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1.1 Introduction

In many scientific studies using evidence from uncontrolled experiments,
interest centers on a postulated causal influence from the attributes and
environment of subjects to their responses. The structure of the postulated
relationship can be revealed with appropriate statistical methods.

This chapter examines alternative sample designs and estimators for
causal models in the case that the set of possible responses is finite—these
are termed quantal response or discrete choice models.! The causal
relationships are assumed to be specified a priori up to finite parameter
vectors. :

Recently considerable progress has been made in the development of
tractable, statistically sound estimators for particular probabilistic choice
models in the context of particular sampling processes. See, for example,
McFadden (1973), Westin (1974), Manski (1975), and Manski and Lerman
(1977). A considerable empirical literature has also developed. In the area
of transportation decisions see Domencich and McFadden (1975) and
Lerman and Ben-Akiva (1976). For work on educational choices see Kohn,
Manski, and Mundel (1976) and Radner and Miller (1975). Bureaucratic
behavior has been studied by McFadden (1976a). A comprehensive survey
of methodological and empirical work through mid-1976, both published
and unpublished, is provided by McFadden (1976b).

Concentrating as it has on the study of special models and sampling
processes, the literature on discrete choice analysis has not until now
included any investigation of the general quantal response model esti-
mation problem. On the other hand the statistical literature on the analysis
of discrete data (Bishop et al. 1975, Haberman 1974, Goodman and
Kruskal 1954) has largely ignored the special opportunities introduced by
the presence of an a priori causal structure. This void has prevented a full
appreciation of the statistical properties of the estimation methods now
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Stephen Cosslett. We claim sole responsibility for errors. This chapter was first circulated
during May 1976, and has undergone several revisions.

1. The assumption of a finite response set is inessential for many conclusions in this

paper.
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routinely used in empirical work. It also has artificially constrained the set
of sampling processes and estimators used empirically. Finally, it has
obscured the relations between the concerns and methods of quantal
response analysis and those of other statistical literatures analyzing discrete

data.
The importance of a general theory of quantal response analysis 1s best

illustrated by a series of examples:

1. A study of death rates following surgery under various anesthetics
assumes a causal link from anesthetic (and other variables such as patient
age, sex, type of operation) to death rate.” The objective of the study is to
identify high-risk anesthetics by patient type and forecast the impact on
death rates of changes in policy for the administration of anesthetics. A
sample is first drawn of all patients dying in a selected institution and then
of a control group of other surgical patients from the institution. A log-
linear probability model is fitted and used to test for the presence of
anesthetic effects.’

2. A study of college choice by high school seniors assumes a causal link
from personal characteristics (SAT, parent’s income) and college attributes
(cost, distance, quality) to observed choice.* The object of the study is to
forecast the impact of changing tuition on college enroliments. A random
sample of high school seniors in selected states is drawn, and a multino-
minal logit model is fitted and used to predict enroliments.’

3. A study of transportation mode-choice assumes a causal link from travel
times and costs, as well as personal characteristics, to choice of auto or bus
to work.® The object of the study is to predict mode splits in response to
changes in bus service. A random sample of households in an urban area is
surveyed, and a discriminant analysis is applied to the auto-using and bus-
using subpopulations.’

The common thread of these examples is the postulate of a causal link
between explanatory variables and a response variable and the objective of
predicting the impact on responses of changes in explanatory variables.
The examples differ in their sample designs, estimation methods, and, as

2. Bishop and Mosteller (1969).

3. Bishop, Fienberg, and Holland (1975).

4. Kohn, Manski, and Mundel (1976).

5. McFadden (1973).

6. McGillvrey (1970). A medical study with this structure is the Framingham study of
coronary disease; see Truett, Cornfield, and Kannel (1967).

7. Kendall and Stuart (1976, chapter 44) and T. Anderson (1958).
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will be clarified later, in the appropriateness of their estimation methods for
the sample designs utilized.

For the purposes of this chapter the quantal response problem can be
defined by a finiteset C={1,.... M } of mutually exclusive alternative
responses, a space of attributes Z, assumed to be a measurable subset of a
finite-dimensional Euclidean space, a probability density, p(z), [z€ Z],
giving the distribution of attributes in the population, and a response
probability, or choice probability, P(i|z, 8%), specifying the conditional
probability of selection of alternative i € C, given attributes z € Z .8 Prior
knowledge of causal structure is assumed to allow the analyst to specify the
response model P(i| z, - ) up to a parameter vector 0* contained in a subset
@ of a finite-dimensional Euclidean space. The analyst’s problem is to
estimate @* from a suitable sample of subjects and their associated

responses.
The probability density of (i, z) pairs in the population is given by
fl,z)=P(i|z,0%)p (@), [(iz)eCxZ] (1.1)

The analyst can draw observations of (i, z) pairs from C x Z according to
one of various sampling rules. The problem of interest is first, given any
sampling rule, to determine how 0* may be estimated and second to assess
the relative advantages of alternative sampling rules and estimation
methods.

The data layout can be visualized usinga contingency table, asillustrated
in figure 1.1. Throughout this paper, we assume an infinite population and
sampling with replacement. Then an observation (i, z) occurs in the
population with frequency f(i, z). The row sums give the marginal
distribution of attributes p (z), while the column sums give the population
shares of responses Q (). The joint frequency £(i,z)can be written either in
terms of the conditional probability of i given z (the choice probability) or,
by Bayes’ law, in terms of the conditional probability of z given i,

8. More formally, assume there exists a probability space (T, &, 1) of subjects and a
measurable mapping F from T into C x Z, where (Z, Z, v) is a subset of a finite-
dimensional Euclidean space with measure v. Define a measure n on Z, Z). for We Z,
(W)= A{te T: F(t)eC x W}. Assume 7 absolutely continuous with respect to v, and
let p (z) be the density on Z satisfying (W) = [wp (2)v(dz). Similarly define a measure ¢
onC x Z: for Ae2¢ @ &, (A) = A({te T: F(t) € A}), assume ¢ absolutely continuous
with respect to ¢ ® v, where ¢ is 2 counting measure on C, and write $(A) =

faSti, ) o (di)v (dz). Define P(i|2) = f(i, z)/p(z) to be the conditional probability of
given z. Assume P(i|z)=P(i|z, 0*) is known a priori up to a parameter vector 0*.
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Contingency table layout for the population
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where

Q)= }:zf(i, z) = ZZ P(i|z,8%)p(@)°

The feature of the quantal response problem which distinguishes it from
the general analysis of discrete data is the postulate that the response
probability P (i | z, 0*) belongs to a known parametric family and reflects
an underlying link from z to i which will continue to hold even if the
distribution p (z) of the explanatory variables changes.!®

In general, given a population with a probability distribution specified
by 7(i, z), one might in the absence of any knowledge of the process relating
i’s to z’s obtain a random sample from C x Z and directly examine the

9. If Z is not countable, the summation becomes integration, i.e.,
Qi) = [z (i, 2)v(dz) = [z P(i|2, 8%)p(z)v(d2).

We shall employ summation notation throughout this chapter, leaving to the reader the
obvious substitution of integrals with respect to the measure v on Z, or with respect to
the measure ¢ ® v on C x Z, as appropriate.

10. This postulate is fundamental to the concept of “scientific explanation.” If the
response probability function is invariant over populations with different distributions of
attributes, then it defines a “law” which transcends the character of specific sets of data.
Otherwise the model provides only a device for summarizing data and fails to provide a
key ingredient of “‘explanation”—predictive power.
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joint distribution f(i, 2). This exploratory data analysis approach is
exemplified by the literature on associations in contingency tables, where it
is assumed that Z is finite. See, for example, Goodman and Kruskal (1954),
Haberman (1974), and Bishop, Fienberg, and Holland (1975).

Alternately, if one believes that the elements of C index conceptually
distinct populations of z values, then the natural analytical approach is to
decompose f(i, z) into the product fli, z) = g(z|i)Q (i), where g(z| i}
gives the distribution of z within the population indexed by iand Q (i) is the
proportion of the population with this index. This is the approach taken in
discriminant analysis. There, prior knowledge allows the analyst to specify
g(z| i) up to a parametric family, and a sample suitable for estimating the
unknown parameters is obtained from the subpopulation i. See, for
example, Anderson (1958), Warner (1963), and Kendall and Stuart (1976).

Finally, when a well-defined process generates a value from C given any
z € Z, then the decomposition f(i,z) = P(i] z, 0*) p (z) is appropriate. This
decomposition, and the attendant focus on the structural relation em-
bodied in P (i |z, 8%), is clearly the natural one for the analysis of choice
data.!! A separate and interesting question is whether specific parametric
models permit estimation of the parameter vector 0* of P(i|z, 0*) from
convenient parameterizations of (i, z) or ¢(z| i)t?

The present chapter attempts to provide a general theory of estimation
for quantal response models. The scope of our investigation is as follows:
we consider the problem of estimating 6* from stratified samples of (i, z)
observations. A stratified sampling process is one in which the analyst
establishes a finite or countable set B indexing strata. A stratum be B is
defined by a measurable subset A, & C x Z.13 The analyst establishes a
sample size for stratum b by design, or by sampling from a suitable
probability distribution over B. To obtain an (i, z) observation from

11. Interest in the structural approach to discrete data analysis predates modern choice
analysis by at least forty years, in Thurstone’s (1927) development of the probit model.
Later extensive contributions were made in the field of bioassay. See in particular Cox
(1970) and Finney (1971).

12. It is well known, for example, that a multinomial logit model of the response
probability function is consistent, in the presence of suitable parameter restrictions, with
a log-linear model of f(i, z) or with a multivariate normal model of g(z | i, 6*). Hence
estimation of these models may provide convenient alternatives to direct estimation of
the multinomial logit model, provided the parameter restrictions implied by the response
probability model are imposed. See McFadden (1976¢).

13. Formally, A, € 2¢ ® &. The definition of stratificd sampling used here is more
general than a common usage in which the A,, be B form a partition of Cx Z. We

allow the stratum subsets A, to overlap.



Alternative Estimators and Sample Designs 7

stratum B, the analyst samples at random from within A;. A random sample
is the special case B= {1} and A, = C x Z.

Within the class of all stratification rules two symmetric types of
stratification are of particular statistical and empirical interest. In exog-
enous sampling the analyst partitions Z into subsets Z,, b € B and lets A,
= C x Z,. In endogenous or choice based sampling he partitions C into
subsets C,, be B and lets A, =C, x Z. Less formally, in exogenous
sampling the analyst selects decision makers and observes their choices,
while in choice-based sampling the analyst selects alternatives and observes
decision makers choosing them. In figure 1.1 “fine partition” exogenous
sampling corresponds to stratifying on rows and then sampling randomly
from each row, while fine partition choice-based sampling corresponds to
stratifying on columns and then sampling randomly from each column.

Section 1.2 formally introduces the general stratified sampling process
and specifies the likelihood of an observation obtained through an
arbitrary stratification or drawn via an exogenous or choice-based
sampling rule. Comparison of the various likelihood forms suggests that
the problem of parameter estimation in choice-based samples will differ
qualitatively from the estimation problem in exogenous samples.

Because of its generality of application and classical asymptotic
efficiency properties, maximum likelihood estimation provides a natural
focus for our study.!* In sections 1.3 through 1.7 we make a detailed
statistical examination of maximum likelihood estimation of 6* in both
exogenous and choice-based samples. We find that application of max-
imum likelihood is wholly classical in exogenous samples. In choice-based
samples, however, the form and properties of the maximum likelihood
estimate (MLE) depend crucially on whether the analyst has available
certain prior information, namely, the marginal distributions p(z) and
O (i). Some interesting results also emerge concerning the value of prior
knowledge of the marginal distributions in reducing the asymptotic
variance of the estimates. Section 1.8 contains a discussion of estimation in
general stratified samples.

14. An additional reason for our focusing on maximum likelihood derives from the
nonexperimental nature of empirical choice studies in economics. Empirical studies
typically draw samples of observations of real-world decisions rather than of decisions
made in controlled settings. The resultant inability to obtain repetitive observations of
choices for given values of the attributes z prevents the use of estimators that require
repetitions for effectiveness. (Some such estimators are Berkson’s method and minimum

chi-square. See Amemiya 1976.)
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The question of optimal sample design inevitably must be raised in an
investigation such as ours. Unfortunately the nonlinear structure inherent
in all choice models has prevented our making much progress on this
problem. In particular, given almost any interesting class of designs and
reasonable definition of optimality, selection of the best design within the
class requires prior knowledge of 8*, the parameters to be estimated. Hence
an explicitly Bayesian approach to the design problem seems necessary.
The present paper does not take on this task. Instead we limit ourselves to a
general discussion of the optimal design problem and to a listing ofthe few
classical results we have been able to obtain. These matters constitute the
subject of section 1.9.

Basic asymptotic properties for the estimators presented in the text can
be found in the appendixes concluding this chapter.

1.2 The Likelihood of an Observation under Alternative Stratified
Sampling Processes

In this section we describe a general stratified process for drawing
observations from C x Z, and the associated likelihood of observations.
As before, let B be a finite or countable set indexing strata and A, a
measurable subset of C x Z for each b e B. We assume that the analyst
draws an a priori fixed sample size of N observations by independent
sampling with replacement. We assume that the analyst takes an obser-
vation by first drawing a stratum b from a probability distribution H on
B.!S Then he draws an observation (i, z) at random from A6

15. Under this protocol the stratum subsample sizes are random, with a multinomial
distribution with probabilities H (b). An immediate generalization, left to the reader, is to
allow the distributions of subsample sizes to vary with N, with a limiting distribution H.
The alternative protocol of fixing subsample sizes leads to likelihood functions with the
same kernels, and hence to the same estimators, as the case of random subsample sizes.
With a mild abuse of the definition of likelihood, the analysis for random subsample
sizes can be applied to the case of fixed subsample sizes, with the H (b) interpreted as
fixed sampling proportions.

16. More generally one can characterize a stratum b by a censoring rule £,(i, z) which
specifies the probability that a vector (i, z) will be retained in the sample, given its
occurrence in the population and the protocol for recording observations from stratum b.
Then the likelihood of observing the vector (7, z), given stratum b, is f(i, z) & (i, 2)/
Sexz SU, V)& s y). We restrict our attention to the case where &, is the indicator
function for the set A,, corresponding to random sampling within A,
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Under this stratified sampling procedure the likelihood of drawing
stratum b and observation (i, z) € A, is'’

S, DHBb) _Plilz, 00)p @ Hb) 12)
AZf(j, y) Y P(ly,0%)p(y)

A, 2, b) =

It is important to point out that while every (B, H) pair and associated
family of subsets A, defines a unique stratified sampling process, and hence

a unique likelihood function, distinct sampling processes may yield the
same likelihood function. In particular consider any pseudorandom

sample in which the sets A, partition C x Z and H(b) = X, f(J,y) forall
b e B. From (1.2) the true likelihood for each process in this class has the

form associated with random sampling,
A (i, 2)y=f(i,z) = P(i|z, 0%)p(2). (1.3)

Consider now an exogenous sampling process, where we establishin Z a
collection of measurable subsets Z,, b€ B, and let A, = C x Z,.!® Then
the likelihood of drawing stratum b € B and observation (i, z) € A,, under
exogenous stratified sampling has the general form

i, (i,z,b) = P(i|2,0%)g(z|b)H(), (1.4)
where
gz by = 2E

Y p(y)

Zy

17. We impose the regularity condition that there is a positive probability of observations
from each stratum, that is £, f(i, z)H(b) >0 for each b ¢ B. By definition

A(i, z, by = 0 for (i, z) ¢ A,. We also assume that the stratum from which each
observation (i, z) is drawn is recorded. Otherwise the likelihood of (, z) is the sum of the
probabilities of (i, z) being drawn from each stratum.

18. A note regarding the definition of Z and B may be useful for practitioners. Often in
exogenous sampling the stratification is based on attributes which do not directly
influence choice. For example, we may partition a population according to residence and
sample people at varying rates across areas. Formally the “residential area” attributes
can be incorporated into the definition of z even if choice probabilities are assumed to
depend on this attribute only trivially. Then B corresponds to a partition of Z, and
knowledge of z is sufficient to identify the stratum b from which it is drawn.
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An important simple case is “‘fine stratification” of Z, with B = Z, implying
g(z|b) = 1ifz = band zero otherwise. Then, letting g(z) = H (b) forb =z,
the likelihood is*®

A(i,z) = P(i|z,0%)g(z).

In deriving results for exogenous stratified sampling, we limit our analysis
to the fine stratification case, leaving the obvious generalization to the
reader.

The derivation of the choice-based sampling likelihood is analogous, but
the resulting expression is quite different. In choice-based sampling we
establish a family C,, of subsets of C for be B and let A, = C, x Z. Then
the likelihood of drawing stratum b and observation (i, z) € A, is

. _ P(ilz, 6*)p()H(b)
Ali, z,b) = o®16Y , (1.5)
where
Qm|0¥)= > P(ly, 0%)p(y)
Cy xXZ

Comparison of equations (1.2), (1.4), and (1.5) indicates the qualitative
difference between the exogenous and choice-based sampling likelihoods
and the nature of both of these relative to the general stratified expression.
In exogenous sampling, when the likelihood is considered a function of the
unknown parameters 0%, the kernel is the choice probability function
P(i]|z,90), 8e®, regardless of the manner in which Z is stratified or the
probability measure H imposed. In choice-based samples, on the other
hand, the kernel is P (/| z,08)/Q (b |8), since the marginal distribution Q is
dependent on 6*2° In general stratified sampling the kernel is the
expression P(i|z, 8)/S(b|0), where S(b|0) = A PULY, 0)p(y)

We note for later use the special cases in which exogenous and choice-
based processes yield random samples from C x Z. The exogenous

19. This likelihood form is the same as would be obtained in a stimulus response
experimental setting in which the analyst presents subjects with choice sets and observes
their responses. In this context the distribution g(z) characterizes the experimental design.

0. If the relation between Q and ©* is ignored, the choice-based sampling kernel reduces
to the exogenous sampling one. It might be thought that ignoring this relation would
lower the efficiency of estimators for 8* but not affect their consistency. In fact
recognition of the relation turns out to be generally necessary for consistency, and the
choice-based sampling kernel cannot be reduced to the exogenous sampling one. See in
particular section 1.5.
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sampling likelihood takes the form (1.3) if B=2Z and H(z) =p(z). In
choice-based samples we require H(b) = Q(b|0*)for each beB. It is
important to recognize that, while the true likelihood of exogenous and
choice-based sampling observations are identical when the above con-
ditions are met, the respective likelihood function kernels remain distinct.

1.3 Estimation of the Choice Model Parameters

Assume now that a sequence of observations X = (i,,Z,),n =1,...,, is
drawn by independent sampling according to a fixed stratified rule. Given a
sample consisting of the first N of such observations, we should like to
estimate the choice model parameters 6*.

For reasons set forth earlier we shall focus attention on maximum
likelihood estimation of @*. Furthermore we shall limit the formal
investigation of estimation to samples obtained by exogenous or choice-
based stratifications. Consideration of these two forms of stratification is
sufficient to illuminate the important statistical and computational issues
that arise within the general class of stratified rules.?’ Moreover the great
empirical usefulness of the exogenous and choice-based sampling processes
makes their examination of interest per se.

Within the class of choice-based stratifications, we shall, for notational
simplicity, explicitly consider only those for which B = C, so that C; = [i],
all ie C. In this case the choice-based sampling likelihood has the form

P(ilz 8%)p@H() L6
Q (i)

Extension of our results from this fine partition of C to stratifications

involving aggregations of alternatives is straightforward.

Inspection of the choice-based sampling likelihood, given in equation
(1.5), suggests that in choice-based samples the estimation of 8* requires, or
at least is facilitated by, prior knowledge of the marginal distributions p (z),
ze Z and Q (i), i € C. On the other hand, in exogenous samples, it appears
from equation (1.4) that such prior knowledge should be of little, if any,
consequence. A major thrust of our work is to clarify the role that
knowledge of the p and Q distributions actually plays in the estimation of
0*, both in exogenous and in choice-based samples. We examine, in turn,

(i, 2) =

21. See section 1.8.
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estimation in four informational situations: section 1.4, p and Q both
known ; section 1.5, p known and Q unknown; section 1.6, p unknown and
Q known; section 1.7, p and Q both unknown.?

Certain assumptions used in the statistical proofs will be maintained
throughout the analysis. These are as follows:

ASSUMPTION 1.1  (Positivity): For each (i, 2)eC x Z, either P (i|z,
0)> 0 forall@ec® or P(i|z,0)=0 for all e ®.

ASSUMPTION 1.2  (Identifiability): For each 8 € @ such that 8 # 0*, there
exists A = C x ZsuchthatZ, P (j|y,0)p(y) # Z, P(j |y, 0%)p(y). More-

over the stratified sampling process satisfies the conditions U A= C
beB

x Z, and for each beB, £, P(jl|y, 8*)p(y) >0 and H(b) > 0.

ASSUMPTION 1.3  (The parameter space): The space © < RX is compact.
Furthermore there exists an open set ©' in R¥ such that 6* € @' < ©.

ASSUMPTION 1.4 (The attribute space): The space Z = R’ is compact.

ASSUMPTION 1.5  (Regularity): P(i|z, 8) is continuous in CxZx0.
Furthermore foreach (7,z) € C x Zsuchthat P(i|z,0*)>0, this function
is three times continuously differentiable for all @ in a neighborhood of 6*.
Let R denote the X x M matrix with columns

oP(i|z, 0*
Z—%:——)p(zx

z

22. While our present concern is theoretical, it is certainly relevant to ask whether prior
knowledge of p or Q is likely to be available in practice.

It appears knowledge of Q is quite often obtainable. For example, the Q distribution
appropriate to a study of travel mode choices can be determined from aggregate traffic
count data by mode. Similarly for a study of college choices freshmen enroliment figures
by school yield the necessary marginal distribution of choices. Finally, in a nonchoice
quantal response context, consider the problem of modeling the incidence of cancer
within a population. Here Q is given by the crude fraction of the relevant population
contracting the disease. Statistics such as the above are often readily available in
published sources.

In contrast, knowledge of p seems to be rarely in the possession of the analyst. In
applications the attributes z are usually multidimensional transformations of detailed raw
population attributes. Knowledge of the joint distribution of such attributes is generally
quite difficult to obtain.

Beyond these cases it is of interest to explore the consequences of partial information
on p or Q (e.g., knowledge of some marginal distributions of p or of some components
of Q), or of sampling information on these distributions. This topic has been investigated
by Cosslett in chapter 2.
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where M represents the number of alternatives in C. Then rank R =
min (K, M — 1).

Other assumptions used in particular contexts will be introduced as
necessary.2?

1.4 Estimation with p and Q Both Known

Assume that both p and Q are a priori known. Under exogenous samplinga
maximum likelihood estimate will be any solution to the problem

N
max Y 1nP(i,]2,0) 1.7)

8O0 =1

where @, = {0 © | Q(i)=Z,P(i|2,0)p(2), i€ C} and where terms of
the log likelihood not belonging to its kernel have been suppressed.
Under fine partition choice-based sampling, the criterion will be

8cBo =1

max {i InP(i,|z, 0)— % InY P(i,|z, G)p(z)} (1.8)
n n=1 z

But @ € ®, implies Q (i) = Z, P(i|z,0)p(z),allie C. Hence (1.8) reduces
to

N
max Y InP(i,|z,9), (1.9

0ec®0 ;=1

23. A brief description of the role of each of the five maintained assumptions may be
helpful:

Assumption 1.1 implies that the support of the likelihood function is independent of @,
both in exogenous and in choice-based samples. This assumption is necessary to use
standard methods to prove consistency. Note that the assumption provides a way to deal
with alternatives that are unavailable to decision makers. For such (i, z) pairs simply set
P(i|z,08)=0,2l10c©.

Assumption 1.2 states that the choice model P(i}z, 0*) is observationally
distinguishable from all other models of the form P(i]z, 0), 8 > 6*, and that the
sampling process is such that 8* is identified.

Assumption 1.5 and the second part of assumption 1.3 are used in demonstrating
asymptotic normality for the various estimators. In general these assumptions are
innocuous.

Assumption 1.4 and the first parts of assumptions 1.3 and 1.5 are used in consistency
proofs. These assumptions can be substantially weakened if additional structure is
imposed on the choice probabilities P(i|z, ) and the marginal distribution p. In
particular it is possible to develop proofs that allow one to assume that © =R¥ and Z
=R’
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a form identical to exogenous sampling criterion (1.7). Hence (1.7) is the
maximum likelihood estimator under either exogenous or choice-based
sampling.

The estimator (1.7)is a constrained maximum likelihood estimator ofthe
type examined by Aitchison and Silvey (1958). Such constrained estimators
are certain to be consistent for 8* if the relevant unconstrained estimators,
those maximizing over ®, can be shown to be consistent. The latter
estimators are treated in section 1.5 and are proved to be consistent in
appendix 1.11. Given consistency, asymptotic normality for both the
constrained and unconstrained estimators can be demonstrated using
assumptions 1.3 and 1.5; see appendix 1.12.

Let J, and J, be the exogenous and choice-based sampling asymptotic

information matrices.?* That is,

Oln P(i|z,0*%) d1n P(i|z, 0%)

J = P(i|z, 0* : 1.10
. ; EEZC (i]z,0%)g (z) 0 T (1.10)
B P(ilz,0%)p @) H(i) d1n P(i|2,0%) 8 In P(i|z, 0%)
L"g E% 0(i) 26 50
oY P(i|z,0%)p@aln Y P(ilz,8%)p(2)
_ . z z
z;c ") 09 o0’ )

(1.11)

Let M be the number of alternatives in C, and define the K x M matrix R
by

R =

5 P(ilz,00)p (@)™
z (1.12)

00

i=1

By assumption 1.5 the rank of Ris p(R) = min(K, M — 1). DefineRtobea
K x p(R) matrix whose columns are linearly independent columns of R.
Then the exogenous and choice-based sampling asymptotic covariances
can be shown to be

V,=J'-J'RRIR)TIRI, (1.13)
V,=J1-JR®RIIR)TR I, (1.14)

24. When the stratification of Z in exogenous sampling is not fine, g(z) is replaced by
g(z | b) H(b), and there is an additional summation over B.
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and p(V,) = p(V,) = K — p(R) = K — p(R).?® Note that, when p(R) = K,
the constraint equations have a unique solution for6*,andV, =V, = 0.In
many applications the response probability model is specified to include
“alternative-specific” parameters. In general there will be M — 1 inde-
pendent parameters of this type, implying p(R) = M — 1 £ K, and p(V,)
=p(V)=K+1-M.

Although the estimation criteria (1.7) and (1.9) are identical and the
matrices V,and V,_ have the same rank, these two matrices are generally not
equal. Equality of the two covariances, implying equivalence of the MLE
asymptotic distributions under exogenous and choice-based sampling,
should be expected only when both processes yield random samples. For
here, and only here, are the exogenous and choice-based sampling
likelihoods identical. Equality of V, and V,_ can in fact be demonstrated in
this special case.2® More generally the structure of V, depends on the
sampling distribution g, and the structure of V, depends on the distribution
H. We defer until section 1.9 further discussions of these structufres.

Given specified exogenous or choice-based sampling processes, and
assuming that the requisite prior information is available, the criteria (1.7)
or (1.9), respectively, provide asymptotically efficient estimators for 6*.
Unfortunately the use of these estimators will often not be computationally
practical because characterization of the parameter space @, requires
solution of complicated constraint equations.?” When this problem arises,

25. For equations (1.13) and (1.14) to be meaningful, J, and J, must be nonsingular. A
crucial, necessary condition for such nensingularity is provided by assumption 1.2. Given
this and the regularity implied by assumption 1.5, nonsingularity of J, follows.

26. To show this, first recall that p(R) = K implies V, = V_ = 0 trivially. If p(R) < K, let
D be a K x (K — p(R)) matrix of rank K — p{R) such that RD = O. Then V., and V,
can be written in the forms

V,=DDJID)'D;
V.=D{DJID)"'D.

See Rao (1973, p. 77, prob. 33) for this result.

Note that in random exogenous sampling, g(z) = p(2), all z, while in random choice-
based sampling, H (i) = Q(i), all ie C. It is easy to show that, when the exogenous and
choice-based samples are both random, equations (1.10) and (1.11) have the following
relation: J, = J, — RA™!R’, where R was defined in {1.12) and A is the M x M diagonal
matrix with diagonal elements Q. It now follows that in random samples

V.=D[D'J, —RAT'R)D]"'D' =D(D'J.D)"'D' = V,.

27. See Manski and Lerman (1977) for a discussion relevant to this problem. Within this
chapter see section 1.6 for a tractable approximation to the constraint equations that
does not involve the distribution p.
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it may be preferable to use one of the simpler, but less efficient, estimators
to be introduced in sections 1.5 through 1.7.

1.5 Estimation with p Known and Q Unknown

When the marginal distribution p is known, but Q is not, the exogenous
and choice-based sampling likelihood functions are those givenin (1.7) and
(1.8), respectively, but the maximization is over the full parameter space (0]
rather than the constrained set @,. That is, in exogenous samples we have

N
max Y In P(i,|z,0), (1.15)

0e¢® p=1

and in choice-based samples

N N
max Y In P(i,]2,, 8) — 21 ln%lP(i,,lz, 0)p (z)- (1.16)
€ n=1 n=
Here in contrast to the situation in section 1.4 the exogenous and choice-
based MLE’s are clearly distinct. It should be apparent from the form of
the exogenous sampling likelihood, given in (1.4), that in exogenous
samples the MLE remains that expressed in (1.15) if either or both of p and
Q are unknown. Hence for exogenous samples the informational cases in
sections 1.6 and 1.7 will introduce no considerations beyond those relevant
in this section. For choice-based samples, on the other hand, the cases in the
following two sections will be seen to raise a number of new and
analytically interesting issues.

Given assumptions 1.1 through 1.5, the estimators (1.15) and (1.16) can
each be proved consistent and asymptotically normal within their re-
spective sampling regimes. See appendixes 1.11 and 1.12 for the relevant
proofs. The asymptotic covariance matrices are the inverted information
matrices J ;! and J !, respectively, from equations (1.10) and (1.11).

As in section 1.4 no general relation exists between the two covariance
structures, but one does exist when both the exogenous and choice-based
rules yield random sampiles. In this special case we have already stated that

J7'=[J.—RAT'RT,

where R was defined in (1.12) and A is the M x M diagonal matrix with
diagonal elements Q. The matrix RA ~! R’ is positive semidefinite with rank
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p(R) =min(K, M —1). This implies that J; ' —J]' is positive
semidefinite and non-null. Because the exogenous and choice-based
sampling true likelihoods are identical, in a random sample both estimators
(1.15) and (1.16) are consistent for 8*. It follows that, when the sample is
random, criterion (1.15) s statistically preferable to criterion (1.16) in large
samples. This choice is sensible on computational grounds as well.

The option to estimate 0* either through (1.15) or through (1.16) is
limited to the random sample situation. In other than random samples the
estimator (1.15)is inconsistent when applied to a choice-based sample. This
tesult, proved in Manski and Lerman (1977), has an interesting impli-
cation. In forming the choice-based sampling likelihood function one
cannot in general treat Q (i), i € C, as a set of free parameters and ignore the
set of equations relating Q to 0*. Treatment of Q as a function of 6 is
necessary for consistency, not simply useful for efficiency.

1.6 Estimation with p Unknown and Q Known

It was pointed out earlier that in empirical contexts prior knowledge of the
marginal distribution p is not likely to be available. We have also noted that
in exogenous samples the MLE for 0* in the absence of such prior
knowledge remains that given in (1.15). Therefore in this section and the
next we shall focus on the empirically important and analytically interest-
ing problem of estimating 0* in choice-based samples when p is not known.

In the case where p is characterized by a finite vector of unknown
parameters, joint maximum likelihood estimation of 6 and p is entirely

classical, satisfying

N . ~
max In P(i,|z, 0)p(2,) , (1.17)
@peexse amt 5 Plinly, 050
yeZ
subject to
Qi)=Y P(ilz,0)5(z), ieC, (1.18)
 /

where 2, is the (finite-dimensional) space of admissible probability
distributions g. This case always holds if the attribute space Z is finite. Then
the data can be formatted in a finite contingency table, with p an unknown
multinomial distribution. The large statistical literature on analysis of
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contingency tables, particularly the log-linear probability model (Bishop et
al. 1975), provides methods for this problem. Alternately p may be
restricted to a finite-dimensional family on nonfinite attribute spaces by
imposing a priori distributional assumptions. Important cases in the
literature are the restriction of p to be multivariate normal on Z = R’ (see
McFadden-Reid 1975) or to be a finite mixture of multivariate normal
distributions, as assumed in discriminant analysis (see Ladd 1966, Warner
1963, McFadden 1976c¢).

When p is not restricted to a finite-dimensional space, it is no longer
obvious that solutions to (1.17) will exist and be computationaily tractable,
or will enjoy the asymptotic properties associated with classical maximum
likelihood estimators. However, several estimators that do not involve p
and are statistically and computationally appealing have been found for
this problem, including a nonclassical maximum likelihood estimator.

The first estimator developed for this problem was the “weighted”
exogenous sampling MLE (WESML) of Manski and Lerman (1977). Here
the criterion is

N

max 3y w(i,)In P(i,}z,0), (1.19)
0c® =
where w (i) = Q (i)/ H (i), i € C, are known positive weights. This estimator
was shown by Manski and Lerman to be consistent for 0* and asymptoti-
cally normal under assumptions 1.1 through 1.5. Appendixes 1.11 and 1.12
restate these results. Cosslett, chapter 2, has shown subsequently that a
more efficient estimator results in (1.19) if one uses the weights wy (i)
= Q(i)N/N,, where N, is the number of observations in stratum i.28

The asymptotic covariance matrix for the estimator with weights w ({) is

V.=A"'BA7, (1.20)
where

. dlnP(i|z,8%)0lnP(i|z,0%)
A= P 0*
}z: ig‘c (il2. 6%) 00 a0’ P

Q(i)0lnP(i|2,0*)3InP(i|z,0%)
p(z).

(z),

= ‘1 z. 0%
By 2 PUEOEH o0

28. Note that the weights wy can be used even if H is unknown and that wy(¢) converges
almost surely to w(i) = Q(i)/H(i). The covariance matrices for both cases follow by
application of lemma 5, appendix 1.12.
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In a random sample Q (i) = H{(i) for i € C, the estimators (1.15) and (1.19)
are identical, and V, = J]!. A significant advantage of the weighted
estimator is its computational simplicity—existing exogenous sampling
maximum likelihood computer programs are easily modified to yield the
WESML estimate and its asymptotic variance matrix.

A second approach to the estimation of 8*, yielding a nonclassical
maximum likelihood estimator, has been developed by Cosslett in chapter
2. Suppose z is countable, and the constrained optimization problem (1.17)
is considered over the set 2 of all probability distributions on z. Cosslett
has shown that, if the conditions for a Langrangian representation of the
constrained optimization problem (1.17) are satisfied, then (1.17) is
equivalent to the problem

N <
max min 1n|: P 12,8) :', (1.21)
06 medv w21 LS m(i)P(ilz,.0)
ieC
where
AN={meRM Y m(i)Q(i)=1 and Y m(i)P(i|z,,98)>0
ieC icC
for n=1,...,N}. (1.22)

Thus (1.21) provides a nonclassical maximum likelihood estimator of 8*. A
related estimator is obtained by replacing Ay in (1.21) by the positive
simplex

Y m(i)Q(i)=1 and m(i)>0 for ieC}. (1.23)

ieC

A={meRM

The substitution of A for Ay can be shown to leave unchanged the
asymptotic distribution of the estimator (1.21).

Cosslett has shown the estimator given by (1.21) to be consistent and
asymptotically normal under assumptions 1.1 through 1.5. The Lagran-
gian muitipliers m (i) satisfy

m(i) 23 g—g (1.24)

The asymptotic covariance matrix of the estimator is
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V=1[Agp~ ApmAmnAon " (1.25)
where
H(i) o? P(i|z,0)
Ayp=— p@)——P(i|z,0%) -In ,
d egc zéz 0 (i) dadp S m(j)P(j12,0)
jeC
(1.26)

with « and § equal to @ or m = (m(1), . . ., m(M — 1)).%° Since A, is
negative definite, and A,y is in general non-null, the matrix A g4 is larger
than V, in the sense that A ;5 — V is non-null and positive semidefinite.

A third approach to the estimation of 8* not requiring knowledge of p

begins with the identity

p@ =3 0@zl (1.27)
jeC

where, it will be recalled, the conditional distribution ¢ is defined by

f(i,z)=P(i|z, 0%)p(z) = Q(i)q(z|i)

Observe first that if both of the distributions Q and g were a priori
known, the value 8* could be determined directly as the unique solution to
the set of equations
P20 =209 g inecxz. (1.28)

Y 2()alj)

jeC

We note that the uniqueness of 8* as the solution to these equations is
guaranteed by assumption 1.2 and that the solution does not require the
sample data (i,z),,n=1,...,N.

In general the distribution ¢, like p, will not be a priori known.*°

29. The constraint X;.c 7 ()@ (i) = 1 is used to eliminate m(M) prior to differentiation.
The derivative is evaluated at 8* and m(i) = H(i)/Q (i)

30. In a recent paper Carroll and Relles (£976) assumed that the distributions ¢ (z |/),
je C, each fall within the multivariate normal family (see also Warner 1963). Given what

is assumed to be a random sample of observations, they estimate the parameters for each
such distribution and subsequently estimate the choice probabilities by

Q()g@li)
Y Q()idl)

jeC

P(i|z,0%) =

where §(z | j) is the estimate for ¢(z ) and P(i|z, 8*) is the estimated choice
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Nevertheless the identity (1.27) can be used advantageously. Observe that
for each 8 € ® and i e C we can write

Y P(ilz,0p@) =) Q(j)X P(ilz,0)q(zl)) (1.29)
z jeC z

Now for each i and @ the sum X, P (i|z,0)q(z | j) can be interpreted as the
expectation of P(i|z, ) with respect to the distribution g (z | j), which is
the distribution of (j, z) pairs drawn at random from the subpopulation
{j} x Z.But this is exactly the process by which observations are drawn in
choice-based sampling. It follows that, if we let N(j) be that subset of our
sample in which alternative j is selected, and let N; = |[N(j)|, then the
expression 1/N; X, n(; P(i]2,, 0) is the sample mean of independent
observations on P(i|z, 8) when z is drawn according to the distribution
gz}j)AsN— oo,N;/N as., H(j)> 0foreachje C,s0 N; A5 .
Hence by the strong law of large numbers, as N = o,

jeC Nj meN(j) jecC z

=Y P(i|2,0)p(@). (1.30)
z

The relation (1.30) suggests two estimators for @*. First, recalling the
criterion (1.9), we might consider solutions to the following problem:

N

max InP(i,|z,,9), (1.31)
0cO n=1
subject to
om-3 &L ¥ rilz0. icc (1.32)
probability.

The problem with this approach is that when the joint distribution f(i, ) is
decomposed into the product structure f(i, z) = P(i|z, 8%)p(z), the conditional
distribution ¢(z|j) is only a derived distribution defined by the relation

P(ilz, 8%)p(z)

oU)
It follows that in the absence of knowledge of 8%, we cannot in general a priori place ¢
within the normal or any other parametric family. See McFadden (1976c) for a detailed

Qiscussion of the circumstances in which restriction of ¢ to the normal family can be
Jjustified.

q|j)=
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Second, as an approximation to the criterion (1.16) consider

max %':lnP(i,,lz,,,O)—ln[Z QA(,]') Y P(i,,|zm,9)II. (1.33)

0e® -3 jeC J  meN()

The criterion (1.31) can be reformulated as a Lagrangian problem

N

max min Y, [lnP(i,,]z,,,O)

0c® meRM n=1

. 20) ;
- M(z,,)ln[j;c N.0(i) ke;m P(i, |zk’9):|:|’ (1.34)

while (1.33) can be rewritten as the criterion (1.34) with fixed m (i) =1,
ieC.

Under assumptions 1.1 through 1.5 appendixes 1.11 and 1.12 show that
the estimator (1.33) is consistent for 6* and asymptotically normal. The
asymptotic properties of (1.31) are not developed here.

Our fourth method for estimating 0* in the absence of p is quite
straightforward. Consider the likelihood under choice-based sampling of
observing an alternative i, conditioned on an attribute observation z. It
follows from (1.5) that this is

Albz)  _ PUIZOHH()Q(E)
Y AUz Y PUIz0)H()Q()

jeC jec€C

Ali|z) =

(1.35)

Observe that (1.35) does not explicitly involve the distribution p. This
suggests estimating 0* via the conditional MLE
d P (i, 2,,0) H(i,)/Q (i)

max » In

6c0 7 ¥ P(jlz,,,e)H(j)/Q(j)‘

jeC

(1.36)

Note that this criterion results from replacing the undetermined multipliers
m(i) in the nonclassical maximum likelihood estimator (1.21) by their
probability limits H (i)/Q (i).

Given knowledge of Q and of the sampling distribution H, the estimator
(1.36) is consistent and asymptotically normal for 8* under assumptions
1.1 through 1.5.3! See appendixes 1.11 and 1.12 for the relevant proofs. The

31. Cosslett, chapter 2, has shown that a more efficient version of the estimator (1.36) is
obtained by replacing H by the empirical subsample frequencies, N;/N.



Alternative Estimators and Sample Designs 23

conditional MLE has an asymptotic covariance matrix V, equal to the
inverse of the conditional likelihood information matrix,

1 . * H(i)élnP(i|2,0%) dlnP(i|z,0%)
Vc -—;p(l) ,-;: P(I}Z,e )Q(l) 69 09/

om| ¥ P(jlz,O*)H(j)/Q(j)]
I =0 :
z

51DLZ P(J'Iz,e*)H(j)/Q(j)] (1.37)
jeC
00’ K
where
=3 PUIZER@HE)

ieC Q(l)

is the marginal likelihood of z under choice-based sampling. Note also that
V.= A4, from (1.26), implying that this estimator is in general less
efficient than the estimator given by (1.21).

In the special case of a random sample we have X, P (jlz, 0)
HGYQU)=Z;.cP(jlz,0)=1 forallz e Z,0 € ®. Hence the estimator
(1.36) reduces to the exogeneous sampling MLE (1.15).

All of the estimators (1.19), (1.21), (1.23), (1.33), and (1.36) are
computationally tractable, consistent, and asymptotically normal. The
weighted estimator (1.19) and conditional estimator (1.36) avoid the
introduction of nuisance parameters; (1.19)is particularly easy to compute
using existing programs.>? The nonclassical maximum likelihood esti-
mators, (1.21) or (1.23), are strictly more efficient than the others in large
samples. We conclude that, when solution of the saddle-point problem
required by (1.21) is computationally feasible, this estimator is the most
desirable. In the presence of computational constraints, (1.19) or (1.36)
appear best. The remaining estimators are only of theoretical interest.

32. Note that the implicit relation between Q and 6* is not utilized in the estimator
(1.36). Nor was it employed in defining the weighted estimator (1.19). Nevertheless both
estimators are consistent. This contrasts with the situation faced in estimators (1.9) and
(1.16). There consistency required that the relation between Q and 8* be recognized.
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1.7 Estimation with p and Q Both Unknown

In this section we consider the estimation of * when the analyst’s
specification of the parametric choice model P (i |z, ) constitutes his only
prior knowledge of the distribution f over C x Z. While this level of prior
information is certainly sufficient to estimate 8* in exogenous samples, it is
not immediately clear that the choice model parameters should be
estimable in choice-based samples. Interestingly we have found that
consistent estimation is generally still possible in this context.

To obtain suitable estimators, we have considered the criteria (1.19),
(1.33), and (1.36) introduced in section 1.6 and have sought to determine
whether any of these might be adapted for use when Q is not known.?3 In
particular two adaptations have been investigated. First, we have explored
treating Q (i), ieC, as a set of free parameters and maximizing the
objective functions (1.19), (1.33), and (1.36) jointly over 8 and Q values.
Second, we have considered using the equations

o)=Y o0) ¥

jec Nj neng

P(i|z,0), (1.38)

i e C, to solve for Q as a function of @ and then to maximize the section 1.6
objective functions over 0.

Let IT denote a closed subset of the unit simplex in R such that Q e I.
Three criteria for joint estimation of 8 and Q are

1 X 30
max Y I%x:;lnp(i,,m,m; (1.39)

n=1

1 N
—_— l P . |
o.ocoxn N "; nP(i,|z,,0) (1.40)

1 g()) .
- 1 .
N ,.Z:l n|:;ec N; meZN(j) P(l"lzme):l’

o %Z " P(i,,IZ,.,e)H(in)/Q(jn) _
@@cext N 4=t § P(jlz,,0)H()E ()

jeC

(1.41)

N

33. We do not consider the criterion (1.31) because in the absence of knowledge of Q this
reduces to the estimator (1.15) which is known to be inconsistent in choice-based

samples.
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Of these three estimators only (1.41) is generally consistent for the

augmented parameter vector (8%, Q). To see why this is so, we examine the
limiting behavior of each of the above objective functions. For estimator

(1.39), as N - oo, we have

1 3 90 ,
N g H(in)lnP(lnlzme)
__,ZC O (i )Z_—P(”z)e ) p@)nP(i]2,8).
ie Zz

Observe that this limiting form is linear in Q. Therefore its maximum over
® x TI must occur at one of the vertices of the simplex I. Also for each

i e C the sum

5 P(ilz,0%)p(z)
z o)

will not generally be maximized at 6 = @*. Hence (1.39) cannot be
consistent for either 8* or Q.

For estimator (1.40) the limiting objective function is
P (i|z,8*)p (z) H (i)

N TH)
-3 H(z)ln[ Y QU)ZP (ilz,0) (z[j)].

ieC jeC

In P (i|z,0)

InP(iz,0)

In this expression let 8 = 0*, and consider the expression as a function of Q.
Clearly the value within IT minimizing the second term, and hence
maximizing the expression as a whole, depends on the sampling distri-
bution H. Thus Q = Q will not generally be the maximizing value, and the
estimator (1.40) cannot generally be consistent.

Consider now the conditional MLE (1.41). The limiting objective
function here can be written as

Z P(i|z,0*)H(i)/Q(7) P(i|z,0)H(i)/Q (i)
q(z) Y in —
i€ ¥ P(jlz,00HG)YQU) Y P(lz0)H()/ Q)

jeC jeC

where ¢ (z) is the marginal density of z under choice-based sampling. One
can show that for every z € Z, the second sum in the above expression is
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maximized at (8, Q) = (8%, Q). Thus the expression as a whole s maximized
at this point. Consistency is proved by showing that this maximum is
unique and the convergence of the objective function (1.41) to its
expectation is uniform in 6 and Q; see appendix l.11. Generally
assumptions 1.1 through 1.5 guarantee that these conditions are met.
However, there exists an empirically important class of choice models for
which assumption 1.2 does not ensure uniqueness of the maximum. These
are models of the form

5iF(i’z: ¢)
Y 6;F(,2,¢)

jeC

P(ilz,0) =

where 0 = (¢, §,,j € C) and F is a positive-valued function.?* It is easy to
see that, if the choice model has this form, then in estimator (1.41) all
parameter pairs (0;, 0 (j)) yielding the same value for 9; /O (j) are
observationally equivalent.® Assumption 1.2 is strengthened in appendix
1.11 so as to exclude models of this form and thereby guarantee consistency
of (1.41).

Cosslett’s argument in chapter 2 shows that (1.41) is the nonclassical
MLE for the case considered in this section. Consider the criterion (1.17),
without side constraints, and with p any discrete probability distribution.
The set of first-order conditions for maximization in p is

Y. H(i)P(ilz,0)

SN (Z) ieC
\o _o, (1.42)
p(z) Zz P(ily,0)p(y)

for z € Z, where s (z) is the proportion of the sample where attribute value
z is observed. Letting

H(i)
> P(ily,0)p(y)

yeZ

(1.43)

m(i)=

in (1.42), one can write

34. An important model within this class is the multinomial logit model having
“alternative-specific’” dummy variables.

35. In models of this form the parameters ¢ may be consistently estimated. It is only the
5 and Q parameters that cannot be identified.
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pay=— 28 (1.44)
S m()P(ilz,0)
ieC

Substituting this expression in (1.17) yields the criterion

N ] ]
max max Y In P (if2y, B)rm (1) ’
0¢® meR® ;=1 Z m(])P(leme)

jeC

(1.45)

where terms independent of @ and m have been dropped. The maximum can
be achieved at meIl, by homogeneity, yielding (1.41), with m(i)
= H(i)/Q (i). Hence (1.41) is the nonclassical MLE for the case of pand Q
unknown.

When (1.41) is consistent, it is asymptotically normal (see appendix
1.12), with an asymptotic covariance matrix

V.= {Ag — Agm An_:é. Amo)ulv (1.46)
where
o? P(ilz,0)m(i
rp= T T r@a D piaen o e )
) By P(ilzOm()
je€C
with a, g equalto @ orm = (m(1), . .., m(M — 1)) and m(M ) eliminated

using the constraint £, m (i) = 1.

A second approach to estimation when neither p nor Q is known begins
with the constraintequations @ (i) = Z;.c @ (J)/ N; Z,eny P (i12,,0),1 € C,
introduced in equation (1.32). Previously we have used these equations to
constrain 0 given prior knowledge of Q. Here we propose employing them
to solve for Q as a function of 0.

To characterize the hypothesized solution vector Qy(0) = (Qy(i10),
i € C), observe that for each 0 € @, the constraint equations can be written
in the form Qy (8) = A, (0)Qy (0), where Ay, (8)is the M x M matrix whose
typical elements are a?’j @) = l/N Z, .~y P (ilz,, 0). The matrix AN(G) has
for every 0 € © the properties a}; (8) 2 0, for all i, j& C, and I, ¢ a}; ()
= 1, for each je C. That is, AN(B) is a stochastic matrix. It follows that
Ay(0) has the maximal characteristic root é = 1, implying that the
equations Qy(0) = 5A5(0)Qx(0) have a solution for é = 1. Assumption 1.1
ensures that with probability one, the matrix Ay(8) is positive and hence
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irreducible. It then follows from the Frobenius theorem (see Gantmacher
1959, vol. 2, p. 53) that the characteristic vector corresponding to the root
=1 is positive and unique. Therefore the solution Qy(8) must be this
characteristic vector, scaled so as to satisfy the constraint Z; . ¢ On(il0) = 1.
Consider now the solution Q(0) to the set of equations Q(8) = A(0)Q(0),

where A(8) = plim Ax(0) = (£ P (ilz, 0)q (zlj); i,j € C). Observe that at 0
N—ow Z

= 9* these equations have the solution Q(8*) = Q and that foreach® € @

Qu(0) 25> Q) as N> oo

While estimators (1.39) and (1.40) are not consistent when maximized
over @ x TII, appendix 1.11 establishes that they are when maximized over
@, with Q treated as a parameter and the substitution Q = Qy(8) made in
the first order conditions.>® We rewrite these estimators as

Y Q) .
max "; HG) In P(i,)z,, 0) (1.48)
Y . 0 () .
max Y |[In P(i,z,,8)—1In Y Yy P(i,z,.9) (1.49)
00 =1 jeC Nj meNQG)

with @ (i) = Qx(i[90),ieC, substituted in the first-order conditions.

1.8 Estimation in a General Stratified Sample

Recall from (1.2) the expression for the likelihood under a general stratified
sampling process (B, H) of drawing a stratum b € B and an observation

(i7 Z) € Aba

P (ilz,0%)p () H(b)
SHI87 . (1.50)

where S (bl6*) = Z,, P(jly, 6*)p (y)-

This general form and the more special choice-based sampling likelihood
appear structurally similar, with S (b|0*) replacing Q ([0*). In fact most of
our results on estimation in choice-based samples extend directly to the

general stratified context.

A(L,z,b) =

36. The estimator (1.41) will of course continue to be consistent when maximized over
the constrained set rather than © x IL
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Consider first the case in which the distributions p and s (b) = S (b|6*) are
a priori known. The maximum likelihood estimator is

N
max Y InP(i,z, 0), (1.51)
#e®p =1
where @, = {8 @ands(b) =%, P(j|y,0)p (v),b € B}. If pis known but
s(b) is not, the MLE 1s

N
max Y. InP(ilz,.8)— ) Nyln S P(jly,0)p(y)- (1.52)
0c® ;- B Ap
The estimators (1.51) and (1.52) are straightforward generalizations of
(1.9) and (1.16), respectively. It is easy to show that under assumptions 1.1
through 1.5 the former estimators have the same asymptotic statistical
properties as the latter.

When the distribution p is unknown, but s is known, a nonclassical
maximum likelihood estimator analogous to (1.21) can be derived. Let
A, (z) = {i|(i,z) € A,}. The estimator is

g P (i,/z,,0)
max min Y In .
vce mt 2=l Y m®) Y PUlz,0)
beB J€ Aplzn)
where A = {m(b), be B| Z,m(b)s(b) = 1}.
Suppose the sampling process has the property that | Jg A, (z) = C for
each z € Z. Then this problem admits a weighted exogenous sampling MLE

(1.53)

N
max y w(i,z,)InP(i,|z,0), (1.54)

0cO n=1
where

N
w(i,z)=[ __.l?_:l
vee V5

i€ Ap(Z)

A conditional maximum likelihood estimator for the case of p unknown
and s known is
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N : N
max ¥ In Pl 2, ONofSh, (1.55)
0@ n=1 % (N/s.) Y P(jz.,0)
ceB jeAclzn)

Under the stated assumptions, the estimators (1.53) through (1.55) are in
general consistent for 6* and asymptotically normal. The method of proof
mirrors that used in demons*rating these properties for the three analogous
choice-based sampling estimators (1.21), (1.19), and (1.36).

If neither s nor p is known, a generally consistent asymptotically normal
estimator is the conditional MLE

~max i In P(ln | z,, e)Nb,./i(bn) , (]56)
@9e0xD =S (NJSE) Y P(i1Z0)
ceB jeAc(zn)

where IT is a closed subset of the unit simplex containing s.
It is also possible to generalize to this case the estimators based on the

approximation introduced in (1.29) and (1.30). For any stratification B
write

py)=Y sb)g(yIb), yeZ, (1.57)

beB
where g(y |b) = Z;canp PUIY 0*)p (y)/s(b) is the conditional distri-
bution of y given that the pair (i, y) is drawn from A,.
We can write
s@=Y P(ly.0py) =3 s®Y P(jly.0)q(y|b), (1.58)
v Ac

beB

for each ce B and 8 € ©.
Let N, denote the number of sample pointsin b € Band N, (y) denote the

number of these sample points with z, = y. If N, - o, the strong law of
large numbers implies that for each beB

N, ]
T PGy, as, s p(jiy.0)a( 1) (1.59)
Ap Nb Ap
Hence the approximate relation
. N,
@ =%, s T PUly.0 2 (1.60)
beB Ac b

can be used in general stratified sampling analogues of the estimators
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(1.31), (1.33), (1.48), and (1.49). The covariance matrices for all the general
stratified estimators above can be calculated by application of lemma 35 in
appendix 1.12.

To conclude this section we reiterate earlier remarks on the special status
enjoyed by exogenous samples within the class of all stratifications. It is
only in exogenous samples that the terms X, P (j|y,0)p(y), b € B, reduce
to expressions not involving 0. Hence it is only in such samples that the
likelihood function kernel takes the simple form P(i|z, 0). This
simplification differentiates the parameter estimation problem in exog-
enous samples from that encountered under all other stratified sampling
rules.

1.9 Selection of a Sample Design and Estimation Method

Sample designs and estimation methods differ in terms of sampling and
computation costs and precision of parameter estimates. Cost comparisons
are situation-specific, and only a few general observations can be made.
Comparison of the precision of alternative estimators can be made for large
samples using the asymptotic covariance matrices of the estimators. In a
few cases the difference of two covariance matrices is positive semidefinite
for all possible parameter vectors, and a uniform ranking can be made.
More generally rankings will depend on the true parameter vector and on
the true distribution of explanatory variables. Then rankings of designs
and estimators will usually require a Bayesian approach utilizing a priori
beliefs on the distributions of parameters, perhaps based on pilot samples
and previous studies. A systematic treatment of this approach lies outside
the scope of this chapter.

Consider sampling costs. In general, substantial economies can be
achieved by stratifications designed to make it easier to locate and observe
subjects. For example, exogenous cluster sampling, in which respondents
are clustered geographically, reduces interviewer access time. Stratification
on other exogenous variables, such as employer, may also reduce the cost of
locating the subject. In many applications choice-based sampling greatly
simplifies location. For example, subjects choosing alternative colleges or
travel modes can be sampled economically at the site of choice. Choice-
based sampling has the greatest potential economy in applications where
some responses are rare (€.g., choice of a seldom used travel mode, or
mortality from a surgical procedure with a low mortality rate) or are
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difficult to observe accurately in an exogenously drawn sample (€.g., a
retrospective history of criminal activity).

Considerations of computation cost are relatively unimportant in the
choice of an estimation method from those considered in this paper. The
primary component of computation costs for these estimators, the
evaluation of response probabilities at all sample points, will be common to
all.

These estimators in general require iterative solution of a system of
nonlinear equations. Estimators with auxiliary parameters, such as (1.21)
and (1.41), may require more iterations than those involving @ alone.
Estimators (1.7) and (1.9), requiring computation of expected values over
Z for the constraint equations, may impose a large added computational
burden, as may estimators (1.48) and (1.49) requiring determination of the
Frobenius characteristic vector of an M x M matrix at each iteration.

Consider the precision of estimates obtained by alternative methods
from alternative sample designs. Note first that the level of precision, and
possibly the ranking of alternative methods, will depend on the prior
information available on the marginal distributions p and Q. We shall
assume the state of this information is fixed. However, it should be noted
that in practice the question of drawing observations on p or Q at some cost
in order to utilize more efficient estimators of the response probability
function may be an important part of the overall design decision.

First consider alternative exogenous sampling processes. Unless both p
and Q are known, the maximum likelihood estimator (1.15) applies, with
an asymptotic covariance matrix given by the inverse of the information
matrix J, in (1.10). Stratification influences this matrix via the distribution
g(z). The simplest case is that of experimental design where g (z) is in effect
chosen directly by the analyst. When both p and Q are known, the
estimator (1.7) applies, with the asymptotic covariance matrix V,in (1.13).
The only result on sample design we have obtained at this level of generality
is that an exogenous design dominates a second for the estimator (1.15) if
and only if it does so for the estimator (1.7).%’

To illustrate the problem of exogenous design, we consider the example
of two alternatives, a single parameter 6 and explanatory variable z, and a

37. A design a dominates a design B if J,(8)* — J () is positive semidefinite (p.s.d.).
To establish the conclusion, note that « dominates §iff V. (f) — V.(«) is p.s.d. From note
26, V, = D(D'J,D) "D’ for a matrix D determined independently of the design. Then
V,(8) - V() = D[(D'J(AD)* — (D'J (2)D) D’ psd. < (D'J,(F)D) ™!

— (D1, ()D)! ps.d.« DI (D — DI LD psd.<=Jx) ~ I () psd.
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binary logit model P(1 |z, %) = 1/(1 + ¢ ¢"%), where 6* # 0. Then

+w 1

= 2———2—6,2 d =L 1 P 2 _
J. C ATy g(z)dz ov2 N P(1 — P)h(P)dP,
0

-

where the second integral is obtained by the transformation of variables P
=1/(1 + e %), and & is the distribution of P. The expression (In P/
(1 — P)®P(1 — P)is maximized at P (or 1 — P) equal to 0.9168. Hence
the most efficient design would be one in which z is concentrated at values
giving P(1 | z, 8*) = 0.9168 or 0.0832; note that the corresponding z values
will depend on the true parameter value 6*.

Consider now choice-based sample designs. Cosslett investigates in
chapter 2 the efficiency of alternative choice-based sample designs and
estimators for binary probit, logit, and arctan models with a single
explanatory variable. All three models have the form P (1| z, 8) = ¥(6z),
where

l -x2%/2
—— e x
I for probit,
o) = —
T (1+e7Y) for logit, (1.61)
1 1 -1
—+—tan" "y for arctan.
2 =

Choice-based sample designs vary in the proportion of the sample H (1)
drawn from the subpopulation choosing alternative 1. The optimal sample
design for any estimator is determined by the value of H(l) which
minimizes the asymptotic variance of the estimator. Cosslett finds that
equal shares designs are relatively robust, giving asymptotic efficiencies
close to those obtainable using an optimal design. For the case with Q
known and p unknown he finds that the nonclassical maximum likelihood
estimator (1.21) is considerably more efficient than the most efficient forms
of the estimators (1.19) and (1.36). The last two estimators are comparable
in efficiency for many parameter values.
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1.10 Conclusion

This chapter has established that the parameters of a choice probability
function can be estimated consistently under a variety of stratified
sampling procedures. However, the estimator used must be appropriate to
the sampling scheme adopted. Practical estimators have been developed
for two common sampling methods, exogenous stratification and choice-
based sampling, for alternative information conditions on marginal
distributions.

Three applications of quantal response models were given as examples.
From the results the following conclusions can be drawn:

1. Only the study of college choice parameterizes the response probability
function directly, postulating a multinomial logit model. However, the
parameterizations in the remaining two examples imply, indirectly, a
multinomial logit response probability. In the study of survival rates
following surgery, the log-linear model is a direct parameterization of
f(i, z), with the schematic form

Inf(i,z) =2+ o, +7; + B;z, (1.62)
with z assumed finite. This implies
eVithix
P(i|z,8) = ——, (1.63)
Z eVithiz
jeC

where @ = [y;, B;, j€ C]. This is a general multinomial logit form.

The study of transportation mode-choice postulates the posterior
distributions ¢ (z | { ) to be multivariate normal with means 4; and common
covariance matrix X. Then

q(z1)Q(i)
Y q@lHQw)

je€
has the form (1.63) with 8 = g;Z ' and y;, =In Q(i) — 1/2 u[E " ;. If
either the log-linear joint or the multivariate normal posterior specification
is correct, then direct maximum likelihood estimation of these forms,
taking into account the sample likelihood resulting from the sampling
scheme, should yield consistent estimates of the response probability
parameters in (1.63). It should be noted, however, that these specifications,

P(i|z)=
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which place a priori restrictions on the distribution of z, may be false even
when a direct specification of the response probability in the form (1.63) is
correct.>8 In this sense direct parameterization of the response probability
function should be more “robust” than indirect specifications. When the
response probability function is specified directly to be multinomial logit,
but with a more restrictive parameterization than (1.63), the indirect
estimation of parameters fitting the log-linear model or by discriminant
analysis will not provide efficient estimators even if the conditions for
consistency are met; see McFadden (1976c).

2. Inlight of the preceding paragraph one might assume that each of the
three studies takes as its primary parameterization a multinomial logit
response probability. Then one can ask whether the estimation method
each uses provides consistent estimates of the logit parameters, given the
sample design. For the studies of college choice and travel mode,
exogenous random sampling is used, and the preceding argument estab-
lishes consistency of the estimators under standard regularity conditions.
Consider the study of survival following surgery, which uses a choice-based
sample. The estimation procedure applies maximum likelihood to f (i, z),
without adjustments for the sampling stratification. The likelihood func-
tion then converges in probability to

L=Y ¥ q@li0*)H()Inf(i,z90)

ieC zeZ
_ P(i|2,8%)p@H(i)
- 1;: zze:z Qi)

where 8 = ((y;, B:), (2,), 4) and 6* denotes the true value. Then

Inf(i,z,0),

. H(J)
L= P ,0%)—=—
zgl l: jEZC (] l g )Q (])]p (Z)

P(i]z,0%)H(i)/Q (i)
iec ¥ P(iz.0H()Q())

jeC

[lnP(iiz,G) + lnp(z)]

38. When Z is finite, a saturated log-linear model is “true” in the sense that it describes
observations perfectly. However, when the set Z is made finite by dichotomizing or
restricting variables, or when the log-linear model is restricted to exclude some
interactions, misspecification is possible.
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=y [z P(jlz,e*)g((;ﬂp@)

zel jieC

yi+1n (H (i)/Q (i) +B*z orit Bz

Y In

jec Z ey}+ln(H(j)/QU))+ﬁ*3" Z e T Bz

€

jecC jecC
: H(J)
o 1 .

This function is maximized at B, = pg* and y, =y* +In H(@EF)/Q().
Applying the consistency theorems in appendix 1.11, one concludes that
the study estimates the parameter vectors ¥ in the multinomial logit
response function consistently but gives inconsistent estimates of the
“alternative-specific parameters y,. This is a property unique to response
probability functions with multiplicative alternative-specific effects; see
Manski and Lerman (1977).

3. In the college choice and travel mode studies, the use of choice-based
sampling offers a substantial potential economy in locating and observing
subjects. With stratification, infrequently observed alternatives can be over
sampled to achieve a reduction in variance of the estimators for fixed total
sample size. This chapter provides consistent, computationally tractable
estimators for these stratified sampling procedures.

1.11 Appendix: Consistency of the Estimators

In this section we demonstrate consistency for the estimators (1.7), (1.9),
(1.15), (1.16), (1.19), (1.33), (1.36), (1.41), (1.48), and (1.49). All of these
estimators have the form

N

max - 3 n in 2 6). (1.64
where gy is a real function defined on C x Z x ® and @ is a parameter
space. For estimators (1.15), (1.16), (1.19), (1.33), (1.36), (1.48), and (1.49),
® = ©. For estimators (1.7) and (1.9), ® = ©,, while for (1.41), ® =
® x II.Inestimators (1.7), (1.9), (1.15), (1.16), (1.19), (1.36), and (1.41) the
function gy does not vary with N, but in (1.33), (1.48) and (1.49) it does.

Consistency proofs for all of the above estimators may be based on the
following lemma of Amemiya (1973):
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LEMMA 1.1. Let fy(x, ¢), N=1, ..., oo be a sequence of measurable
functions on a measurable space X and for each x € X, a continuous
function for ¢ € ®, @ being compact. Then there exists a sequence of
measurable functions ¢y(x), N=1,..., oo such that fy(x, ¢y(x))
= sup In(x,@)forallxe Xand N =1, , oc. Furthermore, if for almost

every x € X, fy(x, ¢) converges to f(¢) umformly for all ¢ @, and if f(¢)
has a unique maximum at ¢* € @, then ¢, converges to ¢* for almost every

x eX.

A key step in the consistency demonstration is to show that for each of
our estimators the maximand N~ ! Z¥_ gy(, 2, ¢) almost surely
converges to a function f(@) as N — oo and that the convergence is uniform
in ¢. To show this regularity property, the following result of Jennrich

(1969) will be repeatedly used:

LEMMa 1.2. Let u be a probability measure over a Euclidean space S, let
® be a compact subset of a Euclidean space, and let g(s, ¢) be a continuous
function of ¢ for each s € S and a measurable function of s for each ¢ € @.
Assume also that | g (s, ¢) | < «(s) for all s, ¢, and some p-integrable o. For
anysequenceX =s,,s,, . . . let fy(x, ¢) = )., g(s,, ¢)/N, and let X be the
set of all sequences x. If sequences x are drawn as random samples from S,
then for almost every realized such sequence, as N — 0,

Su(x,9) > E(g(s. 4)) = f(#)

uniformly for all ¢ € ®@.

Finally the crucial substantive step in proving consistency is to show that
the limiting maximand f(¢) achieves its unique maximum at the “true”
parameter value ¢* € ®. For this purpose the following parametric form of
the classical information inequality will be used (see, for example, Rao

1973, p. 59):

LEMMA 1.3. Let g(s, ¢) be a real valued function over a space S x ®
such that g is integrable with respect to a measure pover Sand g (s, ¢) = 0,
allse S, ¢ € ®. Let ¢* be an element of ® such that g (s, ¢*) > 0 for aimost
every se S and [,(g(s, ¢*) — g(s, ¢))du =0, all ¢ ®. Then the ex-

pression

f(9)= J g(s,¢*)ng(s,d)du
S

attains its maximum at ¢ = ¢*. The maximum is unique if, for every ¢ € @
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such that ¢ # ¢*, there exists an S, © S such that

j g(s,d’)du#J g(s,9*)dp.
Se¢ S¢

From these preliminaries consistency for each of our estimators may be
demonstrated. In what follows assumptions 1.1 through 1.5 are maintained
throughout. Easily verified technical conditions required to use lemma 1.1
through 1.3 are generally omitted. For the sake of conciseness the abstract
functional notation of equation (1.64) and lemmas 1.1 through 1.3 is often
used. Finally the letter K designates a nonessential constant appearing in
certain expressions.

Estimators (1.7) and (1.9)

These are constrained versions of estimators (1.15) and (1 .16), respectively.
Since 0* € ®, — @, consistency of (1.15) guarantees that of (1.7), and
consistency of (1.16) guarantees that of (1.9).

Estimator (1.15)
gy (i,2,¢)=InP(i|2,8), ®=0.
1. By lemma 1.2, as N — oo,

fux,§) 225 f9) =T 9@ 3 P(i12,00h P20

uniformly over ©.
2. By lemma 1.3 f(¢) is uniquely maximized at ¢ = 0*.
3. Hence by lemma 1.1 (1.15) is consistent for 0*.

Estimator (1.16)
gnli,z, @) = nP(ijz,0)—Y P(ily.0)p(y) ¢ = 0.

1. By lemma 1.2, as N — o0,
P(ilz,0*
fx ) 25 fig)= T H(i)z_%)”_"—)

ieC Zz
a P(ilz,0)p(z)
S P(ily.0)p(y)

+ K
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uniformly over @.

2. Recall that Qi) =X, P(i|y, 0*)p(y). By lemma 1.3 then f(@) is
uniquely maximized at ¢ = 6*.

3. By lemma 1.1 (1.16) is consistent for 8*.

Estimator (1.19)

Qi)
H(i)

1. By lemma 1.2, as N — o,

fux.¢) 22 f(9) = ZP(Z) Zc P(i|z,6%)InP(i]2,9)

gy(i,2,90) =———InP(i|z,9), ®=6.

uniformly over ©.
2. By lemma 1.3 f{¢) is uniquely maximized at ¢ =0*.
3. By lemma 1.1 (1.19) is consistent for 0*.

Estimator (1.33)
gN(iszs¢) = lnP(l t Z,e) - lnBN(l | 0)3

where

By (i|0)= Y ou) Y P(ilz,9), ®=0.

je€ Nj meN(j)

By lemma 1.2, as N — oo,

1 X P(ilz,0%)p() .
— InP(i,|z,,0 _as., H{i = " InP(i|z,0
§ L, Pl im0 == 3 HO =00 )
uniformly over ©.
Consider

L%113(' e—zN"lB 119

N L WBi(i10)= % FinBy(i10)
Lemma 1.2 implies that, as N — oo,

1 j *

Nf meN(j) z Q(])
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uniformly over ©. Hence, as N — o0, BN(i|0)iS;> T2 P(i|z, 0)p(z)
uniformly over ®. Now observe that by assumptions 1.1 through 1.5 there
exists 6 > 0 such that £, P(i|z,0)p(z) > d forall 6 @ and i e C. From
this, from the uniform convergence of By, and from the concavity of the log
function it follows that for any e such that > ¢ > 0, there exists N such

that

<

In (Z P(i|z,0)p()— s)
z

inBy(i|0)—1In) P(i|z,0)p(2)
z

<|In(8 — &) —Ind|

- ln(Z P(i|z,0)p (z))

almost surely forall N > Nand @ € ©. That s, In By (i | @) converges almost
surely uniformly. Hence

v Ninp,(i10) 255 ¥ H()IY P(ilz.0p @),
ieC N ieC z
and finally

fﬂ&@—ELfWﬁ521ﬂﬁZ£ﬁzﬁﬁﬂﬂ
ieC z 0 (i)

In P(i|z,0)p(z)
;PﬁWJWW)

+ K

uniformly in @.
Consistency of the estimator (1.33) then follows from that of (1.16).

Estimator (1.36)
P(i|z,0)H(i)/ Qi)
Y P(jlz.0)H() Q)

jeC

gN(iazs¢)=ln Q:@,

1. By lemma 1.2, as N — o0,

frx,9) 235 £(4)
Se@ S P(i|2,89H()QW) | PUIZOHENQM)
Z e ¥ P(jlzn0HUYQU) Y PUIz®HGYCU)

jeC je€C
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uniformly over ®. Here

P(j|z,0*
q(z)E,-eZc (J!(zzU))p(Z)

2. By lemma 1.3 f(¢) is uniquely maximized at ¢ = 0*.

H(j).

3. Consistency then follows from lemma 1.1.

Estimator (1.41)

on(i2,9)=lnPUIBOHGOWH o o

Y P(jlz,0)HG)Q3)

je€

1. Observe first that if IT is taken to be the closed unit simplex, then gy (i, z,
¢) is not suitably bounded, so lemma 1.2 cannot be applied. Recall,
however, that there exists > 0 such that 2, P(i |z, 0)p{z) > d,allieC,
0 € ®. Hence Q (/) > 4,alli € C,and we may take IIto be the compact set IT
=[Q:Z;.c0@)=1,0(i)= 4, all i e C]. Now lemma 1.2 implies that, as
N— o0,

3 P(i{2,0%) H(i)/Q(i)
€Y P(jlz,00HU) Q)

jeC

fe(x9) 225 f(¢) = gq(z)

P(i|z,8)H(i)/Q(i)
Y P(ilz,0)H()/G())

jeC

-In

uniformly over @ x I

2. By lemma 1.3 f(¢) has a maximum at ¢ = (6%, Q). However, as-
sumptions 1.1 through 1.5 do not ensure uniqueness. The following
strengthening of assumption 1.2 does guarantee uniqueness.

ASSUMPTION 1.2 For each (8, Q) e ® x I such that (8, Q) # (6*, Q),
there exists A < C x Z such that
. - g - . ,0* H . .
S 4@) P(zlz,B)H(z)/Q(i) 43 4@ P(i|z,0%)H(i)/Q(i) _
A S P(jlz,®HGYG() * Y P(jlz,0%)H(j)/Q())

je€ jeC

Moreover, the stratified sampling process satisfies X, P(j|y,8%)p(y) >0
= H(b) > 0for each beB, and | J,.5 A, =C x Z.
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3. Lemma 1.1 then implies consistency of (1.41).

Estimator (1.48)

i|0 _
gy(i,2,9) = —Q—%(—(I!TllnP(z | z,0)

where Qx(0) = Ay (0)Qy(8), and Ay (0) is an M x M matrix with typical
element

aﬁ-(ﬁ)=-1— Y P(ilz,6), ®=0.

Jj neNQ)
The key step in establishing consistency of this estimator is to determine
the limiting behavior, as N — oo, of Qy(0).
First, observe that by lemma 1.2, as N - o,

P(jlz,0%)p(z .
a% @) as. ; (J |Q(j))P( )P(z 12,8) = a;, (®)
uniformly over @. Therefore Ay (0)—3‘—3'—» A(6) uniformly, where A(8) has
typical element a;;(8).

Next, recall from the text that (A(0) — I) has rank M — 1, and that Q@
is the unique solution to the set of equations (A(8) — NQ(6) =0 and
[1...1]Q(8) = 1.1t follows that, if we define A(0) to be an M x M matrix
whose first M — 1 rows are linearly independent rows of (A(@) — I), and
whose last row is a vector of ones, then A(0) has full rank and Q(©)
=A@ ©,...,0,1). .

Similarly define A (8) for each N and observe that, since Ay(0)-23
A(0) uniformly, A (8) is almost surely nonsingular for N sufficiently large.
For such N then Qy(0) = Ay(8)™* (0, . . ., 0, 1)". Now note that for large
N, Qy®8)— Q@) = Ay®) ' —A@0)"") (O0,..., 0 1) and that each
element of A, (@)~* is a product of elements of Ay(0) divided by the
determinant | A, (@) |- Since for each i,j € C, a?}(())i‘s;-» a;;(8) uniformly,
it follows that Ay(@)~*-23= A(8)~' uniformly. Hence Q,(0) 23
Q(0) uniformly, the desired limiting property.

The simple method of proving global consistency using lemma 1.3
cannot be employed for the estimator (1.48) since the first-order condition
it satisfies is evaluated at the argument Q = Q,(8) which depends on 0.
However, a direct argument using lemma 1.1 can be used to prove a weaker
form of consistency: given an identification condition, there exists a
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neighborhood of the true parameter vector in which (1.48) has a unique
root, and this root converges almost surely to the true parameter vector.
Note that this result does not rule out the existence of nonlocal inconsistent
roots.

The gradient of (1.48) is

| 1 8) 21n P (i, | z,,0
@)= ¥ el IR T
_ v MO0/ 1 dln P(i|z,,0)
=N A (Nl-ng(,-, I )
Applying lemma 1.2 to the term in parentheses,
Q( i ) 010 P(i|z,0)
t© h®)=2 % r@Gq PEIZE 3

uniformly over @. Recall that Q(8) satisfies

0(i|0)= T ZP(J | z,ﬂ*QI‘Z(t)Iz,O)p(Z)QUlo)

je€ z

and Q(i|0*) = Q(i). Hence
ol 0* 01 | 9% OP(i]z, 0%
Q(z)——~——nQ(l| ) Y Vi ____nQa(;| ) & Zp(z)————(laleZ )

jeC z

with y;;= 3 p(z) P(i|z,0%) P(j|2,8%).

The Jacobian of h(B) evaluated at 0* is

ah L 2*InP(i]2,8%)

L_ 5 % pe PUIn0n

_ 5ln P(i|z,8%)01n 0 (i]8%)
*

+ Z:[,c p(@) P(il2,0%)——¢ =0

. Oln P(i|z,0%)dIn P(i|z,0*
= -3 Y p@ P2y BT CIRT
z ieC

21nQ(®) d1nQ(®)
+(22%) - r(25¢2),
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where Q is a diagonal matrix with elements Q (), T is the symmetric matrix
with coefficients y; ;, and we have used the identity X, P(i|z,0) = 1 and the
equations defining & In Q(i | 8)/06. We make the identifying assumption as
follows.

ASSUMPTION 1.27:  0h(0*)/00" is nonsingular.

Then the function f(8) = — h(8)'h(8) has a local maximum f(0*) = 0 which
is unique in a neighborhood of 8*, and lemma 1.1 establishes that within
this neighborhood hy (8) has a unique root 8, which converges almost
surely to 0*.

As was the case for estimator (1.41), models with muitiplicative
alternative-specific parameters, such as the multinomial logit model, are
not fully identified when Q is unknown and will fail to satisfy assumption
1.2”. We conjecture that assumption 1.2’, plus a regularity condition that
the rank of dh(8)/08 be constant in a neighborhood of 6*, imply
assumption 1.27, with 6h(6*)/30 negative definite. We have verified this
for two alternative choice sets.

Estimator (1.49)
The gradient for this estimator is

1 ¥ (0lnP(i,|z,0)
by®) =5 2, { )

3 OUIDL o SRl
jeC QN(lnIO)NJ me N(Jj) 00 ’
satisfying
] oln P(i|z,0
by (®) 25 h®) = ¥ g%zp(szlz,e*)—“—%é'—’—)
ieC z
Ly ) g 2018
e 2i10) jeo 203)

OP(i|z,0
5 0@ P(712.00 G
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Then h(0*) = 0, and an argument identical to that for (1.48) establishes
that, if this gradient satisfies assumption 1.2”, then (1.49) has a locally
unique root that converges almost surely to 0*.

1.12 Appendix: Asymptotic Normality

Under assumptions 1.1 through 1.5 all of the estimators just proved
consistent have associated with them first-order asymptotic normal
distributions. In each case the relevant asymptotic distribution can be
found by application of the following two lemmas:

LEMMA 1.4: Let the assumptions of lemma 1.1 be satisfied. Further-
more let fy(x, - )e C*(®) for almost all xe X and f(-)e C*(®). Let
(r:® — R’) e C*(®) with r(¢*) = 0 and R = dr(¢*)/0¢ of full rank. Let
dy(x), N=1,..., o, be a sequence of solutions to the problems max

Sn(x, @) subject to r(¢) = 0. Finally suppose that ¢* eint ®, that F
— 3%f($*)/0¢d¢' is nonsingular, and that /N (@fy(x, ¢*)/0¢)->
A7(0, A). Then

IV @y — 9% 2 v 0,071 a0,

where
Q '=F ! —F!R(RF!R)'RF.
PROOF: Lemma 1.1 implies that [¢y] exists and that, as N -» oo,

q?Nﬁ'—-» ¢*. Hence for N sufficiently large ¢y € int ® and dr(¢y )/d¢ has
full rank a.s. By the classical Lagrangian theorem there then exists a.s. a

unique 4y € R’ such that

Ofn (X, fn)  Or(dy) < _
2% + 36 Ay =0.

Moreover as N — oo, dy—23 i* = 0. This last follows because

afN(x,$N) as. 9f(@%)
dp © 8¢

=0

and

51'(5»1) a.s. Or(9*)
3¢ o
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which has full rank.
A Taylor’s expansion around (¢*, 4*) of the first-order conditions for

maximization of f, (x, ¢) subject to r(¢) = 0 yields 0 = Ayyy + by, where

hp ) ¢ 7w 10r@n)
2poF T b T agey | 06

..........................

Ay =

Iy (x,0%) & 0%
" - Ax—1
_[¢~—¢*J boo| 9 tE T
Yn= IN gk N = )

and where (¢, 1) lies on the line segment connecting (¢, 4y ) with (@*, 4*).
Recall that 4* = 0, and let N > co. Then

F R
A, 23S
2o

and

oy (X, %)
J¥ éy—¢*] as. [F R VN F)
Ay R 0 0

Finally observe that

F R]' _[@' B

R/ O - B/ D ’

where D = —(R'F7'R)"! and B= —F 'RD. Thus /N ($y — ¢*)
24, 40, 071aQ7Y).

LEMMA 1.5: Let the assumptions of lemma 1.4 be satisfied and also those
of lemma 1.2 except that

fN(x9¢) = Z g(sm ¢’hN(¢))/N’
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where hy(¢) = ZV_, e(s,, ®)/N, ee CX(®, RY), and g e C*(®). Suppose

h(¢*) = fe(s,do*)d#,

v dg (s, ¢*,h(¢*)) dg(s, 9*, h(¢*))
s = ¢ o¢’

V.= Je(s,d’*) “e(s,¢*) dp —h(¢*) h(d*)',

%9 (s, *.h ¢*))
W= f dgdh’

. all exist and are finite. Let

Ve = J.e(s,d’*)ag(s"pa;,h@*)) du

Then

\/ﬁafN (ax¢j¢*) a'd" ./V-(O,A)s

where A=V, + WV _ + VW + WV, W,

PROOF: A Taylor’s expansion around h(¢*) yields

e, %) 1 [" 29(s,, $*,h($*))
N =
N~ mLE T
905, %y (6%) 1 4 ]
4 Ly (4) ~ b 6")
=[ 1 iag(s,,,w,h(qb*))]
N n=1 a¢

1 { 0%g(s,, 9*, by (%))
N = Gpon’

[
- [ ﬁ(z (5, $%) - h(¢*))],
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where hy (¢*) lies on the line segment connecting hy(¢*) with h(¢*).
As N — oo,

S 095, 0% Ay (9%) as.

1
N .= 8¢oh’ w.

Observe that by lemma 1.4
~[59(5,4’*,h(fi)"‘))a, of (¢*)
u

=—-—=0

0o o¢

It therefore follows from the multivariate Lindberg-Levy theorem that, as
N-— oo,

1 n=1 6¢ ad. Vg Velzg
z drfofy: V)
Y. (e(s,.9*) — h(¢*) “

g 09 (5., ¢*,h(9*))
N
=1

Hence

SRS ad. 4 g
a¢

It may easily be verified that under assumptions 1.1 through 1.5, each of
the estimators (1.7), (1.9), (1.15), (1.16), (1.19), (1.33), (1.36), (1.41), (1.48),
and (1.49) satisfies the assumptions of lemmas 1.4 and 1.5 and hence has an
associated first-order normal asymptotic distribution. For all estimators
except (1.7) and (1.9) the constraint equations are the trivial (r:® — R%) so
that the matrix ! simplifies to @~ = F~'. For all estimators except
(1.33), (1.48), and (1.49) the range space of the function eis the empty set, so
that the matrix A simplifies to A = V. For all estimators except (1.19) and
(1.48), F = —V_, allowing further simplification of the covariance matrix

expression.
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