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The game plan:

(1) Auction results – the winner’s curse
(2) Nash equilibrium – review
(3) Games of social preferences...
(4) The tragedy of the commons
(5) Oligopolistic competition
(6) Extensive for games (w/ perfect information)
(7) Back to oligopolistic competition
(8) Food for thought...





 

   



 

   



 

   



 

   



 



Common-value auctions and the winner’s curse

Suppose we all participate in a sealed-bid auction for a jar of coins. Once
you have estimated the amount of money in the jar, what are your bidding
strategies in first- and second-price auctions?

The winning bidder is likely to be the bidder with the largest positive error
(the largest overestimate).

In this case, the winner has fallen prey to the so-called the winner’s curse.
Auctions where the winner’s curse is significant are oil fields, spectrum
auctions, pay per click, and more.



 

 

 

 

 

 

 

 

 

Strategic games  
(review) 



A two-player (finite) strategic game

The game can be described conveniently in a so-called bi-matrix. For
example, a generic 2 × 2 (two players and two possible actions for each
player) game

 
 1 2 1 2
 1 2 1 2

where the two rows (resp. columns) correspond to the possible actions of
player 1 (resp. 2). The two numbers in a box formed by a specific row
and column are the players’ payoffs given that these actions were chosen.

In this game above 1 and 2 are the payoffs of player 1 and player 2
respectively when player 1 is choosing strategy  and player 2 strategy .



Classical 2× 2 games

• The following simple 2×2 games represent a variety of strategic situations.

• Despite their simplicity, each game captures the essence of a type of strate-
gic interaction that is present in more complex situations.

• These classical games “span” the set of almost all games (strategic equiv-
alence).



Game I: Prisoner’s Dilemma

 
 3 3 0 4
 4 0 1 1

A situation where there are gains from cooperation but each player has an
incentive to “free ride.”

Examples: team work, duopoly, arm/advertisement/R&D race, public goods,
and more.



Game II: Battle of the Sexes (BoS)

 
 2 1 0 0
 0 0 1 2

Like the Prisoner’s Dilemma, Battle of the Sexes models a wide variety of
situations.

Examples: political stands, mergers, among others.



Game III-V: Coordination, Hawk-Dove, and Matching Pennies

 
 2 2 0 0
 0 0 1 1

 
 3 3 1 4
 4 1 0 0

 
 1−1 −1 1
 −1 1 1−1



Best response and dominated actions

Action  is player 1’s best response to action  player 2 if  is the optimal
choice when 1 conjectures that 2 will play .

Player 1’s action  is strictly dominated if it is never a best response
(inferior to  no matter what the other players do).

In the Prisoner’s Dilemma, for example, action is strictly dominated
by action  . As we will see, a strictly dominated action is not used in
any Nash equilibrium.



Nash equilibrium

Nash equilibrium () is a steady state of the play of a strategic game —
no player has a profitable deviation given the actions of the other players.

Put differently, a  is a set of actions such that all players are doing
their best given the actions of the other players.



Mixed strategy Nash equilibrium in the BoS

Suppose that, each player can randomize among all her strategies so
choices are not deterministic:

 1− 
 

   (1− )
1−   (1− ) (1− )(1− )

Let  and  be the probabilities that player 1 and 2 respectively assign to
the strategy Ball.



Player 2 will be indifferent between using her strategy and  when player
1 assigns a probability  such that her expected payoffs from playing 
and  are the same. That is,

1+ 0(1− ) = 0+ 2(1− )
 = 2− 2
∗ = 23

Hence, when player 1 assigns probability ∗ = 23 to her strategy  and
probability 1− ∗ = 13 to her strategy , player 2 is indifferent between
playing  or  any mixture of them.



Similarly, player 1 will be indifferent between using her strategy  and 
when player 2 assigns a probability  such that her expected payoffs from
playing  and  are the same. That is,

2 + 0(1− ) = 0 + 1(1− )
2 = 1− 
∗ = 13

Hence, when player 2 assigns probability ∗ = 13 to her strategy  and
probability 1− ∗ = 23 to her strategy , player 2 is indifferent between
playing  or  any mixture of them.



In terms of best responses:

1() =

⎧⎪⎨⎪⎩
 = 1    13

 ∈ [0 1]   = 13
 = 0    13

2() =

⎧⎪⎨⎪⎩
 = 1    23

 ∈ [0 1]   = 23
 = 0    23

The  has two Nash equilibria in pure strategies {() ( )} and
one in mixed strategies {(23 13)}. In fact, any game with a finite
number of players and a finite number of strategies for each player has
Nash equilibrium (Nash, 1950).



Three Matching Pennies games in the laboratory

.48 .52
a2 b2

.48 a1 80, 40 40, 80

.52 b1 40, 80 80, 40

.16 .84
a2 b2

.96 a1 320, 40 40, 80

.04 b1 40, 80 80, 40

.80 .20
a2 b2

.08 a1 44, 40 40, 80

.92 b1 40, 80 80, 40



 

 

 

 

 

 

 
Simple games of social preferences: 

dictator, ultimatum, and trust  



[1] Dictator

— One player (the dictator) receives an endowment and then decides what
fraction s/he wants to give to another (anonymous) player (the recip-
ient).



 

 

 

 



[2] Ultimatum

— One player (the proposer) receives an endowment and then decides
what fraction s/he wants to offer to another (anonymous) player (the
responder).

— The responder can accept the proposer’s offer or reject it, implying
that the two players receive nothing.



[3] Trust

— One player (the trustor) receives an endowment and then decides what
fraction s/he wants to offer to another (anonymous) player (the trustee).

— There is nothing the trustor can do to ensure a return of any kind.
Before the transfer arrives into the trustee’s hands, the transfer is mag-
nified by a factor   1 (doubled or tripled).

— The trustee has the option to send any fraction of the received transfer
back to the trustor.



 

 

 

 

 

 



 

 

 

 

 



The tragedy of the commons



William Forster Lloyd (1833)

— Cattle herders sharing a common parcel of land (the commons) on
which they are each entitled to let their cows graze. If a herder put
more than his allotted number of cattle on the common, overgrazing
could result.

— Each additional animal has a positive effect for its herder, but the cost
of the extra animal is shared by all other herders, causing a so-called
“free-rider” problem. Today’s commons include fish stocks, rivers,
oceans, and the atmosphere.



 

 



Garrett Hardin (1968)

— This social dilemma was populated by Hardin in his article “The Tragedy
of the Commons,” published in the journal Science. The essay derived
its title from Lloyd (1833) on the over-grazing of common land.

— Hardin concluded that “...the commons, if justifiable at all, is justifi-
able only under conditions of low-population density. As the human
population has increased, the commons has had to be abandoned in
one aspect after another.”



— “The only way we can preserve and nurture other and more precious
freedoms is by relinquishing the freedom to breed, and that very soon.
“Freedom is the recognition of necessity” — and it is the role of ed-
ucation to reveal to all the necessity of abandoning the freedom to
breed. Only so, can we put an end to this aspect of the tragedy of the
commons.”

“Freedom to breed will bring ruin to all.”



Let’s put some game theoretic analysis (rigorous sense) behind this story:

— There are  players, each choosing how much to produce in a produc-
tion activity that ‘consumes’ some of the clean air that surrounds our
planet.

— There is  amount of clean air, and any consumption of clean air
comes out of this common resource. Each player  = 1   chooses
his consumption of clean air for production  ≥ 0 and the amount of
clean air left is therefore

 −
X

=1




— The benefit of consuming an amount  ≥ 0 of clean air gives player
 a benefit equal to ln(). Each player also enjoys consuming the
reminder of the clean air, giving each a benefit

ln
³
 −

X

=1

´


— Hence, the value for each player  from the action profile (outcome)
 = (1  ) is give by

( −) = ln() + ln
µ
 −

X

=1


¶




— To get player ’s best-response function, we write down the first-order
condition of his payoff function:

( −)


=
1


− 1

 −P
=1 

= 0

and thus

(−) =
 −P

 6= 
2





The two-player Tragedy of the Commons

— To find the Nash equilibrium, there are  equations with  unknown
that need to be solved. We first solve the equilibrium for two players.
Letting () be the best response of player , we have two best-
response functions:

1(2) =
 − 2
2

and 2(1) =
 − 1
2



— If we solve the two best-response functions simultaneously, we find the
unique (pure-strategy) Nash equilibrium


1 = 

2 =


3




Can this two-player society do better? More specifically, is consuming


3
clean air for each player too much (or too little)?

— The ‘right way’ to answer this question is using the Pareto princi-
ple (Vilfredo Pareto, 1848-1923) — can we find another action profile
 = (1 2) that will make both players better off than in the Nash
equilibrium?

— To this end, the function we seek to maximize is the social welfare
function  given by

(1 2) = 1 + 2 =
X2

=1
ln() + 2 ln

µ
 −

X2

=1


¶




— The first-order conditions for this problem are

(1 2)

1
=
1

1
− 2

 − 1 − 2
= 0

and
(1 2)

2
=
1

2
− 2

 − 1 − 2
= 0

— Solving these two equations simultaneously result the unique Pareto
optimal outcome

1 = 2 =


4




The -player Tragedy of the Commons

— In the -player Tragedy of the Commons, the best response of each
player  = 1  , (−), is given by

(−) =
 −P

 6= 
2



— We consider a symmetric Nash equilibrium where each player  chooses
the same level of consumption of clean air ∗ (it is subtle to show that
there cannot be asymmetric Nash equilibria).



— Because the best response must hold for each player  and they all
choose the same level  then in the symmetric Nash equilibrium
all best-response functions reduce to

 =
 −P

 6= 

2
=

 − (− 1)

2
or

 =


+ 1


Hence, the sum of clean air consumed by the firms is


+ 1
, which

increases with  as Hardin conjectured.



What is the socially optimal outcome with  players? And how does society
size affect this outcome?

— With  players, the social welfare function  given by

(1  ) =
X

=1


=
X

=1
ln() +  ln

³
 −

X

=1

´


And the  first-order conditions for the problem of maximizing this
function are

(1  )


=
1


− 

 −P
=1 

= 0

for  = 1  .



— Just as for the analysis of the Nash equilibrium with  players, the solu-
tion here is also symmetric. Therefore, the Pareto optimal consumption
of each player  can be found using the following equation:

1


− 

 − 
= 0

or

 =


2

and thus the Pareto optimal consumption of air is equal


2
, for any

society size . for  = 1  .



Finally, we show there is no asymmetric equilibrium.

— To this end, assume there are two players,  and , choosing two dif-
ferent  6=  in equilibrium.

— Because we assume a Nash equilibrium the best-response functions of
 and  must hold simultaneously, that is

 =
 − ̄ − 

2
and  =

 − ̄ − 
2

where ̄ be the sum of equilibrium choices of all other players except 
and .



— However, if we solve the best-response functions of players  and 

simultaneously, we find that

 =  =
 − ̄

3

contracting the assumption we started with that  6= .



 
 
 
 
 
 
 

Oligopoly 



Cournot’s oligopoly model (1838)

— A single good is produced by two firms (the industry is a “duopoly”).

— The cost for firm  = 1 2 for producing  units of the good is given
by  (“unit cost” is constant equal to   0).

— If the firms’ total output is  = 1 + 2 then the market price is

 = −

if  ≥  and zero otherwise (linear inverse demand function). We
also assume that   .



The inverse demand function 

 

 

P 

Q

A 

A

P=A-Q 



To find the Nash equilibria of the Cournot’s game, we can use the proce-
dures based on the firms’ best response functions.

But first we need the firms payoffs (profits):

1 = 1 − 11
= (−)1 − 11
= (− 1 − 2)1 − 11
= (− 1 − 2 − 1)1

and similarly,

2 = (− 1 − 2 − 2)2



Firm 1’s profit as a function of its output 
(given firm 2’s output) 

 

Profit 1 

Output 1 
2

21 qcA   
2

'21 qcA   

22' qq   

2q  



To find firm 1’s best response to any given output 2 of firm 2, we need
to study firm 1’s profit as a function of its output 1 for given values of
2.

Using calculus, we set the derivative of firm 1’s profit with respect to 1
equal to zero and solve for 1:

1 =
1

2
(− 2 − 1)

We conclude that the best response of firm 1 to the output 2 of firm 2

depends on the values of 2 and 1.



Because firm 2’s cost function is 2 6= 1, its best response function is
given by

2 =
1

2
(− 1 − 2)

A Nash equilibrium of the Cournot’s game is a pair (∗1 
∗
2) of outputs

such that ∗1 is a best response to 
∗
2 and 

∗
2 is a best response to 

∗
1.

From the figure below, we see that there is exactly one such pair of outputs

∗1 =
+2−21

3 and ∗2 =
+1−22

3

which is the solution to the two equations above.



The best response functions in the Cournot's duopoly game 

 

Output 2 

Output 1 

1cA   

2
1cA

 2cA   

2
2cA   

)( 21 qBR  

)( 12 qBR  

Nash equilibrium 



Nash equilibrium comparative statics 
(a decrease in the cost of firm 2) 

 
A question: what happens when consumers are willing to pay more (A 
increases)? 

Output 2 

Output 1 

1cA   

2cA   

2
2cA   

)( 21 qBR  

)( 12 qBR  

Nash equilibrium I 

Nash equilibrium II 

2
1cA

 



In summary, this simple Cournot’s duopoly game has a unique Nash equi-
librium.

Two economically important properties of the Nash equilibrium are (to
economic regulatory agencies):

[1] The relation between the firms’ equilibrium profits and the profit they
could make if they act collusively.

[2] The relation between the equilibrium profits and the number of firms.



[1] Collusive outcomes: in the Cournot’s duopoly game, there is a pair of out-
puts at which both firms’ profits exceed their levels in a Nash equilibrium.

[2] Competition: The price at the Nash equilibrium if the two firms have the
same unit cost 1 = 2 =  is given by

 ∗ = − ∗1 − ∗2

=
1

3
(+ 2)

which is above the unit cost . But as the number of firm increases, the
equilibrium price deceases, approaching  (zero profits!).



 

 

 

 

 

 

 

 

 

Extensive games with perfect information 
 



Extensive games with perfect information

• The model of a strategic suppresses the sequential structure of decision
making.

— All players simultaneously choose their plan of action once and for all.

• The model of an extensive game, by contrast, describes the sequential
structure of decision-making explicitly.

— In an extensive game of perfect information all players are fully informed
about all previous actions.



1

2

A B

C D

d

b

a

E

c

F

1



1

2

A B

C D

a
b c

2

d

E F



Subgame perfect equilibrium

• The notion of Nash equilibrium ignores the sequential structure of the
game.

• Consequently, the steady state to which a Nash Equilibrium corresponds
may not be robust.

• A subgame perfect equilibrium is an action profile that induces a Nash
equilibrium in every subgame (so every subgame perfect equilibrium is also
a Nash equilibrium).



An example: entry game 
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Subgame perfect and backward induction 
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Two entry games in the laboratory 
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A review of the main ideas

We study two (out of four) groups of game theoretic models:

[1] Strategic games — all players simultaneously choose their plan of action
once and for all.

[2] Extensive games (with perfect information) — players choose sequentially
(and fully informed about all previous actions).



A solution (equilibrium) is a systematic description of the outcomes that
may emerge in a family of games. We study two solution concepts:

[1] Nash equilibrium — a steady state of the play of a strategic game (no
player has a profitable deviation given the actions of the other players).

[1] Subgame equilibrium — a steady state of the play of an extensive game
(a Nash equilibrium in every subgame of the extensive game).

=⇒ Every subgame perfect equilibrium is also a Nash equilibrium.



 

 

 

 

 

 

 

Back to oligopoly... 

 



Stackelberg’s duopoly model (1934)

How do the conclusions of the Cournot’s duopoly game change when the
firms move sequentially? Is a firm better off moving before or after the
other firm?

Suppose that 1 = 2 =  and that firm 1 moves at the start of the game.
We may use backward induction to find the subgame perfect equilibrium.

— First, for any output 1 of firm 1, we find the output 2 of firm 2

that maximizes its profit. Next, we find the output 1 of firm 1 that
maximizes its profit, given the strategy of firm 2.



Firm 2

Since firm 2 moves after firm 1, a strategy of firm 2 is a function that
associate an output 2 for firm 2 for each possible output 1 of firm 1.

We found that under the assumptions of the Cournot’s duopoly game Firm
2 has a unique best response to each output 1 of firm 1, given by

2 =
1

2
(− 1 − )

(Recall that 1 = 2 = ).



Firm 1

Firm 1’s strategy is the output 1 the maximizes

1 = (− 1 − 2 − )1 subject to 2 =
1
2(− 1 − )

Thus, firm 1 maximizes

1 = (− 1 − (
1

2
(− 1 − ))− )1 =

1

2
1(− 1 − )

This function is quadratic in 1 that is zero when 1 = 0 and when
1 = − . Thus its maximizer is

∗1 =
1

2
(− )



Firm 1’s (first‐mover) profit in Stackelberg's duopoly game 

 

 

Profit 1 

Output 1 
2

1cA   
cA   

)(
2
1

111 cqAq   



We conclude that Stackelberg’s duopoly game has a unique subgame per-
fect equilibrium, in which firm 1’s strategy is the output

∗1 =
1

2
(− )

and firm 2’s output is

∗2 =
1

2
(− ∗1 − )

=
1

2
(− 1

2
(− )− )

=
1

4
(− )

By contrast, in the unique Nash equilibrium of the Cournot’s duopoly game

under the same assumptions (1 = 2 = ), each firm produces
1

3
(− ).



The subgame perfect equilibrium of Stackelberg's duopoly game 
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Food for thought 



LUPI

Many players simultaneously chose an integer between 1 and 99,999. Who-
ever chooses the lowest unique positive integer (LUPI) wins.

Question What does an equilibrium model of behavior predict in this game?

The field version of LUPI, called Limbo, was introduced by the government-
owned Swedish gambling monopoly Svenska Spel. Despite its complexity,
there is a surprising degree of convergence toward equilibrium.



Morra

A two-player game in which each player simultaneously hold either one or
two fingers and each guesses the total number of fingers held up.

If exactly one player guesses correctly, then the other player pays her the
amount of her guess.

Question Model the situation as a strategic game and describe the equilibrium
model of behavior predict in this game.

The game was played in ancient Rome, where it was known as “micatio.”



Maximal game
(sealed-bid second-price auction)

Two bidders, each of whom privately observes a signal  that is inde-
pendent and identically distributed (i.i.d.) from a uniform distribution on
[0 10].

Let max = max{1 2} and assume the ex-post common value to the
bidders is max.

Bidders bid in a sealed-bid second-price auction where the highest bidder
wins, earns the common value max and pays the second highest bid.




