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(1) Housekeeping
— Homework
— Office hours and webinars
— Block 4 topics
— Final exam

(2) Extensive games with perfect information

(3) Oligopolistic competition
— Cournot
— Stackelberg

(4) Games with perfect information

(5) Food for thought...



 

 

 

 

 

 

 

 

 

Extensive games with perfect information 
 



Extensive games with perfect information

• The model of a strategic suppresses the sequential structure of decision
making.

— All players simultaneously choose their plan of action once and for all.

• The model of an extensive game, by contrast, describes the sequential
structure of decision-making explicitly.

— In an extensive game of perfect information all players are fully informed
about all previous actions.
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Subgame perfect equilibrium

• The notion of Nash equilibrium ignores the sequential structure of the
game.

• Consequently, the steady state to which a Nash Equilibrium corresponds
may not be robust.

• A subgame perfect equilibrium is an action profile that induces a Nash
equilibrium in every subgame (so every subgame perfect equilibrium is also
a Nash equilibrium).



An example: entry game 
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Subgame perfect and backward induction 
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Two entry games in the laboratory 
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Oligopoly 



Cournot’s oligopoly model (1838)

— A single good is produced by two firms (the industry is a “duopoly”).

— The cost for firm  = 1 2 for producing  units of the good is given
by  (“unit cost” is constant equal to   0).

— If the firms’ total output is  = 1 + 2 then the market price is

 = −

if  ≥  and zero otherwise (linear inverse demand function). We
also assume that   .



The inverse demand function 
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To find the Nash equilibria of the Cournot’s game, we can use the proce-
dures based on the firms’ best response functions.

But first we need the firms payoffs (profits):

1 = 1 − 11
= (−)1 − 11
= (− 1 − 2)1 − 11
= (− 1 − 2 − 1)1

and similarly,

2 = (− 1 − 2 − 2)2



Firm 1’s profit as a function of its output 
(given firm 2’s output) 
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To find firm 1’s best response to any given output 2 of firm 2, we need
to study firm 1’s profit as a function of its output 1 for given values of
2.

Using calculus, we set the derivative of firm 1’s profit with respect to 1
equal to zero and solve for 1:

1 =
1

2
(− 2 − 1)

We conclude that the best response of firm 1 to the output 2 of firm 2

depends on the values of 2 and 1.



Because firm 2’s cost function is 2 6= 1, its best response function is
given by

2 =
1

2
(− 1 − 2)

A Nash equilibrium of the Cournot’s game is a pair (∗1 
∗
2) of outputs

such that ∗1 is a best response to 
∗
2 and 

∗
2 is a best response to 

∗
1.

From the figure below, we see that there is exactly one such pair of outputs

∗1 =
+2−21

3 and ∗2 =
+1−22

3

which is the solution to the two equations above.



The best response functions in the Cournot's duopoly game 
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Nash equilibrium 



Nash equilibrium comparative statics 
(a decrease in the cost of firm 2) 

 
A question: what happens when consumers are willing to pay more (A 
increases)? 
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In summary, this simple Cournot’s duopoly game has a unique Nash equi-
librium.

Two economically important properties of the Nash equilibrium are (to
economic regulatory agencies):

[1] The relation between the firms’ equilibrium profits and the profit they
could make if they act collusively.

[2] The relation between the equilibrium profits and the number of firms.



[1] Collusive outcomes: in the Cournot’s duopoly game, there is a pair of out-
puts at which both firms’ profits exceed their levels in a Nash equilibrium.

[2] Competition: The price at the Nash equilibrium if the two firms have the
same unit cost 1 = 2 =  is given by

 ∗ = − ∗1 − ∗2

=
1

3
(+ 2)

which is above the unit cost . But as the number of firm increases, the
equilibrium price deceases, approaching  (zero profits!).



Stackelberg’s duopoly model (1934)

How do the conclusions of the Cournot’s duopoly game change when the
firms move sequentially? Is a firm better off moving before or after the
other firm?

Suppose that 1 = 2 =  and that firm 1 moves at the start of the game.
We may use backward induction to find the subgame perfect equilibrium.

— First, for any output 1 of firm 1, we find the output 2 of firm 2

that maximizes its profit. Next, we find the output 1 of firm 1 that
maximizes its profit, given the strategy of firm 2.



Firm 2

Since firm 2 moves after firm 1, a strategy of firm 2 is a function that
associate an output 2 for firm 2 for each possible output 1 of firm 1.

We found that under the assumptions of the Cournot’s duopoly game Firm
2 has a unique best response to each output 1 of firm 1, given by

2 =
1

2
(− 1 − )

(Recall that 1 = 2 = ).



Firm 1

Firm 1’s strategy is the output 1 the maximizes

1 = (− 1 − 2 − )1 subject to 2 =
1
2(− 1 − )

Thus, firm 1 maximizes

1 = (− 1 − (
1

2
(− 1 − ))− )1 =

1

2
1(− 1 − )

This function is quadratic in 1 that is zero when 1 = 0 and when
1 = − . Thus its maximizer is

∗1 =
1

2
(− )



Firm 1’s (first‐mover) profit in Stackelberg's duopoly game 
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We conclude that Stackelberg’s duopoly game has a unique subgame per-
fect equilibrium, in which firm 1’s strategy is the output

∗1 =
1

2
(− )

and firm 2’s output is

∗2 =
1

2
(− ∗1 − )

=
1

2
(− 1

2
(− )− )

=
1

4
(− )

By contrast, in the unique Nash equilibrium of the Cournot’s duopoly game

under the same assumptions (1 = 2 = ), each firm produces
1

3
(− ).



The subgame perfect equilibrium of Stackelberg's duopoly game 
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Games with imperfect (and asymmetric) information 



Markets with asymmetric information

• The traditional theory of markets assumes that market participants have
complete information about the underlying economic variables:

— Buyers and sellers are both perfectly informed about the quality of the
goods being sold in the market.

— If it is not costly to verify quality, then the prices of the goods will
simply adjust to reflect the quality difference.

=⇒ This is clearly a drastic simplification!!!



• There are certainly many markets in the real world in which it may be very
costly (or even impossible) to gain accurate information:

— labor markets, financial markets, markets for consumer products, and
more.

• If information about quality is costly to obtain, then it is no longer possible
that buyers and sellers have the same information.

• The costs of information provide an important source of market friction
and can lead to a market breakdown.



Nobel Prize 2001  
“for their analyses of markets with asymmetric information” 

 

   
 

  



The Market for Lemons

Example I

— Consider a market with 100 people who want to sell their used car and
100 people who want to buy a used car.

— Everyone knows that 50 of the cars are “plums” and 50 are “lemons.”

— Suppose further that

seller buyer
lemon $1000 $1200
plum $2000 $2400



— If it is easy to verify the quality of the cars there will be no problem in
this market.

— Lemons will sell at some price $1000 − 1200 and plums will sell at
$2000− 2400.

— But happens to the market if buyers cannot observe the quality of the
car?



— If buyers are risk neutral, then a typical buyer will be willing to pay his
expected value of the car

1

2
1200 +

1

2
2400 = $1800

— But for this price only owners of lemons would offer their car for sale,
and buyers would therefore (correctly) expect to get a lemon.

— Market failure — no transactions will take place, although there are
possible gains from trade!



Example II

— Suppose we can index the quality of a used car by some number ,
which is distributed uniformly over [0 1].

— There is a large number of demanders for used cars who are willing to
pay 32 for a car of quality .

— There is a large number of sellers who are willing to sell a car of quality
 for a price of .



— If quality is perfectly observable, each used car of quality  would be
soled for some price between  and 32.

— What will be the equilibrium price(s) in this market when quality of
any given car cannot be observed?

— The unique equilibrium price is zero, and at this price the demand is
zero and supply is zero.

=⇒ The asymmetry of information has destroyed the market for used cars. But
the story does not end here!!!



Signaling

• In the used-car market, owners of the good used cars have an incentive to
try to convey the fact that they have a good car to the potential purchasers.

• Put differently, they would like choose actions that signal that they are
offering a plum rather than a lemon.

• In some case, the presence of a “signal” allows the market to function
more effectively than it would otherwise.



Example — educational signaling

— Suppose that a fraction 0 < b < 1 of workers are competent and a
fraction 1− b are incompetent.

— The competent workers have marginal product of a2 and the incom-
petent have marginal product of a1 < a2.

— For simplicity we assume a competitive labor market and a linear pro-
duction function

L1a1 + L2a2

where L1 and L2 is the number of incompetent and competent workers,
respectively.



— If worker quality is observable, then firm would just offer wages

w1 = a1 and w2 = a2

to competent workers, respectively.

— That is, each worker will paid his marginal product and we would have
an efficient equilibrium.

— But what if the firm cannot observe the marginal products so it cannot
distinguish the two types of workers?



— If worker quality is unobservable, then the “best” the firm can do is to
offer the average wage

w = (1− b)a1 + ba2.

— If both types of workers agree to work at this wage, then there is no
problem with adverse selection (more below).

— The incompetent (resp. competent) workers are getting paid more
(resp. less) than their marginal product.



— The competent workers would like a way to signal that they are more
productive than the others.

— Suppose now that there is some signal that the workers can acquire
that will distinguish the two types

— One nice example is education — it is cheaper for the competent workers
to acquire education than the incompetent workers.



— To be explicit, suppose that the cost (dollar costs, opportunity costs,
costs of the effort, etc.) to acquiring e years of education is

c1e and c2e

for incompetent and competent workers, respectively, where c1 > c2.

— Suppose that workers conjecture that firms will pay a wage s(e) where
s is some increasing function of e.

— Although education has no effect on productivity (MBA?), firms may
still find it profitable to base wage on education — attract a higher-
quality work force.



Market equilibrium

In the educational signaling example, there appear to be several possibilities
for equilibrium:

[1] The (representative) firm offers a single contract that attracts both
types of workers.

[2] The (representative) firm offers a single contract that attracts only one
type of workers.

[3] The (representative) firm offers two contracts, one for each type of
workers.



• A separating equilibrium involves each type of worker making a choice that
separate himself from the other type.

• In a pooling equilibrium, in contrast, each type of workers makes the same
choice, and all getting paid the wage based on their average ability.

Note that a separating equilibrium is wasteful in a social sense — no social
gains from education since it does not change productivity.



Example (cont.)

— Let e1 and e2 be the education level actually chosen by the workers.
Then, a separating (signaling) equilibrium has to satisfy:

[1] zero-profit conditions

s(e1) = a1
s(e2) = a2

[2] self-selection conditions

s(e1)− c1e1 ≥ s(e2)− c1e2
s(e2)− c2e2 ≥ s(e1)− c2e1



— In general, there may by many functions s(e) that satisfy conditions
[1] and [2]. One wage profile consistent with separating equilibrium is

s(e) =

(
a2 if e > e∗

a1 if e ≤ e∗

and
a2 − a1

c2
> e∗ >

a2 − a1
c1

=⇒ Signaling can make things better or worse — each case has to examined on
its own merits!



The Sheepskin (diploma) effect

The increase in wages associated with obtaining a higher credential:

— Graduating high school increases earnings by 5 to 6 times as much as
does completing a year in high school that does not result in graduation.

— The same discontinuous jump occurs for people who graduate from
collage.

— High school graduates produce essentially the same amount of output
as non-graduates.



 
 
 
 
 
 
 

Food for thought 



LUPI

Many players simultaneously chose an integer between 1 and 99,999. Who-
ever chooses the lowest unique positive integer (LUPI) wins.

Question What does an equilibrium model of behavior predict in this game?

The field version of LUPI, called Limbo, was introduced by the government-
owned Swedish gambling monopoly Svenska Spel. Despite its complexity,
there is a surprising degree of convergence toward equilibrium.



Morra

A two-player game in which each player simultaneously hold either one or
two fingers and each guesses the total number of fingers held up.

If exactly one player guesses correctly, then the other player pays her the
amount of her guess.

Question Model the situation as a strategic game and describe the equilibrium
model of behavior predict in this game.

The game was played in ancient Rome, where it was known as “micatio.”



Maximal game
(sealed-bid second-price auction)

Two bidders, each of whom privately observes a signal  that is inde-
pendent and identically distributed (i.i.d.) from a uniform distribution on
[0 10].

Let max = max{1 2} and assume the ex-post common value to the
bidders is max.

Bidders bid in a sealed-bid second-price auction where the highest bidder
wins, earns the common value max and pays the second highest bid.




