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Food for thought 



LUPI

Many players simultaneously chose an integer between 1 and 99,999. Who-
ever chooses the lowest unique positive integer (LUPI) wins.

Question What does an equilibrium model of behavior predict in this game?

The field version of LUPI, called Limbo, was introduced by the government-
owned Swedish gambling monopoly Svenska Spel. Despite its complexity,
there is a surprising degree of convergence toward equilibrium.



Morra

A two-player game in which each player simultaneously hold either one or
two fingers and each guesses the total number of fingers held up.

If exactly one player guesses correctly, then the other player pays her the
amount of her guess.

Question Model the situation as a strategic game and describe the equilibrium
model of behavior predict in this game.

The game was played in ancient Rome, where it was known as “micatio.”



Maximal game
(sealed-bid second-price auction)

Two bidders, each of whom privately observes a signal  that is inde-
pendent and identically distributed (i.i.d.) from a uniform distribution on
[0 10].

Let max = max{1 2} and assume the ex-post common value to the
bidders is max.

Bidders bid in a sealed-bid second-price auction where the highest bidder
wins, earns the common value max and pays the second highest bid.



 

 

 

 

 

 

 

 

 

Strategic games  
(review) 



A two-player (finite) strategic game

The game can be described conveniently in a so-called bi-matrix. For
example, a generic 2 × 2 (two players and two possible actions for each
player) game

 
 1 2 1 2
 1 2 1 2

where the two rows (resp. columns) correspond to the possible actions of
player 1 (resp. 2). The two numbers in a box formed by a specific row
and column are the players’ payoffs given that these actions were chosen.

In this game above 1 and 2 are the payoffs of player 1 and player 2
respectively when player 1 is choosing strategy  and player 2 strategy .



Best response and dominated actions

Action  is player 1’s best response to action  player 2 if  is the optimal
choice when 1 conjectures that 2 will play .

Player 1’s action  is strictly dominated if it is never a best response
(inferior to  no matter what the other players do).

In the Prisoner’s Dilemma, for example, action is strictly dominated
by action  . As we will see, a strictly dominated action is not used in
any Nash equilibrium.



Nash equilibrium

Nash equilibrium () is a steady state of the play of a strategic game —
no player has a profitable deviation given the actions of the other players.

Put differently, a  is a set of actions such that all players are doing
their best given the actions of the other players.



Mixed strategy Nash equilibrium in the BoS

Suppose that, each player can randomize among all her strategies so
choices are not deterministic:

 1− 
 

   (1− )
1−   (1− ) (1− )(1− )

Let  and  be the probabilities that player 1 and 2 respectively assign to
the strategy Ball.



Player 2 will be indifferent between using her strategy and  when player
1 assigns a probability  such that her expected payoffs from playing 
and  are the same. That is,

1+ 0(1− ) = 0+ 2(1− )
 = 2− 2
∗ = 23

Hence, when player 1 assigns probability ∗ = 23 to her strategy  and
probability 1− ∗ = 13 to her strategy , player 2 is indifferent between
playing  or  any mixture of them.



Similarly, player 1 will be indifferent between using her strategy  and 
when player 2 assigns a probability  such that her expected payoffs from
playing  and  are the same. That is,

2 + 0(1− ) = 0 + 1(1− )
2 = 1− 
∗ = 13

Hence, when player 2 assigns probability ∗ = 13 to her strategy  and
probability 1− ∗ = 23 to her strategy , player 2 is indifferent between
playing  or  any mixture of them.



In terms of best responses:

1() =

⎧⎪⎨⎪⎩
 = 1    13

 ∈ [0 1]   = 13
 = 0    13

2() =

⎧⎪⎨⎪⎩
 = 1    23

 ∈ [0 1]   = 23
 = 0    23

The  has two Nash equilibria in pure strategies {() ( )} and
one in mixed strategies {(23 13)}. In fact, any game with a finite
number of players and a finite number of strategies for each player has
Nash equilibrium (Nash, 1950).



Three Matching Pennies games in the laboratory

.48 .52
a2 b2

.48 a1 80, 40 40, 80

.52 b1 40, 80 80, 40

.16 .84
a2 b2

.96 a1 320, 40 40, 80

.04 b1 40, 80 80, 40

.80 .20
a2 b2

.08 a1 44, 40 40, 80

.92 b1 40, 80 80, 40



 

 

 

 

 

 

 

 

 

Extensive games with perfect information 
 



Extensive games with perfect information

• The model of a strategic suppresses the sequential structure of decision
making.

— All players simultaneously choose their plan of action once and for all.

• The model of an extensive game, by contrast, describes the sequential
structure of decision-making explicitly.

— In an extensive game of perfect information all players are fully informed
about all previous actions.



Subgame perfect equilibrium

• The notion of Nash equilibrium ignores the sequential structure of the
game.

• Consequently, the steady state to which a Nash Equilibrium corresponds
may not be robust.

• A subgame perfect equilibrium is an action profile that induces a Nash
equilibrium in every subgame (so every subgame perfect equilibrium is also
a Nash equilibrium).



An example: entry game 
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Subgame perfect and backward induction 

 

100 
200 

300 
100 

200 
0 

1 

L R 

2 

1 

0 
0 

L R 

L’ R’ 



Two entry games in the laboratory 
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A review of the main ideas

We study two (out of four) groups of game theoretic models:

[1] Strategic games — all players simultaneously choose their plan of action
once and for all.

[2] Extensive games (with perfect information) — players choose sequentially
(and fully informed about all previous actions).



A solution (equilibrium) is a systematic description of the outcomes that
may emerge in a family of games. We study two solution concepts:

[1] Nash equilibrium — a steady state of the play of a strategic game (no
player has a profitable deviation given the actions of the other players).

[1] Subgame equilibrium — a steady state of the play of an extensive game
(a Nash equilibrium in every subgame of the extensive game).

=⇒ Every subgame perfect equilibrium is also a Nash equilibrium.



 

 

 

 

 

 

 

 

 

Incomplete and asymmetric information  
(an illustration – the market for lemons) 



Markets with asymmetric information

• The traditional theory of markets assumes that market participants have
complete information about the underlying economic variables:

— Buyers and sellers are both perfectly informed about the quality of the
goods being sold in the market.

— If it is not costly to verify quality, then the prices of the goods will
simply adjust to reflect the quality difference.

=⇒ This is clearly a drastic simplification!!!



• There are certainly many markets in the real world in which it may be very
costly (or even impossible) to gain accurate information:

— labor markets, financial markets, markets for consumer products, and
more.

• If information about quality is costly to obtain, then it is no longer possible
that buyers and sellers have the same information.

• The costs of information provide an important source of market friction
and can lead to a market breakdown.



Nobel Prize 2001  
“for their analyses of markets with asymmetric information” 

 

   
 

  



The Market for Lemons

Example I

— Consider a market with 100 people who want to sell their used car and
100 people who want to buy a used car.

— Everyone knows that 50 of the cars are “plums” and 50 are “lemons.”

— Suppose further that

seller buyer
lemon $1000 $1200
plum $2000 $2400



— If it is easy to verify the quality of the cars there will be no problem in
this market.

— Lemons will sell at some price $1000 − 1200 and plums will sell at
$2000− 2400.

— But happens to the market if buyers cannot observe the quality of the
car?



— If buyers are risk neutral, then a typical buyer will be willing to pay his
expected value of the car

1

2
1200 +

1

2
2400 = $1800

— But for this price only owners of lemons would offer their car for sale,
and buyers would therefore (correctly) expect to get a lemon.

— Market failure — no transactions will take place, although there are
possible gains from trade!



Example II

— Suppose we can index the quality of a used car by some number ,
which is distributed uniformly over [0 1].

— There is a large number of demanders for used cars who are willing to
pay 32 for a car of quality .

— There is a large number of sellers who are willing to sell a car of quality
 for a price of .



— If quality is perfectly observable, each used car of quality  would be
soled for some price between  and 32.

— What will be the equilibrium price(s) in this market when quality of
any given car cannot be observed?

— The unique equilibrium price is zero, and at this price the demand is
zero and supply is zero.

=⇒ The asymmetry of information has destroyed the market for used cars. But
the story does not end here!!!



Signaling

• In the used-car market, owners of the good used cars have an incentive to
try to convey the fact that they have a good car to the potential purchasers.

• Put differently, they would like choose actions that signal that they are
offering a plum rather than a lemon.

• In some case, the presence of a “signal” allows the market to function
more effectively than it would otherwise.



Example — educational signaling

— Suppose that a fraction 0 < b < 1 of workers are competent and a
fraction 1− b are incompetent.

— The competent workers have marginal product of a2 and the incom-
petent have marginal product of a1 < a2.

— For simplicity we assume a competitive labor market and a linear pro-
duction function

L1a1 + L2a2

where L1 and L2 is the number of incompetent and competent workers,
respectively.



— If worker quality is observable, then firm would just offer wages

w1 = a1 and w2 = a2

to competent workers, respectively.

— That is, each worker will paid his marginal product and we would have
an efficient equilibrium.

— But what if the firm cannot observe the marginal products so it cannot
distinguish the two types of workers?



— If worker quality is unobservable, then the “best” the firm can do is to
offer the average wage

w = (1− b)a1 + ba2.

— If both types of workers agree to work at this wage, then there is no
problem with adverse selection (more below).

— The incompetent (resp. competent) workers are getting paid more
(resp. less) than their marginal product.



— The competent workers would like a way to signal that they are more
productive than the others.

— Suppose now that there is some signal that the workers can acquire
that will distinguish the two types

— One nice example is education — it is cheaper for the competent workers
to acquire education than the incompetent workers.



— To be explicit, suppose that the cost (dollar costs, opportunity costs,
costs of the effort, etc.) to acquiring e years of education is

c1e and c2e

for incompetent and competent workers, respectively, where c1 > c2.

— Suppose that workers conjecture that firms will pay a wage s(e) where
s is some increasing function of e.

— Although education has no effect on productivity (MBA?), firms may
still find it profitable to base wage on education — attract a higher-
quality work force.



Market equilibrium

In the educational signaling example, there appear to be several possibilities
for equilibrium:

[1] The (representative) firm offers a single contract that attracts both
types of workers.

[2] The (representative) firm offers a single contract that attracts only one
type of workers.

[3] The (representative) firm offers two contracts, one for each type of
workers.



• A separating equilibrium involves each type of worker making a choice that
separate himself from the other type.

• In a pooling equilibrium, in contrast, each type of workers makes the same
choice, and all getting paid the wage based on their average ability.

Note that a separating equilibrium is wasteful in a social sense — no social
gains from education since it does not change productivity.



Example (cont.)

— Let e1 and e2 be the education level actually chosen by the workers.
Then, a separating (signaling) equilibrium has to satisfy:

[1] zero-profit conditions

s(e1) = a1
s(e2) = a2

[2] self-selection conditions

s(e1)− c1e1 ≥ s(e2)− c1e2
s(e2)− c2e2 ≥ s(e1)− c2e1



— In general, there may by many functions s(e) that satisfy conditions
[1] and [2]. One wage profile consistent with separating equilibrium is

s(e) =

(
a2 if e > e∗

a1 if e ≤ e∗

and
a2 − a1

c2
> e∗ >

a2 − a1
c1

=⇒ Signaling can make things better or worse — each case has to examined on
its own merits!



The Sheepskin (diploma) effect

The increase in wages associated with obtaining a higher credential:

— Graduating high school increases earnings by 5 to 6 times as much as
does completing a year in high school that does not result in graduation.

— The same discontinuous jump occurs for people who graduate from
collage.

— High school graduates produce essentially the same amount of output
as non-graduates.



 

 

 

 

 

 

 

 

 

Oligopolistic competition  
(in strategic and extensive forms) 



Cournot’s oligopoly model (1838)

— A single good is produced by two firms (the industry is a “duopoly”).

— The cost for firm  = 1 2 for producing  units of the good is given
by  (“unit cost” is constant equal to   0).

— If the firms’ total output is  = 1 + 2 then the market price is

 = −

if  ≥  and zero otherwise (linear inverse demand function). We
also assume that   .



The inverse demand function 
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To find the Nash equilibria of the Cournot’s game, we can use the proce-
dures based on the firms’ best response functions.

But first we need the firms payoffs (profits):

1 = 1 − 11
= (−)1 − 11
= (− 1 − 2)1 − 11
= (− 1 − 2 − 1)1

and similarly,

2 = (− 1 − 2 − 2)2



Firm 1’s profit as a function of its output 
(given firm 2’s output) 
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To find firm 1’s best response to any given output 2 of firm 2, we need
to study firm 1’s profit as a function of its output 1 for given values of
2.

Using calculus, we set the derivative of firm 1’s profit with respect to 1
equal to zero and solve for 1:

1 =
1

2
(− 2 − 1)

We conclude that the best response of firm 1 to the output 2 of firm 2

depends on the values of 2 and 1.



Because firm 2’s cost function is 2 6= 1, its best response function is
given by

2 =
1

2
(− 1 − 2)

A Nash equilibrium of the Cournot’s game is a pair (∗1 
∗
2) of outputs

such that ∗1 is a best response to 
∗
2 and 

∗
2 is a best response to 

∗
1.

From the figure below, we see that there is exactly one such pair of outputs

∗1 =
+2−21

3 and ∗2 =
+1−22

3

which is the solution to the two equations above.



The best response functions in the Cournot's duopoly game 
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Nash equilibrium comparative statics 
(a decrease in the cost of firm 2) 

 
A question: what happens when consumers are willing to pay more (A 
increases)? 
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In summary, this simple Cournot’s duopoly game has a unique Nash equi-
librium.

Two economically important properties of the Nash equilibrium are (to
economic regulatory agencies):

[1] The relation between the firms’ equilibrium profits and the profit they
could make if they act collusively.

[2] The relation between the equilibrium profits and the number of firms.



[1] Collusive outcomes: in the Cournot’s duopoly game, there is a pair of out-
puts at which both firms’ profits exceed their levels in a Nash equilibrium.

[2] Competition: The price at the Nash equilibrium if the two firms have the
same unit cost 1 = 2 =  is given by

 ∗ = − ∗1 − ∗2

=
1

3
(+ 2)

which is above the unit cost . But as the number of firm increases, the
equilibrium price deceases, approaching  (zero profits!).



Stackelberg’s duopoly model (1934)

How do the conclusions of the Cournot’s duopoly game change when the
firms move sequentially? Is a firm better off moving before or after the
other firm?

Suppose that 1 = 2 =  and that firm 1 moves at the start of the game.
We may use backward induction to find the subgame perfect equilibrium.

— First, for any output 1 of firm 1, we find the output 2 of firm 2

that maximizes its profit. Next, we find the output 1 of firm 1 that
maximizes its profit, given the strategy of firm 2.



Firm 2

Since firm 2 moves after firm 1, a strategy of firm 2 is a function that
associate an output 2 for firm 2 for each possible output 1 of firm 1.

We found that under the assumptions of the Cournot’s duopoly game Firm
2 has a unique best response to each output 1 of firm 1, given by

2 =
1

2
(− 1 − )

(Recall that 1 = 2 = ).



Firm 1

Firm 1’s strategy is the output 1 the maximizes

1 = (− 1 − 2 − )1 subject to 2 =
1
2(− 1 − )

Thus, firm 1 maximizes

1 = (− 1 − (
1

2
(− 1 − ))− )1 =

1

2
1(− 1 − )

This function is quadratic in 1 that is zero when 1 = 0 and when
1 = − . Thus its maximizer is

∗1 =
1

2
(− )



Firm 1’s (first‐mover) profit in Stackelberg's duopoly game 
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We conclude that Stackelberg’s duopoly game has a unique subgame per-
fect equilibrium, in which firm 1’s strategy is the output

∗1 =
1

2
(− )

and firm 2’s output is

∗2 =
1

2
(− ∗1 − )

=
1

2
(− 1

2
(− )− )

=
1

4
(− )

By contrast, in the unique Nash equilibrium of the Cournot’s duopoly game

under the same assumptions (1 = 2 = ), each firm produces
1

3
(− ).



The subgame perfect equilibrium of Stackelberg's duopoly game 
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Auctions  
(the basics) 



Auctions

From Babylonia to eBay, auctioning has a very long history.

• Babylon:

- women at marriageable age.

• Athens, Rome, and medieval Europe:

- rights to collect taxes,

- dispose of confiscated property,

- lease of land and mines,

and more...



• Auctions, broadly defined, are used to allocate significant economics re-
sources.

Examples: works of art, government bonds, offshore tracts for oil ex-
ploration, radio spectrum, and more.

• Auctions take many forms. A game-theoretic framework enables to under-
stand the consequences of various auction designs.

• Game theory can suggest the design likely to be most effective, and the
one likely to raise the most revenues.



Types of auctions

Sequential / simultaneous

Bids may be called out sequentially or may be submitted simultaneously
in sealed envelopes:

— English (or oral) — the seller actively solicits progressively higher bids
and the item is soled to the highest bidder.

— Dutch — the seller begins by offering units at a “high” price and reduces
it until all units are soled.

— Sealed-bid — all bids are made simultaneously, and the item is sold to
the highest bidder.



First-price / second-price

The price paid may be the highest bid or some other price:

— First-price — the bidder who submits the highest bid wins and pay a
price equal to her bid.

— Second-prices — the bidder who submits the highest bid wins and pay
a price equal to the second highest bid.

Variants: all-pay (lobbying), discriminatory, uniform, Vickrey (William
Vickrey, Nobel Laureate 1996), and more.



Private-value / common-value

Bidders can be certain or uncertain about each other’s valuation:

— In private-value auctions, valuations differ among bidders, and each
bidder is certain of her own valuation and can be certain or uncertain
of every other bidder’s valuation.

— In common-value auctions, all bidders have the same valuation, but
bidders do not know this value precisely and their estimates of it vary.



First-price auction class experiment 
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Second-price auction class experiment 
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First-price auction (with perfect information)

To define the game precisely, denote by vi the value that bidder i attaches
to the object. If she obtains the object at price p then her payoff is vi−p.

Assume that bidders’ valuations are all different and all positive. Number
the bidders 1 through n in such a way that

v1 > v2 > · · · > vn > 0.

Each bidder i submits a (sealed) bid bi. If bidder i obtains the object, she
receives a payoff vi − bi. Otherwise, her payoff is zero.

Tie-breaking — if two or more bidders are in a tie for the highest bid, the
winner is the bidder with the highest valuation.



In summary, a first-price sealed-bid auction with perfect information is the
following strategic game:

— Players: the n bidders.

— Actions: the set of possible bids bi of each player i (nonnegative num-
bers).

— Payoffs: the preferences of player i are given by

ui =

(
vi − b̄ if bi = b̄ and vi > vj if bj = b̄
0 if bi < b̄

where b̄ is the highest bid.



The set of Nash equilibria is the set of profiles (1  ) of bids with the
following properties:

[1] 2 ≤ 1 ≤ 1
[2]  ≤ 1 for all  6= 1
[3]  = 1 for some  6= 1

It is easy to verify that all these profiles are Nash equilibria. It is harder
to show that there are no other equilibria. We can easily argue, however,
that there is no equilibrium in which player 1 does not obtain the object.

=⇒ The first-price sealed-bid auction is socially efficient, but does not neces-
sarily raise the most revenues.



Second-price auction (with perfect information)

A second-price sealed-bid auction with perfect information is the following
strategic game:

— Players: the n bidders.

— Actions: the set of possible bids bi of each player i (nonnegative num-
bers).

— Payoffs: the preferences of player i are given by

ui =

(
vi − b̄ if bi > b̄ or bi = b̄ and vi > vj if bj = b̄
0 if bi < b̄

where b̄ is the highest bid submitted by a player other than i.



First note that for any player i the bid bi = vi is a (weakly) dominant
action (a “truthful” bid), in contrast to the first-price auction.

The second-price auction has many equilibria, but the equilibrium bi = vi
for all i is distinguished by the fact that every player’s action dominates
all other actions.

Another equilibrium in which player j 6= 1 obtains the good is that in
which

[1] b1 < vj and bj > v1
[2] bi = 0 for all i 6= {1, j}



Common-value auctions and the winner’s curse

Suppose we all participate in a sealed-bid auction for a jar of coins. Once
you have estimated the amount of money in the jar, what are your bidding
strategies in first- and second-price auctions?

The winning bidder is likely to be the bidder with the largest positive error
(the largest overestimate).

In this case, the winner has fallen prey to the so-called the winner’s curse.
Auctions where the winner’s curse is significant are oil fields, spectrum
auctions, pay per click, and more.



 

 

 

 

 

 

 

 

 

Herd behavior and informational cascades 



“Men nearly always follow the tracks made by others and proceed
in their affairs by imitation.” Machiavelli (Renaissance philosopher)



Examples

Business strategy

— TV networks make introductions in the same categories as their rivals.

Finance

— The withdrawal behavior of small number of depositors starts a bank
run.



Politics

— The solid New Hampshirites (probably) can not be too far wrong.

Crime

— In NYC, individuals are more likely to commit crimes when those around
them do.



Why should individuals behave in this way?

Several “theories” explain the existence of uniform social behavior:

— benefits from conformity

— sanctions imposed on deviants

— network / payoff externalities

— social learning

Broad definition: any situation in which individuals learn by observing the
behavior of others.



The canonical model of social learning

— Rational (Bayesian) behavior

— Incomplete and asymmetric information

— Pure information externality

— Once-in-a-lifetime decisions

— Exogenous sequencing

— Perfect information / complete history



 

Coin flip 

Urn A Urn B 

a,a,b a,b,b 

1/2 1/2 



Bayes’ rule

Let  be the number of  signals and  be the number of  signals. Then
Bayes’ rule can be used to calculate the posterior probability of urn :

Pr( |) =
Pr() Pr( |)
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An example

• There are two decision-relevant events, say  and , equally likely to
occur ex ante and two corresponding signals  and .

• Signals are informative in the sense that there is a probability higher than
12 that a signal matches the label of the realized event.

• The decision to be made is a prediction of which of the events takes place,
basing the forecast on a private signal and the history of past decisions.



• Whenever two consecutive decisions coincide, say both predict , the sub-
sequent player should also choose  even if his signal is different .

• Despite the asymmetry of private information, eventually every player im-
itates her predecessor.

• Since actions aggregate information poorly, despite the available informa-
tion, such herds / cascades often adopt a suboptimal action.



What have we learned from Social Learning?

• Finding 1

— Individuals ’ignore’ their own information and follow a herd.

• Finding 2

— Herds often adopt a wrong action.

• Finding 3

— Mass behavior may be idiosyncratic and fragile.



Informational cascades and herd behavior

Two phenomena that have elicited particular interest are informational
cascades and herd behavior.

— Cascade: agents ’ignore’ their private information when choosing an
action.

— Herd: agents choose the same action, not necessarily ignoring their
private information.



• While the terms informational cascade and herd behavior are used inter-
changeably there is a significant difference between them.

• In an informational cascade, an agent considers it optimal to follow the
behavior of her predecessors without regard to her private signal.

• When acting in a herd, agents choose the same action, not necessarily
ignoring their private information.

• Thus, an informational cascade implies a herd but a herd is not necessarily
the result of an informational cascade.



A model of social learning

Signals

— Each player  ∈ {1  } receives a signal  that is private infor-
mation.

— For simplicity, {} are independent and uniformly distributed on [−1 1].

Actions

— Sequentially, each player  has to make a binary irreversible decision
 ∈ {0 1}.



Payoffs

—  = 1 is profitable if and only if
P
≤  ≥ 0, and  = 0 is profitable

otherwise.

Information

— Perfect information

I = { (1 2  −1)}

— Imperfect information

I = { −1}



A three-agent example
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A three-agent example
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A three-agent example under perfect information
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A three-agent example under imperfect information
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A sequence of cutoffs under imperfect and perfect information
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A sequence of cutoffs under imperfect and perfect information
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The decision problem

— The optimal decision rule is given by

 = 1 if and only if E
hP

=1  | I
i
≥ 0

Since I does not provide any information about the content of suc-
cessors’ signals, we obtain

 = 1 if and only if E [
P
=1  | I] ≥ 0

Hence,

 = 1 if and only if  ≥ −E
hP−1

=1  | I
i




The cutoff process

— For any , the optimal strategy is the cutoff strategy

 =

(
1   ≥ ̂
0    ̂

where

̂ = −E
∙X−1

=1
 | I

¸
is the optimal history-contingent cutoff.

— ̂ is sufficient to characterize the individual behavior, and {̂} char-
acterizes the social behavior of the economy.



Overview of results

Perfect information

— A cascade need not arise, but herd behavior must arise.

Imperfect information

— Herd behavior is impossible. There are periods of uniform behavior,
punctuated by increasingly rare switches.



• The similarity:

— Agents can, for a long time, make the same (incorrect) choice.

• The difference:

— Under perfect information, a herd is an absorbing state. Under imper-
fect information, continued, occasional and sharp shifts in behavior.



• The dynamics of social learning depend crucially on the extensive form of
the game.

• The key economic phenomenon that imperfect information captures is a
succession of fads starting suddenly, expiring rather easily, each replaced
by another fad.

• The kind of episodic instability that is characteristic of socioeconomic be-
havior in the real world makes more sense in the imperfect-information
model.



As such, the imperfect-information model gives insight into phenomena
such as manias, fashions, crashes and booms, and better answers such
questions as:

— Why do markets move from boom to crash without settling down?

— Why is a technology adopted by a wide range of users more rapidly
than expected and then, suddenly, replaced by an alternative?

— What makes a restaurant fashionable over night and equally unexpect-
edly unfashionable, while another becomes the ‘in place’, and so on?



The case of perfect information

The optimal history-contingent cutoff rule is

̂ = −E
∙X−1

=1
 | 1  −1

¸


and ̂ is different from ̂−1 only by the information reveals by the action
of agent (− 1)̇

̂ = ̂−1 − E
h
−1 | ̂−1 −1

i


The cutoff dynamics thus follow the cutoff process

̂ =

⎧⎪⎨⎪⎩
−1+̂−1

2 if −1 = 1
1+̂−1

2 if −1 = 0

where ̂1 = 0.



Informational cascades

— −1  ̂  1 for any  so any player takes his private signal into
account in a non-trivial way.

Herd behavior

— {̂} has the martingale property by the Martingale Convergence The-
orem a limit-cascade implies a herd.



The case of imperfect information

The optimal history-contingent cutoff rule is

̂ = −E
∙X−1

=1
 | −1

¸


which can take two values conditional on −1 = 1 or −1 = 0

 = −E
∙X−1

=1
 | −1 = 1

¸


 = −E
∙X−1

=1
 | −1 = 1

¸


where  = −.



The law of motion for  is given by

 =  (−2 = 1|−1 = 1)
n
−1 − E [−1 | −2 = 1]

o
+  (−2 = 0|−1 = 1)

©
−1 − E [−1 | −2 = 0]

ª


which simplifies to

 =
1− −1

2

"
−1 −

1 + −1
2

#

+
1− −1

2

∙
−1 −

1 + −1
2

¸




Given that  = −, the cutoff dynamics under imperfect information
follow the cutoff process

̂ =

⎧⎪⎨⎪⎩ −
1+̂

2
−1
2 if −1 = 1

1+̂
2
−1
2 if −1 = 0

where ̂1 = 0.



Informational cascades

— −1  ̂  1 for any  so any player takes his private signal into
account in a non-trivial way.

Herd behavior

— {̂} is not convergent (proof is hard!) and the divergence of cutoffs
implies divergence of actions.

— Behavior exhibits periods of uniform behavior, punctuated by increas-
ingly rare switches.



Sequential social-learning model: 
Well heck, if all you smart cookies agree, who am I to dissent?  



Imperfect information:  
Which way is the wind blowing?!  

 




