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Game plan...

— The tragedy of the commons

— Evolutionary stability

— Job-market signaling

— Social learning

— Bargaining

And more (my startup company?) if time permits. But first a couple of

housekeeping items — Chez Panisse (LUPI results), final exam, and course
evaluations.
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The tragedy of the commons



William Forster Lloyd (1833)

— Cattle herders sharing a common parcel of land (the commons) on
which they are each entitled to let their cows graze. If a herder put
more than his allotted number of cattle on the common, overgrazing

could result.

— Each additional animal has a positive effect for its herder, but the cost
of the extra animal is shared by all other herders, causing a so-called
“free-rider” problem. Today's commons include fish stocks, rivers,
oceans, and the atmosphere.



Garrett Hardin (1968)

— This social dilemma was populated by Hardin in his article “The Tragedy
of the Commons,” published in the journal Science. The essay derived
its title from Lloyd (1833) on the over-grazing of common land.

— Hardin concluded that “...the commons, if justifiable at all, is justifi-
able only under conditions of low-population density. As the human

population has increased, the commons has had to be abandoned in
one aspect after another.”



— “The only way we can preserve and nurture other and more precious
freedoms is by relinquishing the freedom to breed, and that very soon.
“Freedom is the recognition of necessity” — and it is the role of ed-
ucation to reveal to all the necessity of abandoning the freedom to

breed. Only so, can we put an end to this aspect of the tragedy of the
commons.”

“Freedom to breed will bring ruin to all.”



Let's put some game theoretic analysis (rigorous sense) behind this story:

— There are n players, each choosing how much to produce in a produc-

tion activity that ‘consumes’ some of the clean air that surrounds our
planet.

— There is K amount of clean air, and any consumption of clean air
comes out of this common resource. Each player i« = 1, ..., n chooses

his consumption of clean air for production k; > 0 and the amount of
clean air left is therefore

K—-Y" ki



— The benefit of consuming an amount k; > 0 of clean air gives player

¢ a benefit equal to In(k;). Each player also enjoys consuming the
reminder of the clean air, giving each a benefit

In (K -3 kz) .

— Hence, the value for each player ¢ from the action profile (outcome)
k = (kq,...,kn) is give by

vi(ks, k_;) = In(k;) + In (K - kj> .

j=1



— To get player ¢'s best-response function, we write down the first-order
condition of his payoff function:

Ovi(ki k—;) 1 1 _ 0
and thus
K-S,k
BRi(k_j) = - 271"

2



The two-player Tragedy of the Commons

— To find the Nash equilibrium, there are n equations with n unknown
that need to be solved. We first solve the equilibrium for two players.
Letting k;(k;) be the best response of player ¢, we have two best-
response functions:

K — ks K — Ky

k1(k2) = and ko (k1) =

— If we solve the two best-response functions simultaneously, we find the
unique (pure-strategy) Nash equilibrium

K
NE NE



K
Can this two-player society do better? More specifically, is consuming 3

clean air for each player too much (or too little)?

— The ‘right way' to answer this question is using the Pareto princi-
ple (Vilfredo Pareto, 1848-1923) — can we find another action profile
k = (K1, k) that will make both players better off than in the Nash
equilibrium?

— To this end, the function we seek to maximize is the social welfare
function w given by

2 2
w(vy,v3) = v1 + v = Zizl In(k;) + 21In (K — Zizl kz) .



— The first-order conditions for this problem are

ow(k1, ko) 1 B 2 _ 0
Okq ki K —ki—ko
and
Ow(ky, k) 1 2 _ 0
Oko kr K —ki— ko

— Solving these two equations simultaneously result the unique Pareto
optimal outcome

K
PO PO
k']_ — k’2 — 4



The n-player Tragedy of the Commons

— In the n-player Tragedy of the Commons, the best response of each
player i = 1,....n, k;(k_;), is given by
K = 25k

BR;(k—;) = 5

— We consider a symmetric Nash equilibrium where each player ¢ chooses
the same level of consumption of clean air k* (it is subtle to show that

there cannot be asymmetric Nash equilibria).



— Because the best response must hold for each player 7 and they all
choose the same level k°NE then in the symmetric Nash equilibrium
all best-response functions reduce to

NE
L SNE _ B 2 BONE K — (n = 1)ESVE

2 2
or
. SNE _ K
n+1
Hence, the sum of clean air consumed by the firms is i 1K, which
n

increases with n as Hardin conjectured.



What is the socially optimal outcome with n players? And how does society
size affect this outcome?

— With n players, the social welfare function w given by

w(vy,...,vn) = 2?21%
= Y0 In(k) +nin (K=" k).

And the n first-order conditions for the problem of maximizing this
function are

Ow(ky,....kn) 1 n _ 0

fori=1,...,n.



— Just as for the analysis of the Nash equilibrium with n players, the solu-

tion here is also symmetric. Therefore, the Pareto optimal consumption

kPO

of each player can be found using the following equation:

1 n

kPO K —nkPO 0

or
ppo _ K
2n

. . . K
and thus the Pareto optimal consumption of air is equal X for any

society size n. fori =1,...,n.



Finally, we show there is no asymmetric equilibrium.

— To this end, assume there are two players, ¢ and j, choosing two dif-
ferent k; # k; in equilibrium.

— Because we assume a Nash equilibrium the best-response functions of
¢ and 7 must hold simultaneously, that is

K—k—k; K—k — L
ki = . and k; = '
2 J 2

where k be the sum of equilibrium choices of all other players except i

and j.



— However, if we solve the best-response functions of players ¢ and j
simultaneously, we find that

contracting the assumption we started with that k; # k;.



Evolutionary game theory



Evolutionary stability

A single population of players. Players interact with each other pair-wise
and randomly matched.

Players are assigned modes of behavior (mutation). Utility measures each
player’s ability to survive.

e of players consists of mutants taking action a while others take action

a®.



Evolutionary stable strategy (ESS)

Consider a two-player payoff symmetric game

G = {{1,2}, (A, A), (u1,u2))

where

uy(ay, ap) = usz(az, ay)

(players exchanging a1 and ay).



a* € Ais ESS if and only if forany a € A, a # a™ and € > 0 sufficiently
small

(1 —&)u(a™, a*) + eu(a™,a) > (1 — €)u(a,a™) + eu(a, a)
which is satisfied if and only if for any a # a* either
u(a™,a™) > u(a,a™)
or

u(a®,a™) = u(a,a™) and u(a™, a) > u(a, a)



Three results on £SS

[1] If a*® is an ESS then (a*,a*) isa NE.

Suppose not. Then, there exists a strategy a € A such that
u(a,a”) > u(a®, a”).
But, for £ small enough
(1 —28)u(a”,a™) +cu(a™, a) < (1 —¢&)u(a,a™) + cu(a, a)

and thus a™ is not an ESS.



2] If (a*,a*) is a strict NE (u(a*,a*) > u(a,a*) for all a € A) then a* is
an ESS.

Suppose a* is not an E£SS. Then either
u(a*,a™) < u(a,a™)
or
u(a®,a*) = u(a,a™) and u(a®, a) < u(a,a).

so (a*,a*) can be a NE but not a strict NE.



[3] The two-player two-action game

a a

a | w,w| x,y

a |y | zz2

has a strategy which is ES'S.

If w > y or z > x then (a,a) or (a’,a’) are strict NE, and thus a or
a’ are ESS.

If w < y and z < x then there is a unique symmetric mixed strategy
NE (o, a*) where
a’(a) = (z —z)/(w -y + 2z — z)

and u(a™*, a) > u(a, ) for any a # a*.



Games with incomplete/imperfect information
Spence's job-market signaling model



Signaling

e In the used-car market, owners of the good used cars have an incentive to
try to convey the fact that they have a good car to the potential purchasers.

e Put differently, they would like choose actions that signal that they are
offering a plum rather than a lemon.

e In some case, the presence of a “signal’ allows the market to function
more effectively than it would otherwise.



Example — educational signaling

— Suppose that a fraction 0 < b < 1 of workers are competent and a
fraction 1 — b are incompetent.

— The competent workers have marginal product of ap and the incom-
petent have marginal product of a1 < as.

— For simplicity we assume a competitive labor market and a linear pro-
duction function

Liaj + Lpap

where L7 and Lo is the number of incompetent and competent workers,
respectively.



— If worker quality is observable, then firm would just offer wages
w1 = aq and wo = an

to competent workers, respectively.

— That is, each worker will paid his marginal product and we would have

an efficient equilibrium.

— But what if the firm cannot observe the marginal products so it cannot
distinguish the two types of workers?



— If worker quality is unobservable, then the “best” the firm can do is to

offer the average wage

w = (1 — b)ay + bas.

— If both types of workers agree to work at this wage, then there is no

problem with adverse selection (more below).

— The incompetent (resp. competent) workers are getting paid more

(resp. less) than their marginal product.



— The competent workers would like a way to signal that they are more
productive than the others.

— Suppose now that there is some signal that the workers can acquire
that will distinguish the two types

— One nice example is education — it is cheaper for the competent workers
to acquire education than the incompetent workers.



— To be explicit, suppose that the cost (dollar costs, opportunity costs,
costs of the effort, etc.) to acquiring e years of education is

cie and coe

for incompetent and competent workers, respectively, where c; > c¢».

— Suppose that workers conjecture that firms will pay a wage s(e) where
s Is some increasing function of e.

— Although education has no effect on productivity (MBA?), firms may
still find it profitable to base wage on education — attract a higher-
quality work force.



Market equilibrium
In the educational signaling example, there appear to be several possibilities
for equilibrium:

[1] The (representative) firm offers a single contract that attracts both
types of workers.

[2] The (representative) firm offers a single contract that attracts only one
type of workers.

[3] The (representative) firm offers two contracts, one for each type of
workers.



e A separating equilibrium involves each type of worker making a choice that
separate himself from the other type.

e In a pooling equilibrium, in contrast, each type of workers makes the same
choice, and all getting paid the wage based on their average ability.

Note that a separating equilibrium is wasteful in a social sense — no social
gains from education since it does not change productivity.



Example (cont.)

— Let e7 and ey be the education level actually chosen by the workers.
Then, a separating (signaling) equilibrium has to satisfy:

[1] zero-profit conditions

s(e1) = a1
s(e2) = ap
[2] self-selection conditions
s(e1) —cier > s(e2) —cien
s(ex) — coex > s(e1) — cpeq



— In general, there may by many functions s(e) that satisfy conditions
[1] and [2]. One wage profile consistent with separating equilibrium is

) oap if ex>e”
S(e)_{al if e<e*

and
az — aj

C2 €1

—> Signaling can make things better or worse — each case has to examined on
its own merits!



The Sheepskin (diploma) effect

The increase in wages associated with obtaining a higher credential:

— Graduating high school increases earnings by 5 to 6 times as much as
does completing a year in high school that does not result in graduation.

— The same discontinuous jump occurs for people who graduate from
collage.

— High school graduates produce essentially the same amount of output
as non-graduates.



Social learning
herd behavior and informational cascades



“Men nearly always follow the tracks made by others and proceed
in their affairs by imitation.” Machiavelli (Renaissance philosopher)



Examples

Business strategy

— TV networks make introductions in the same categories as their rivals.

Finance

— The withdrawal behavior of small number of depositors starts a bank
run.



Politics

— The solid New Hampshirites (probably) can not be too far wrong.

Crime

— In NYC, individuals are more likely to commit crimes when those around
them do.



Why should individuals behave in this way?

Several “theories” explain the existence of uniform social behavior:
— benefits from conformity

— sanctions imposed on deviants

— network / payoff externalities

— social learning

Broad definition: any situation in which individuals learn by observing the
behavior of others.



The canonical model of social learning

— Rational (Bayesian) behavior

— Incomplete and asymmetric information
— Pure information externality

— Once-in-a-lifetime decisions

— Exogenous sequencing

— Perfect information / complete history



Coin flip

1/2 1/2

Urn A Urn B

O0® o 1

a,a,b a,b,b



Bayes’ rule

Let n be the number of a signals and m be the number of b signals. Then
Bayes' rule can be used to calculate the posterior probability of urn A:
Pr(A) Pr(n,m|A)
Pr(A) Pr(n,m|A) + Pr(B) Pr(n,m|B)
OGROK
D"+ @G G)
2

Pr(Aln,m) =

2n_|_2m'



An example

e There are two decision-relevant events, say A and B, equally likely to
occur ex ante and two corresponding signals a and b.

e Signals are informative in the sense that there is a probability higher than
1/2 that a signal matches the label of the realized event.

e The decision to be made is a prediction of which of the events takes place,
basing the forecast on a private signal and the history of past decisions.



e Whenever two consecutive decisions coincide, say both predict A, the sub-
sequent player should also choose A even if his signal is different b.

e Despite the asymmetry of private information, eventually every player im-
itates her predecessor.

e Since actions aggregate information poorly, despite the available informa-
tion, such herds / cascades often adopt a suboptimal action.



Informational cascades and herd behavior

Two phenomena that have elicited particular interest are informational
cascades and herd behavior.

— (Cascade: agents 'ignore’ their private information when choosing an
action.

— Herd: agents choose the same action, not necessarily ignoring their
private information.



While the terms informational cascade and herd behavior are used inter-
changeably there is a significant difference between them.

In an informational cascade, an agent considers it optimal to follow the
behavior of her predecessors without regard to her private signal.

When acting in a herd, agents choose the same action, not necessarily
ignoring their private information.

Thus, an informational cascade implies a herd but a herd is not necessarily
the result of an informational cascade.



A model of social learning

Signals

— Each player n € {1, ..., N} receives a signal 6 that is private infor-
mation.

— For simplicity, {0y} are independent and uniformly distributed on [—1, 1].

Actions

— Sequentially, each player n has to make a binary irreversible decision
xn € {0,1}.



Payoffs

— x = Lis profitable if and only if >, < ;7 0n > 0, and x = 0 is profitable
otherwise.

Information

— Perfect information
In ={0n,(z1,22,...,Tp—1)}

— Imperfect information

Ip = {07% ZUn_l}



Sequential social-learning model:
Well heck, if all you smart cookies agree, who am I to dissent?




Imperfect information:
Which way is the wind blowing?!




A three-agent example

SO

SO

SO»



A three-agent example

SO

SO

SO»



A three-agent example under perfect information

SO
SO
SO»



A three-agent example under imperfect information

1
5/8m=
1/2 m
Om
-1/2m
-5/8»
1l

D
NQD >
>



Cutoff

A sequence of cutoffs under imperfect and perfect information

0.0

-0.1
-0.2

\

-0.3

\

04 -
-0.5 -
-0.6 -
-0.7 -
0.8 -
-0.9 -

-1.0

Imperfect




Cutoff

A sequence of cutoffs under imperfect and perfect information

1.0

0.8
0.6
0.4 -
0.2 1

Imperfect

P -

Perfect

0.0
-0.2
04
-0.6

-0.8

-1.0




The decision problem

— The optimal decision rule is given by
zn, = 1 if and only if E [z,fvzlei | In} > 0.

Since Z,, does not provide any information about the content of suc-
cessors’ signals, we obtain

xn =1ifand only if E[}>7" 160, | Zn] > 0
Hence,

xn = 1 if and only if 6,, > —[& [Z?;ll 0; | In] .



The cutoff process

— For any n, the optimal strategy is the cutoff strategy

o f1if 0pn, > On,
"1 0 if 0n <6y

where

R 1
= ~B Y7, 0:1 ]

is the optimal history-contingent cutoff.

— 0y, is sufficient to characterize the individual behavior, and {,} char-
acterizes the social behavior of the economy.



Overview of results

Perfect information

— A cascade need not arise, but herd behavior must arise.

Imperfect information

— Herd behavior is impossible. There are periods of uniform behavior,
punctuated by increasingly rare switches.



e The similarity:

— Agents can, for a long time, make the same (incorrect) choice.

e [ he difference:

— Under perfect information, a herd is an absorbing state. Under imper-
fect information, continued, occasional and sharp shifts in behavior.



e The dynamics of social learning depend crucially on the extensive form of
the game.

e The key economic phenomenon that imperfect information captures is a
succession of fads starting suddenly, expiring rather easily, each replaced
by another fad.

e The kind of episodic instability that is characteristic of socioeconomic be-
havior in the real world makes more sense in the imperfect-information
model.



As such, the imperfect-information model gives insight into phenomena
such as manias, fashions, crashes and booms, and better answers such
questions as:

— Why do markets move from boom to crash without settling down?

— Why is a technology adopted by a wide range of users more rapidly
than expected and then, suddenly, replaced by an alternative?

— What makes a restaurant fashionable over night and equally unexpect-
edly unfashionable, while another becomes the ‘in place’, and so on?



The case of perfect information

The optimal history-contingent cutoff rule is

A n—1
On = — [ZiZI 07, | L1, °"7:En—1] )

and 0y, is different from én—l only by the information reveals by the action
of agent (n — 1)

9n = 9n—l — [en—l | 9n—la xn—l] 3

The cutoff dynamics thus follow the cutoff process

) i RV |
On = 1+§
—1 .
5 if x,_1=0

where 91 = 0.



Informational cascades

- —1<6, <1 for any n so any player takes his private signal into
account in a non-trivial way.

Herd behavior

- {@n} has the martingale property by the Martingale Convergence The-
orem a limit-cascade implies a herd.



The case of imperfect information

The optimal history-contingent cutoff rule is

A 1
On = - [Z?:l 0; | xn—l] ;

which can take two values conditional on z,,_1 =1lorx,_1 =0

— i -1 |
1 7
0, = —E Z?:l 0; | Tp_1 =

where 0, = —0,,.



The law of motion for 8y, is given by

On = P(xp—2 = lz/p—1 = 1) {gn—l —E[0n—1]xn2= 1]}
+ P(zp—2 =0lzp—1=1){0p1 —E[0ph_1 | zpn—2 = 0]},

which simplifies to

— 1—§_1— 1—|—§_1
9 g,y - 1




Given that 0, = —0p, the cutoff dynamics under imperfect information
follow the cutoff process

A2
1405, .
~ — f z,_1=1
> if x,_1=0

where @1 = 0.



Informational cascades

— —1 < 6, < 1 for any n so any player takes his private signal into
account in a non-trivial way.

Herd behavior

— {65} is not convergent (proof is hard!) and the divergence of cutoffs
implies divergence of actions.

— Behavior exhibits periods of uniform behavior, punctuated by increas-
ingly rare switches.



Nash bargaining
(the axiomatic approach)



Bargaining

Nash's (1950) work is the starting point for formal bargaining theory.

The bargaining problem consists of
— a set of utility pairs that can be derived from possible agreements, and

— a pair of utilities which is designated to be a disagreement point.



Bargaining solution

The bargaining solution is a function that assigns a unique outcome to
every bargaining problem.

Nash's bargaining solution is the first solution that

— satisfies four plausible conditions, and

— has a simple functional form, which make it convenient to apply.



A bargaining situation

A bargaining situation:
— N is a set of players or bargainers,
— A is a set of agreements/outcomes,

— D is a disagreement outcome, and

(S, d) is the primitive of Nash’s bargaining problem where

- S = (u1(a),us(a)) for a € A the set of all utility pairs, and d =
(u1(D), uz(D)).



A bargaining problem is a pair (S,d) where S C R? is compact and
convex, d € S and there exists s € S such that s; > d; fort =1,2. The
set of all bargaining problems (S, d) is denoted by B.

A bargaining solution is a function f : B — R? such that f assigns to

each bargaining problem (S, d) € B a unique element in S.



Nash’s axioms

One states as axioms several properties that it would seem natural for the
solution to have and then one discovers that the axioms actually determine
the solution uniquely - Nash 1953 -

Does not capture the details of a specific bargaining problem (e.g. alter-
nating or simultaneous offers).

Rather, the approach consists of the following four axioms: invariance
to equivalent utility representations, symmetry, independence of irrelevant
alternatives, and (weak) Pareto efficiency.



Invariance to equivalent utility representations (/NV)

(S’,d') is obtained from (S, d) by the transformations
si = ;s; + B
fori=1,2if
d; = ogd; + B
and

S" = {(a181 + B1, 80 + B2) € R? : (s1,52) € S}.

Note that if a;; > 0 for i = 1,2 then (S’, d’) is itself a bargaining problem.



If (S’,d’) is obtained from (S, d) by the transformations
Si > aiSi + By
for 2 = 1,2 where «; > 0 for each 7, then
fi(8',d') = i f3(S, d) + B;
for = 1,2. Hence, (S’,d') and (S, d) represent the same situation.



Symmetry (SY M)

A bargaining problem (S, d) is symmetric if di = d and (s1,s2) € S if
and only if (so,s1) € S. If the bargaining problem (S, d) is symmetric
then

fl(S7 d) — f2(S7 d)

Nash does not describe differences between the players. All asymmetries
(in the bargaining abilities) must be captured by (S, d).

Hence, if players are the same the bargaining solution must assign the same
utility to each player.



Independence of irrelevant alternatives (/7A)

If (S,d) and (T, d) are bargaining problems with S C T and f(T,d) € S
then

f(Sa d) — f(Tad)

If T" is available and players agree on s € S C T then they agree on the
same s if only S is available.

ITA excludes situations in which the fact that a certain agreement is
available influences the outcome.



Weak Pareto efficiency (W PO)

If (S, d) is a bargaining problem where s € S andt € S, and t; > s; for
i = 1,2 then f(S,d) # s.

In words, players never agree on an outcome s when there is an outcome
t in which both are better off.

Hence, players never disagree since by assumption there is an outcome s

such that s; > d; for each 1.



SYM and W PO

restrict the solution on single bargaining problems.

INV and I A

requires the solution to exhibit some consistency across bargaining
problems.

Nash 1953: there is precisely one bargaining solution, denoted by fN(S, d),
satisfying SY M, W PO, INV and IIA.



Nash’s solution

The unique bargaining solution f& : B — R? satisfying SY M, W PO,
INV and ITA is given by

fN(S, 0) = argmaxsisy
(81752)65

The solution is the utility pair that maximizes the product of the players’
utilities.



Proof
Pick a compact and convex set S C Ri where S N Rﬁ_+ £ ().

Step 1: f&V is well defined.

— Existence: the set S is compact and the function f = s1s5 is contin-
uous.

— Uniqueness: f is strictly quasi-conacave on S and the set S is convex.



Step 2: fN is the only solution that satisfies SY M, W PO, INV and
ITA.

Suppose there is another solution f that satisfies SY M, W PO, INV
and ITA.

Let

= {( ) : (s1,82) € 5}

f{V (S) féV (S)

and note that s{sh < 1 for any s’ € S’, and thus fV(S’,0) = (1,1).



Since S’ is bounded we can construct a set T' that is symmetric about the
45° line and contains S’

T = {(a,b):a+b<2}

By WPO and SY M we have f(7,0) = (1,1), and by ITA we have
f(S',0) = f(T,0) = (1,1).

By INV we have that f(S/,0) = fN(S’,0) if and only if f(S,0) =
fN(S, 0) which completes the proof.





