William Forster Lloyd (1833)

— Cattle herders sharing a common parcel of land (the commons) on
which they are each entitled to let their cows graze. If a herder put
more than his allotted number of cattle on the common, overgrazing
could result.

— Each additional animal has a positive effect for its herder, but the cost
of the extra animal is shared by all other herders, causing a so-called
“free-rider” problem. Today’s commons include fish stocks, rivers,
oceans, and the atmosphere.



 

 



Garrett Hardin (1968)

— This social dilemma was populated by Hardin in his article “The Tragedy
of the Commons,” published in the journal Science. The essay derived
its title from Lloyd (1833) on the over-grazing of common land.

— Hardin concluded that “...the commons, if justifiable at all, is justifi-
able only under conditions of low-population density. As the human
population has increased, the commons has had to be abandoned in
one aspect after another.”



— “The only way we can preserve and nurture other and more precious
freedoms is by relinquishing the freedom to breed, and that very soon.
“Freedom is the recognition of necessity” — and it is the role of ed-
ucation to reveal to all the necessity of abandoning the freedom to
breed. Only so, can we put an end to this aspect of the tragedy of the
commons.”

“Freedom to breed will bring ruin to all.”



Let’s put some game theoretic analysis (rigorous sense) behind this story:

— There are  players, each choosing how much to produce in a produc-
tion activity that ‘consumes’ some of the clean air that surrounds our
planet.

— There is  amount of clean air, and any consumption of clean air
comes out of this common resource. Each player  = 1   chooses
his consumption of clean air for production  ≥ 0 and the amount of
clean air left is therefore

 −
X

=1




— The benefit of consuming an amount  ≥ 0 of clean air gives player
 a benefit equal to ln(). Each player also enjoys consuming the
reminder of the clean air, giving each a benefit

ln
³
 −

X

=1

´


— Hence, the value for each player  from the action profile (outcome)
 = (1  ) is give by

( −) = ln() + ln
µ
 −

X

=1


¶




— To get player ’s best-response function, we write down the first-order
condition of his payoff function:

( −)


=
1


− 1

 −P
=1 

= 0

and thus

(−) =
 −P

 6= 
2





The two-player Tragedy of the Commons

— To find the Nash equilibrium, there are  equations with  unknown
that need to be solved. We first solve the equilibrium for two players.
Letting () be the best response of player , we have two best-
response functions:

1(2) =
 − 2
2

and 2(1) =
 − 1
2



— If we solve the two best-response functions simultaneously, we find the
unique (pure-strategy) Nash equilibrium


1 = 

2 =


3




Can this two-player society do better? More specifically, is consuming


3
clean air for each player too much (or too little)?

— The ‘right way’ to answer this question is using the Pareto princi-
ple (Vilfredo Pareto, 1848-1923) — can we find another action profile
 = (1 2) that will make both players better off than in the Nash
equilibrium?

— To this end, the function we seek to maximize is the social welfare
function  given by

(1 2) = 1 + 2 =
X2

=1
ln() + 2 ln

µ
 −

X2

=1


¶




— The first-order conditions for this problem are

(1 2)

1
=
1

1
− 2

 − 1 − 2
= 0

and
(1 2)

2
=
1

2
− 2

 − 1 − 2
= 0

— Solving these two equations simultaneously result the unique Pareto
optimal outcome

1 = 2 =


4




The -player Tragedy of the Commons

— In the -player Tragedy of the Commons, the best response of each
player  = 1  , (−), is given by

(−) =
 −P

 6= 
2



— We consider a symmetric Nash equilibrium where each player  chooses
the same level of consumption of clean air ∗ (it is subtle to show that
there cannot be asymmetric Nash equilibria).



— Because the best response must hold for each player  and they all
choose the same level  then in the symmetric Nash equilibrium
all best-response functions reduce to

 =
 −P

 6= 

2
=

 − (− 1)

2
or

 =


+ 1


Hence, the sum of clean air consumed by the firms is


+ 1
, which

increases with  as Hardin conjectured.



What is the socially optimal outcome with  players? And how does society
size affect this outcome?

— With  players, the social welfare function  given by

(1  ) =
X

=1


=
X

=1
ln() +  ln

³
 −

X

=1

´


And the  first-order conditions for the problem of maximizing this
function are

(1  )


=
1


− 

 −P
=1 

= 0

for  = 1  .



— Just as for the analysis of the Nash equilibrium with  players, the solu-
tion here is also symmetric. Therefore, the Pareto optimal consumption
of each player  can be found using the following equation:

1


− 

 − 
= 0

or

 =


2

and thus the Pareto optimal consumption of air is equal


2
, for any

society size . for  = 1  .



Finally, we show there is no asymmetric equilibrium.

— To this end, assume there are two players,  and , choosing two dif-
ferent  6=  in equilibrium.

— Because we assume a Nash equilibrium the best-response functions of
 and  must hold simultaneously, that is

 =
 − ̄ − 

2
and  =

 − ̄ − 
2

where ̄ be the sum of equilibrium choices of all other players except 
and .



— However, if we solve the best-response functions of players  and 

simultaneously, we find that

 =  =
 − ̄

3

contracting the assumption we started with that  6= .



 
 
 
 
 
 
 

Oligopoly 



Cournot’s oligopoly model (1838)

— A single good is produced by two firms (the industry is a “duopoly”).

— The cost for firm  = 1 2 for producing  units of the good is given
by  (“unit cost” is constant equal to   0).

— If the firms’ total output is  = 1 + 2 then the market price is

 = −

if  ≥  and zero otherwise (linear inverse demand function). We
also assume that   .



The inverse demand function 

 

 

P 

Q

A 

A

P=A-Q 



To find the Nash equilibria of the Cournot’s game, we can use the proce-
dures based on the firms’ best response functions.

But first we need the firms payoffs (profits):

1 = 1 − 11
= (−)1 − 11
= (− 1 − 2)1 − 11
= (− 1 − 2 − 1)1

and similarly,

2 = (− 1 − 2 − 2)2



Firm 1’s profit as a function of its output 
(given firm 2’s output) 
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To find firm 1’s best response to any given output 2 of firm 2, we need
to study firm 1’s profit as a function of its output 1 for given values of
2.

Using calculus, we set the derivative of firm 1’s profit with respect to 1
equal to zero and solve for 1:

1 =
1

2
(− 2 − 1)

We conclude that the best response of firm 1 to the output 2 of firm 2

depends on the values of 2 and 1.



Because firm 2’s cost function is 2 6= 1, its best response function is
given by

2 =
1

2
(− 1 − 2)

A Nash equilibrium of the Cournot’s game is a pair (∗1 
∗
2) of outputs

such that ∗1 is a best response to 
∗
2 and 

∗
2 is a best response to 

∗
1.

From the figure below, we see that there is exactly one such pair of outputs

∗1 =
+2−21

3 and ∗2 =
+1−22

3

which is the solution to the two equations above.



The best response functions in the Cournot's duopoly game 
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Nash equilibrium comparative statics 
(a decrease in the cost of firm 2) 

 
A question: what happens when consumers are willing to pay more (A 
increases)? 
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In summary, this simple Cournot’s duopoly game has a unique Nash equi-
librium.

Two economically important properties of the Nash equilibrium are (to
economic regulatory agencies):

[1] The relation between the firms’ equilibrium profits and the profit they
could make if they act collusively.

[2] The relation between the equilibrium profits and the number of firms.



[1] Collusive outcomes: in the Cournot’s duopoly game, there is a pair of out-
puts at which both firms’ profits exceed their levels in a Nash equilibrium.

[2] Competition: The price at the Nash equilibrium if the two firms have the
same unit cost 1 = 2 =  is given by

 ∗ = − ∗1 − ∗2

=
1

3
(+ 2)

which is above the unit cost . But as the number of firm increases, the
equilibrium price deceases, approaching  (zero profits!).



 
 
 
 
 
 
 

Food for thought 



LUPI

Many players simultaneously chose an integer between 1 and 99,999. Who-
ever chooses the lowest unique positive integer (LUPI) wins.

Question What does an equilibrium model of behavior predict in this game?

The field version of LUPI, called Limbo, was introduced by the government-
owned Swedish gambling monopoly Svenska Spel. Despite its complexity,
there is a surprising degree of convergence toward equilibrium.



Morra

A two-player game in which each player simultaneously hold either one or
two fingers and each guesses the total number of fingers held up.

If exactly one player guesses correctly, then the other player pays her the
amount of her guess.

Question Model the situation as a strategic game and describe the equilibrium
model of behavior predict in this game.

The game was played in ancient Rome, where it was known as “micatio.”



Maximal game
(sealed-bid second-price auction)

Two bidders, each of whom privately observes a signal  that is inde-
pendent and identically distributed (i.i.d.) from a uniform distribution on
[0 10].

Let max = max{1 2} and assume the ex-post common value to the
bidders is max.

Bidders bid in a sealed-bid second-price auction where the highest bidder
wins, earns the common value max and pays the second highest bid.




