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Evolutionary Game Theory 



Evolutionary stability

A single population of players. Players interact with each other pair-wise
and randomly matched.

Players are assigned modes of behavior (mutation). Utility measures each
player’s ability to survive.

 of players consists of mutants taking action  while others take action
∗.



Evolutionary stable strategy ()

Consider a two-player payoff symmetric game

 = h{1 2} () (1 2)i

where

1(1 2) = 2(2 1)

(players exchanging 1 and 2).



∗ ∈  is  if and only if for any  ∈ ,  6= ∗ and   0 sufficiently
small

(1− )(∗ ∗) + (∗ )  (1− )( ∗) + ( )

which is satisfied if and only if for any  6= ∗ either

(∗ ∗)  ( ∗)

or

(∗ ∗) = ( ∗) and (∗ )  ( )



Three results on 

[1] If ∗ is an  then (∗ ∗) is a .

Suppose not. Then, there exists a strategy  ∈  such that

( ∗)  (∗ ∗)

But, for  small enough

(1− )(∗ ∗) + (∗ )  (1− )( ∗) + ( )

and thus ∗ is not an .



[2] If (∗ ∗) is a strict  ((∗ ∗)  ( ∗) for all  ∈ ) then ∗ is
an .

Suppose ∗ is not an . Then either

(∗ ∗) ≤ ( ∗)

or

(∗ ∗) = ( ∗) and (∗ ) ≤ ( )

so (∗ ∗) can be a  but not a strict .



[3] The two-player two-action game

 0

   
0    

has a strategy which is .

If    or    then ( ) or (0 0) are strict , and thus  or
0 are .

If    and    then there is a unique symmetric mixed strategy
 (∗ ∗) where

∗() = ( − )( −  +  − )

and (∗ )  () for any  6= ∗.



 

 

 

 

 

 

 

Repeated games 
(the prisoner’s dilemma) 



The basic idea — prisoner’s dilemma

In the Prisoner’s Dilemma

 
 3 3 0 4
 4 0 1 1

No cooperation () is the unique  since  strictly dominates ,
but both players are better off when the outcome is ().



When played repeatedly, cooperation () in every period is stable if

— each player believes that choosing  will end cooperation, and

— subsequent losses outweigh the immediate gain.

The socially desirable outcome () can be sustained if (and only if)
players have long-term objectives.

In general, we can think that strategies are social norms, cooperation,
threats and punishments where threats are carried out as punishments
when the social norms require it.



Strategies

Grim trigger strategy

C :  −→ D : 
(·)

Limited punishment

99K P0 :  −→ P1 :  −→ P2 :  −→ P3 :  99K
(·) (· ·) (· ·) (· ·)

Tit-for-tat

99K C :  −→ D :  99K
(·) (· )



Payoffs

A player’s preferences over an infinite stream (1 2 ) of payoffs are
represented by the discounted sum

 =
∞P
=1

−1

where 0    1.

The discounted sum of stream (  ) is


1− 
, so a player is indifferent

between the two streams if

 = (1− )

Hence, we call (1 − ) the discounted average of stream (1 2 ),
which represent the same preferences.



To elucidate, let

 = + + 2+ · · ·+ 

and note that

 = + 2+ 3+ · · ·+ +1

so that  −  = − +1 and thus

 =
1− +1

1− 


which equals


1− 
as  →∞.



Nash equilibria

Grim trigger strategy

(1− )(3 +  + 2 + · · ·) = (1− )

"
3 +



(1− )

#
= 3(1− ) + 

Thus, a player cannot increase her payoff by deviating if and only if

3(1− ) +  ≤ 2

or  ≥ 12.

If  ≥ 12, then the strategy pair in which each player’s strategy is grim
strategy is a Nash equilibrium which generates the outcome () in every
period.



Limited punishment ( periods)

(1−)(3++2+···+) = (1−)
"
3 + 

(1− )

(1− )

#
= 3(1−)+(1−)

Note that after deviating at period  a player should choose  from period
+ 1 through + .

Thus, a player cannot increase her payoff by deviating if and only if

3(1− ) + (1− ) ≤ 2(1− +1)

Note that for  = 1, then no   1 satisfies the inequality.



Tit-for-tat

A deviator’s best-reply to tit-for-tat is to alternate between  and  or to
always choose , so tit-for tat is a best-reply to tit-for-tat if and only if

(1− )(3 + 0 + 32 + 0 + · · ·) = (1− )
3

1− 2
=

3

1 + 
≤ 2

and

(1− )(3 +  + 2 + · · ·) = (1− )

"
3 +



(1− )

#
= 3− 2 ≤ 2

Both conditions yield  ≥ 12.



 

 

 

 

 

 

Auctions 



Auction design

Two important issues for auction design are:

— Attracting entry

— Preventing collusion

Sealed-bid auction deals better with these issues, but it is more likely to
lead to inefficient outcomes.



European 3G mobile telecommunication license auctions

Although the blocks of spectrum sold were very similar across countries,
there was an enormous variation in revenues (in USD) per capita:

Austria 100
Belgium 45
Denmark 95
Germany 615
Greece 45
Italy 240
Netherlands 170
Switzerland 20
United Kingdom 650



United Kingdom

— 4 licenses to be auctioned off and 4 incumbents (with advantages in
terms of costs and brand).

— To attract entry and deter collusion — an English until 5 bidders remain
and then a sealed-bid with reserve price given by lowest bid in the
English.

— later a 5th license became available to auction, a straightforward Eng-
lish auction was implemented.



Netherlands

— Followed UK and used (only) an English auction, but they had 5 in-
cumbents and 5 licenses!

— Low participation: strongest potential entrants made deals with incum-
bents, and weak entrants either stayed out or quit bidding.



Switzerland

— Also followed UK and ran an English auction for 4 licenses. Companies
either stayed out or quit bidding.

1. The government permitted last-minute joint-bidding agreements. De-
mand shrank from 9 to 4 bidders one week before the auction.

2. The reserve price had been set too low. The government tried to
change the rules but was opposed by remaining bidders and legally
obliged to stick to the original rules.

— Collected 1/30 per capita of UK, and 1/50 of what they had hoped
for!



Types of auctions

Sequential / simultaneous

Bids may be called out sequentially or may be submitted simultaneously
in sealed envelopes:

— English (or oral) — the seller actively solicits progressively higher bids
and the item is soled to the highest bidder.

— Dutch — the seller begins by offering units at a “high” price and reduces
it until all units are soled.

— Sealed-bid — all bids are made simultaneously, and the item is sold to
the highest bidder.



First-price / second-price

The price paid may be the highest bid or some other price:

— First-price — the bidder who submits the highest bid wins and pay a
price equal to her bid.

— Second-prices — the bidder who submits the highest bid wins and pay
a price equal to the second highest bid.

Variants: all-pay (lobbying), discriminatory, uniform, Vickrey (William
Vickrey, Nobel Laureate 1996), and more.



Private-value / common-value

Bidders can be certain or uncertain about each other’s valuation:

— In private-value auctions, valuations differ among bidders, and each
bidder is certain of her own valuation and can be certain or uncertain
of every other bidder’s valuation.

— In common-value auctions, all bidders have the same valuation, but
bidders do not know this value precisely and their estimates of it vary.



First-price auction (with perfect information)

To define the game precisely, denote by  the value that bidder  attaches
to the object. If she obtains the object at price  then her payoff is −.

Assume that bidders’ valuations are all different and all positive. Number
the bidders 1 through  in such a way that

1  2  · · ·    0

Each bidder  submits a (sealed) bid . If bidder  obtains the object, she
receives a payoff  − . Otherwise, her payoff is zero.

Tie-breaking — if two or more bidders are in a tie for the highest bid, the
winner is the bidder with the highest valuation.



In summary, a first-price sealed-bid auction with perfect information is the
following strategic game:

— Players: the  bidders.

— Actions: the set of possible bids  of each player  (nonnegative num-
bers).

— Payoffs: the preferences of player  are given by

 =

(
 − ̄ if  = ̄ and    if  = ̄
0 if   ̄

where ̄ is the highest bid.



The set of Nash equilibria is the set of profiles (1  ) of bids with the
following properties:

[1] 2 ≤ 1 ≤ 1
[2]  ≤ 1 for all  6= 1
[3]  = 1 for some  6= 1

It is easy to verify that all these profiles are Nash equilibria. It is harder
to show that there are no other equilibria. We can easily argue, however,
that there is no equilibrium in which player 1 does not obtain the object.

=⇒ The first-price sealed-bid auction is socially efficient, but does not neces-
sarily raise the most revenues.



Second-price auction (with perfect information)

A second-price sealed-bid auction with perfect information is the following
strategic game:

— Players: the  bidders.

— Actions: the set of possible bids  of each player  (nonnegative num-
bers).

— Payoffs: the preferences of player  are given by

 =

(
 − ̄ if   ̄ or  = ̄ and    if  = ̄
0 if   ̄

where ̄ is the highest bid submitted by a player other than .



First note that for any player  the bid  =  is a (weakly) dominant
action (a “truthful” bid), in contrast to the first-price auction.

The second-price auction has many equilibria, but the equilibrium  = 
for all  is distinguished by the fact that every player’s action dominates
all other actions.

Another equilibrium in which player  6= 1 obtains the good is that in
which

[1] 1   and   1
[2]  = 0 for all  6= {1 }



Common-value auctions and the winner’s curse

Suppose we all participate in a sealed-bid auction for a jar of coins. Once
you have estimated the amount of money in the jar, what are your bidding
strategies in first- and second-price auctions?

The winning bidder is likely to be the bidder with the largest positive error
(the largest overestimate).

In this case, the winner has fallen prey to the so-called the winner’s curse.
Auctions where the winner’s curse is significant are oil fields, spectrum
auctions, pay per click, and more.



The winner’s curse has also been shown in stock market and real estate
investments, mergers and acquisitions, and bidding on baseball players.

When Goggle launched its IPO by auction in 2004, the SEC registration
statement said:

“The auction process for our public offering may result in a phe-
nomenon known as the ‘winner’s curse,’ and, as a result, investors may
experience significant losses (...) Successful bidders may conclude that
they paid too much for our shares and could seek to immediately sell
their shares to limit their losses.”



Bargaining



The players bargain over a pie of size 1.

An agreement is a pair (1 2) where  is player ’s share of the pie. The
set of possible agreements is

 = {(1 2) : 1 + 2 = 1}

Player  prefers (1 2) ∈  to (1 2) ∈  if and only if   .



The bargaining protocol

The players can take actions only at times in the (infinite) set  =

{0 1 2 }. In each  ∈  player , proposes an agreement  ∈ 

and  6=  either accepts ( ) or rejects ().

If  is accepted ( ) then the bargaining ends and  is implemented. If 
is rejected () then the play passes to period  + 1 in which  proposes
an agreement.

At all times players have perfect information. Every path in which all offers
are rejected is denoted as disagreement (). The only asymmetry is that
player 1 is the first to make an offer.



Preferences

Time preferences (toward agreements at different points in time) are the
driving force of the model.

A bargaining game of alternating offers is

— an extensive game of perfect information with the structure given
above, and

— player ’s preference ordering %over ( ×  ) are represented by
() for any 0    1 where  is an increasing and concave
function.



 

 

 



Assumptions on preferences

A1 Disagreement is the worst outcome

For any ( ) ∈  ×  ,

( ) % 

for each .

A2 Pie is desirable

— For any  ∈  ,  ∈  and  ∈ 

( ) Â ( ) if and only if   



A3 Time is valuable

For any  ∈  ,  ∈  and  ∈ 

( ) % ( ) if   

and with strict preferences if   0.

A4 Preference ordering is continuous

Let {( )}∞=1 and {( )}∞=1 be members of  ×  for which

lim
→∞ =  and lim

→∞  = 

Then, ( ) % ( ) whenever ( ) % ( ) for all .



A2-A4 imply that for any outcome ( ) either there is a unique  ∈ 

such that

( 0) ∼ ( )

or

( 0) Â ( )

for every  ∈ .



A5 Stationarity

For any  ∈  ,  ∈  and  ∈ 

( ) Â ( + 1) if and only if ( 0) Â ( 1)

If %satisfies A2-A5 then player ’s preference ordering %over ( ×  )

are represented by

() where 0 ≤  ≤ 1



Present value

For  = 1 2 we call ( ) player ’s present value of ( )

( ) =

(
 if ( 0) ∼ ( )
0 if ( 0) Â ( ) for all  ∈ 

Note that

( ) Â ( ) whenever ( )  ( )



Delay

A6 Increasing loss to delay

 − ( 1) is an increasing function of .

If %for each  satisfies A2-A6, then there exist a unique pair (∗ ∗) ∈
 × such that

∗1 = 1(
∗
1 1) and 

∗
2 = 2(

∗
2 1)



Examples

[1] For every ( ) ∈  × 

( ) = 

where  ∈ (0 1).

[2] For every ( ) ∈  × 

( ) =  − 

where   0 (constant cost of delay).

Although A6 is violated, when 1 6= 2 there is a unique pair ( ) ∈
 × such that 1 = 1(1 1) and 2 = 2(2 1).



Subgame perfect equilibrium

Any bargaining game of alternating offers in which players’ preferences
satisfy A1-A6 has a unique  which is the solution of the following
equations

∗1 = 1(
∗
1 1) and 

∗
2 = 2(

∗
2 1)

Note that if ∗1  0 and ∗2  0 then

(∗1 0) ∼1 (∗1 1) and (∗2 0) ∼2 (∗2 1)



The equilibrium strategy profile is given by

Player 1 proposes ∗

accepts 1 ≥ ∗1
Player 2 proposes ∗

accepts 1 ≤ ∗1

The unique outcome is that player 1 proposes ∗ in period 0 and player 2
accepts.



The structure of the model is asymmetric only in one respect: player 1 is
the first to make an offer.

Recall that with constant discount rates the equilibrium condition implies
that

∗1 = 1
∗
1 and 

∗
2 = 2

∗
2

so that

∗ =

Ã
1− 2
1− 12


2(1− 1)

1− 12

!
and ∗ =

Ã
1(1− 2)

1− 12

1− 1
1− 12

!




Thus, if 1 = 2 =  (1 = 2) then

∗ =
µ

1

1 + 




1 + 

¶
and ∗ =

µ


1 + 

1

1 + 

¶
so player 1 obtains more than half of the pie.

By shrinking the length of a period by considering a sequence of games
indexed by ∆ in which  = ∆

  we have

lim
∆→0

∗(∆) = lim
∆→0

∗(∆) =

Ã
log 2

log 1 + log 2


log 1
log 1 + log 2

!
(l’Hôpital’s rule).



 
 
 
 
 
 

Nash bargaining  
(the axiomatic approach) 



Bargaining

Nash’s (1950) work is the starting point for formal bargaining theory.

The bargaining problem consists of

— a set of utility pairs that can be derived from possible agreements, and

— a pair of utilities which is designated to be a disagreement point.



Bargaining solution

The bargaining solution is a function that assigns a unique outcome to
every bargaining problem.

Nash’s bargaining solution is the first solution that

— satisfies four plausible conditions, and

— has a simple functional form, which make it convenient to apply.



A bargaining situation

A bargaining situation:

—  is a set of players or bargainers,

—  is a set of agreements/outcomes,

—  is a disagreement outcome, and

h i is the primitive of Nash’s bargaining problem where

—  = (1() 2()) for  ∈  the set of all utility pairs, and  =

(1() 2()).



A bargaining problem is a pair h i where  ⊂ R2 is compact and
convex,  ∈  and there exists  ∈  such that    for  = 1 2. The
set of all bargaining problems h i is denoted by .

A bargaining solution is a function  :  → R2 such that  assigns to
each bargaining problem h i ∈  a unique element in .



Nash’s axioms

One states as axioms several properties that it would seem natural for the
solution to have and then one discovers that the axioms actually determine
the solution uniquely - Nash 1953 -

Does not capture the details of a specific bargaining problem (e.g. alter-
nating or simultaneous offers).

Rather, the approach consists of the following four axioms: invariance
to equivalent utility representations, symmetry, independence of irrelevant
alternatives, and (weak) Pareto efficiency.



Invariance to equivalent utility representations ( )


0 0

®
is obtained from h i by the transformations

0 7→  + 

for  = 1 2 if

0 =  + 

and

0 = {(11 + 1 22 + 2) ∈ R2 : (1 2) ∈ }

Note that if   0 for  = 1 2 then

0 0

®
is itself a bargaining problem.



If

0 0

®
is obtained from h i by the transformations

 7→  + 

for  = 1 2 where   0 for each , then

(
0 0) = ( ) + 

for  = 1 2. Hence,

0 0

®
and h i represent the same situation.



Symmetry ()

A bargaining problem h i is symmetric if 1 = 2 and (1 2) ∈  if
and only if (2 1) ∈ . If the bargaining problem h i is symmetric
then

1( ) = 2( )

Nash does not describe differences between the players. All asymmetries
(in the bargaining abilities) must be captured by h i.

Hence, if players are the same the bargaining solution must assign the same
utility to each player.



Independence of irrelevant alternatives ()

If h i and h i are bargaining problems with  ⊂  and ( ) ∈ 

then

( ) = ( )

If  is available and players agree on  ∈  ⊂  then they agree on the
same  if only  is available.

 excludes situations in which the fact that a certain agreement is
available influences the outcome.



Weak Pareto efficiency ()

If h i is a bargaining problem where  ∈  and  ∈ , and    for
 = 1 2 then ( ) 6= .

In words, players never agree on an outcome  when there is an outcome
 in which both are better off.

Hence, players never disagree since by assumption there is an outcome 
such that    for each .



 and 

restrict the solution on single bargaining problems.

 and 

requires the solution to exhibit some consistency across bargaining
problems.

Nash 1953: there is precisely one bargaining solution, denoted by ( ),
satisfying  , ,  and .



Nash’s solution

The unique bargaining solution  :  → R2 satisfying  , ,
 and  is given by

( 0) = argmax
(12)∈

12

The solution is the utility pair that maximizes the product of the players’
utilities.



Proof

Pick a compact and convex set  ⊂ R2+ where  ∩ R2++ 6= ∅.

Step 1:  is well defined.

— Existence: the set  is compact and the function  = 12 is contin-
uous.

— Uniqueness:  is strictly quasi-conacave on  and the set  is convex.



Step 2:  is the only solution that satisfies  , ,  and
.

Suppose there is another solution  that satisfies  , , 

and .

Let

0 = {( 1

1 ()


2

2 ()
) : (1 2) ∈ }

and note that 01
0
2 ≤ 1 for any 0 ∈ 0, and thus (0 0) = (1 1).



Since 0 is bounded we can construct a set  that is symmetric about the
45◦ line and contains 0

 = {( ) : +  ≤ 2}

By  and  we have ( 0) = (1 1), and by  we have
(0 0) = ( 0) = (1 1).

By  we have that (0 0) = (0 0) if and only if ( 0) =
( 0) which completes the proof.




