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Game theory

Adam Brandenburger:

There is nothing so practical as a good [game] theory. A good theory
confirms the conventional wisdom that “less is more.” A good theory
does less because it does not give answers. At the same time, it does a
lot more because it helps people organize what they know and uncover
what they do not know. A good theory gives people the tools to
discover what is best for them...



Types of games

We study four groups of game theoretic models:

| strategic games

Il extensive games (with perfect and imperfect information)
[l repeated games

IV coalitional games



Side note I: individual preferences

Consider some (finite) set of alternatives or bundles (x, v, z, ...).

— Formally, we represent the decision-maker’'s preferences by a binary
relation =~ defined on the set of bundles.

— For any pair of bundles x and v, if the decision-maker says that x is
at least as good as y, we write

T Ty
and say that x is weakly preferred to y.

Bear in mind: economic theory often seeks to convince you with simple
examples and then gets you to extrapolate. This simple construction works
in wider (and wilder circumstances).




From the weak preference relation ~~ we derive two other relations on the
set of alternatives:

— Strict performance relation
x =y if and only if z 77 y and not y = .
The phrase x > y is read x is strictly preferred to y.
— Indifference relation

x ~y ifand only if z 72 y and y 7~ .

The phrase x ~ y is read x is indifferent to y.



Side note Il: individual rationality

Economic theory begins with two assumptions about preferences. These
assumptions are so fundamental that we can refer to them as “axioms’ of

decision theory.

[1] Completeness

x T Yyory X

for any pair of bundles x and y.

[2] Transitivity

if x ~ yand y = z then x =~ 2

for any three bundles =, y and z.



Together, completeness and transitivity constitute the formal definition of
rationality as the term is used in economics. Homo economicus (rational

economic) agents are ones who
have the ability to make choices [1], and whose choices display a logical

consistency [2].

(Only) the preferences of a homo economicus can be represented, or sum-
marized, by a utility function.



Strategic games

A strategic game consists of
— a set of players (decision makers)
— for each player, a set of possible actions

— for each player, preferences over the set of action profiles (outcomes).

In strategic games, players move simultaneously. A wide range of situations

may be modeled as strategic games.



A two-player (finite) strategic game

The game can be described conveniently in a so-called bi-matrix. For
example, a generic 2 x 2 (two players and two possible actions for each
player) game

L R
T | ay,ap | b1,b7
B | c1,c0 | dy,dp

where the two rows (resp. columns) correspond to the possible actions of
player 1 (resp. 2). The two numbers in a box formed by a specific row
and column are the players’ payoffs given that these actions were chosen.

In this game above a7 and ap are the payoffs of player 1 and player 2
respectively when player 1 is choosing strategy 1" and player 2 strategy L.



Applying the definition of a strategic game to the 2 X 2 game above yields:

— Players: {1,2}
— Action sets: A1 = {T, B} and A> = {L, R}

— Action profiles (outcomes):

A= Al X A2 = {(T, L), (T, R), (B,L), (B,R)}

— Preferences: ~—1and pare given by the bi-matrix.



Classical 2 x 2 games

e The following simple 2 X 2 games represent a variety of strategic situations.

e Despite their simplicity, each game captures the essence of a type of strate-
gic interaction that is present in more complex situations.

e These classical games “span” the set of almost all games (strategic equiv-
alence).



Game |: Prisoner’s Dilemma

Work Goof
Work | 3,3 0,4
Goof | 4,0 1,1

A situation where there are gains from cooperation but each player has an

Incentive to “free ride.”

Examples: team work, duopoly, arm/advertisement /R&D race, public goods,
and more.



Game |I: Battle of the Sexes (BoS)

Ball Show
Ball | 2,1 0,0
Show | 0,0 1,2

Like the Prisoner’'s Dilemma, Battle of the Sexes models a wide variety of
situations.

Examples: political stands, mergers, among others.



Game IlI-V: Coordination, Hawk-Dove, and Matching Pennies

Ball Show Dove Hawk
Ball | 2,2 0,0 Dove | 3,3 1,4
Show | 0,0 1,1 Hawk | 4,1 0,0
Head Tazil

Head | 1,—1 | —1,1
Tail | —1,1 | 1,—1




Best response and dominated actions

Action T is player 1's best response to action L player 2 if T is the optimal
choice when 1 conjectures that 2 will play L.

Player 1's action T' is strictly dominated if it is never a best response
(inferior to B no matter what the other players do).

In the Prisoner’s Dilemma, for example, action Work is strictly dominated
by action Goof. As we will see, a strictly dominated action is not used in
any Nash equilibrium.



Nash equilibrium

Nash equilibrium (N E) is a steady state of the play of a strategic game —
no player has a profitable deviation given the actions of the other players.

Put differently, a NFE is a set of actions such that all players are doing
their best given the actions of the other players.



Mixed strategy Nash equilibrium in the BoS

Suppose that, each player can randomize among all her strategies so
choices are not deterministic:
q l1—gq
L R
p T| pg p(1 —q)
1-p B|(1-p)g|(1—p)1—gq)

Let p and g be the probabilities that player 1 and 2 respectively assign to
the strategy Ball.



Player 2 will be indifferent between using her strategy B and S when player
1 assigns a probability p such that her expected payoffs from playing B
and S are the same. That is,

1p+0(1—p)=0p+2(1—p)
p=2-—12p
p*=2/3

Hence, when player 1 assigns probability p* = 2/3 to her strategy B and
probability 1 — p* = 1/3 to her strategy S, player 2 is indifferent between
playing B or S any mixture of them.



Similarly, player 1 will be indifferent between using her strategy B and S
when player 2 assigns a probability g such that her expected payoffs from
playing B and S are the same. That is,

2q +0(1 — q) = 0q + 1(1 — q)
2g=1—q
qgc=1/3

Hence, when player 2 assigns probability ¢* = 1/3 to her strategy B and
probability 1 — g* = 2/3 to her strategy S, player 2 is indifferent between
playing B or S any mixture of them.



In terms of best responses:

p=1 4if p>1/3
Bi(q) =4 pe[0,1] if p=1/3
. p=0 if p<1/3

g=1 if p>2/3
By(p) =14 q€[0,1] if p=2/3
gq=0 if p<2/3

The BoS has two Nash equilibria in pure strategies {(B, B), (S,S)} and
one in mixed strategies {(2/3,1/3)}. In fact, any game with a finite

number of players and a finite number of strategies for each player has
Nash equilibrium (Nash, 1950).



Oligopoly

e Another form of market structure is oligopoly — a market in which only a
few firms compete with one another, and entry of new firms is impeded.

e The situation is known as the Cournot model after Antoine Augustin
Cournot, a French economist, philosopher and mathematician (1801-1877).

e In the basic example, a single good is produced by two firms (the industry
is a “duopoly”).



Cournot’s oligopoly model (1838) (Antoine Augustin Cournot, an econo-
mist, philosopher and mathematician, 1801-1877).

— A single good is produced by two firms (the industry is a “duopoly”).

— The cost for firm ¢ = 1, 2 for producing q; units of the good is given
by ¢;q; (“unit cost” is constant equal to ¢; > 0).

— If the firms’ total output is () = q1 + g then the market price is
P=A—-Q

if A > @ and zero otherwise (linear inverse demand function). We
also assume that A > c.



The inverse demand function

P=A-Q

v



To find the Nash equilibria of the Cournot’'s game, we can use the proce-
dures based on the firms’ best response functions.

But first we need the firms payoffs (profits):

1 = Pqg—caq

(A—Q)q1 — c1q1
(A—q1 — @)n1 — c1q1
(A—q1—q —c1)q

and similarly,

o =(A—q1—q—c2)



Firm 1’s profit as a function of its output
(given firm 2’s output)

Profit 1

Output 1




To find firm 1's best response to any given output go of firm 2, we need
to study firm 1's profit as a function of its output g7 for given values of

q2.

Using calculus, we set the derivative of firm 1's profit with respect to ¢q
equal to zero and solve for q;:

1
q1 = E(A — @2 —c1).

We conclude that the best response of firm 1 to the output go of firm 2
depends on the values of g7 and cj.



Because firm 2's cost function is ¢y # cq, its best response function is

given by

1
Qo = E(A — q1 — ¢2).

A Nash equilibrium of the Cournot’s game is a pair (g7, g5) of outputs
such that g7 is a best response to g5 and g5 is a best response to q7.

From the figure below, we see that there is exactly one such pair of outputs

A+cr—2c A+c1—2c
q7 = 5+ and ¢5 = 2

which is the solution to the two equations above.



The best response functions in the Cournot's duopoly game

Output 2

A-c

Nash equilibrium

6utput 1



Nash equilibrium comparative statics
(a decrease in the cost of firm 2)

Output 2

A-c,

BR.(q,) Nash equilibrium I

Nash equilibrium |

A;C1 A-c, Output 1

A guestion: what happens when consumers are willing to pay more (A
increases)?



In summary, this simple Cournot’'s duopoly game has a unique Nash equi-

librium.

Two economically important properties of the Nash equilibrium are (to

economic regulatory agencies):

[1] The relation between the firms' equilibrium profits and the profit they
could make if they act collusively.

[2] The relation between the equilibrium profits and the number of firms.



[1] Collusive outcomes: in the Cournot’s duopoly game, there is a pair of out-
puts at which both firms' profits exceed their levels in a Nash equilibrium.

[2] Competition: The price at the Nash equilibrium if the two firms have the

same unit cost ¢ = ¢cop = c is given by
P* = A—q] — ¢
1

which is above the unit cost ¢. But as the number of firm increases, the
equilibrium price deceases, approaching c (zero profits).



Auctions
(if time permits...)
From Babylonia to eBay, auctioning has a very long history.

Babylon:

- women at marriageable age.

Athens, Rome, and medieval Europe:

- rights to collect taxes, dispose of confiscated property, lease of land
and mines,

and many more...



The word “auction” comes from the Latin augere, meaning “to increase.”

The earliest use of the English word “auction” given by the Oxford English
Dictionary dates from 1595 and concerns an auction “when will be sold
Slaves, household goods, etc.”

In this era, the auctioneer lit a short candle and bids were valid only if
made before the flame went out — Samuel Pepys (1633-1703) —



e Auctions, broadly defined, are used to allocate significant economics re-
sources.

Examples: works of art, government bonds, offshore tracts for oil ex-

ploration, radio spectrum, and more.

e Auctions take many forms. A game-theoretic framework enables to under-
stand the consequences of various auction designs.

e Game theory can suggest the design likely to be most effective, and the
one likely to raise the most revenues.



Types of auctions

Sequential / simultaneous
Bids may be called out sequentially or may be submitted simultaneously
in sealed envelopes:

— English (or oral) — the seller actively solicits progressively higher bids
and the item is soled to the highest bidder.

— Dutch — the seller begins by offering units at a “high” price and reduces
it until all units are soled.

— Sealed-bid — all bids are made simultaneously, and the item is sold to
the highest bidder.




First-price / second-price

The price paid may be the highest bid or some other price:

— First-price — the bidder who submits the highest bid wins and pay a

price equal to her bid.

— Second-prices — the bidder who submits the highest bid wins and pay

a price equal to the second highest bid.

Variants: all-pay (lobbying), discriminatory, uniform, Vickrey (William
Vickrey, Nobel Laureate 1996), and more.



Private-value / common-value

Bidders can be certain or uncertain about each other’s valuation:

— In private-value auctions, valuations differ among bidders, and each

bidder is certain of her own valuation and can be certain or uncertain
of every other bidder’s valuation.

— In common-value auctions, all bidders have the same valuation, but

bidders do not know this value precisely and their estimates of it vary.



First-price auction (with perfect information)

To define the game precisely, denote by v; the value that bidder ¢ attaches
to the object. If she obtains the object at price p then her payoff is v; — p.

Assume that bidders’ valuations are all different and all positive. Number
the bidders 1 through n in such a way that

v1 > vy > > wvp > 0.

Each bidder ¢ submits a (sealed) bid b;. If bidder ¢ obtains the object, she
receives a payoff v; — b;. Otherwise, her payoff is zero.

Tie-breaking — if two or more bidders are in a tie for the highest bid, the
winner is the bidder with the highest valuation.



In summary, a first-price sealed-bid auction with perfect information is the

following strategic game:

— Players: the n bidders.

— Actions: the set of possible bids b; of each player ¢ (nonnegative num-
bers).

— Payoffs: the preferences of player ¢ are given by

._{Uz’_g if b;=">bandv; >uv;ifb;=0b
u; = 7

0 if b, <
where b is the highest bid.



The set of Nash equilibria is the set of profiles (b1, ..., bn) of bids with the
following properties:

[1] v2 <b1 <y
[2] bj <bjforallj#1
[3] b; = by for some j # 1

It is easy to verify that all these profiles are Nash equilibria. It is harder
to show that there are no other equilibria. We can easily argue, however,
that there is no equilibrium in which player 1 does not obtain the object.

— The first-price sealed-bid auction is socially efficient, but does not neces-
sarily raise the most revenues.



Second-price auction (with perfect information)

A second-price sealed-bid auction with perfect information is the following

strategic game:

— Players: the n bidders.

— Actions: the set of possible bids b; of each player ¢ (nonnegative num-
bers).

— Payoffs: the preferences of player ¢ are given by

U; = ’Ui—l_) it bi>§0rbizgandvi>vjifbj:(_;
! 0 If bz<b

where b is the highest bid submitted by a player other than 1.



First note that for any player ¢ the bid b; = v; is a (weakly) dominant
action (a “truthful” bid), in contrast to the first-price auction.

The second-price auction has many equilibria, but the equilibrium b; = v;
for all 2 is distinguished by the fact that every player’'s action dominates
all other actions.

Another equilibrium in which player 5 # 1 obtains the good is that in
which

[1] b1 <wvjand b; > vq

[2] b; =0foralli# {1,;}



Common-value auctions and the winner’s curse

Suppose we all participate in a sealed-bid auction for a jar of coins. Once
you have estimated the amount of money in the jar, what are your bidding
strategies in first- and second-price auctions?

The winning bidder is likely to be the bidder with the largest positive error
(the largest overestimate).

In this case, the winner has fallen prey to the so-called the winner’s curse.

Auctions where the winner's curse is significant are oil fields, spectrum
auctions, pay per click, and more.





