Efficient Estimation of Discrete-Choice Models

Stephen R. Cosslett
2.1 Introduction

In this chapter we consider maximum likelihood estimation of discrete-
choice models when the sample of observations is choice-based. Unlike a
random sample in which the probability of being included is the same for all
individuals, a choice-based sample is designed so that the probability of
being included depends on which choice the individual made; that is, the
sample is stratified on an endogenous variable. This type of sampling is
appropriate when some alternatives of particular interest are infrequently
chosen.

There are two aspects of this problem: the choice of estimators and the
design of samples. As far as estimation is concerned, the nonrandom nature
of the sample is a liability—it is more difficult to get consistent and
asymptotically efficient estimates of the parameters of a choice model from
a choice-based sample than from a random sample. The first part of this
chapter develops a systematic method for obtaining estimators with these
properties. The proofs of consistency and asymptotic efficiency are
somewhat lengthy and technical; in particular the question of asymptotic
efficiency involves problems that appear not to have been addressed in the
econometric or statistical literature. Details of these proofs are therefore
presented elsewhere (Cosslett 1978, 1981). Using this method, maximum
likelihood estimators are derived for several nonrandom sampling pro-
cedures. Some of these sampling procedures have been investigated
previously by Manski and Lerman (1977) and by Manski and McFadden,
chapter 1 ; some of the estimators obtained in chapfer 1 are the same as the
corresponding maximum likelihood estimators and thus are asymptoti-
cally efficient.

When sample design is concerned, however, the nonrandom sample
becomes an asset. Once a suitable estimator is available, a properly
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designed choice-based sample can often provide more precise estimates
than can a random sample of the same total size. Equivalently, if estimates
are required to some specified level of precision, use of a choice-based
sample can often reduce the size (and cost) of the sample.! The selection of
sample design is illustrated by numerical calculations for some simple
choice models. From computed values of the asymptotic variances of
different estimators and different sampling schemes, we obtain a qualitative
picture of the effects of (1) using a choice-based sample rather than a
random sample, (2) varying the relative sizes of the alternative-specific
subsamples in a choice-based sample, (3) prior knowledge of the pro-
portions of the whole population that choose each alternative, and (4)
using suboptimal, but computationally simpler, estimators, such as the
Manski-Lerman estimator (Manski and Lerman 1977).

2.2 Discrete Choice Models

A discrete choice model specifies probabilities P (i|z, 0) for each of a set of
alternatives {i} among which an individual can choose. The exogenous
variables z describe observed attributes of the individual and of the
alternatives available to him, and are supposed to be causal variables
affecting the choice. The parameters @ are to be estimated from the
observed choices of a sample of individuals. The method of estimation
depends on the functional form of P(i|z, 9), on the way in which the
sample was drawn, and on the extent of prior knowledge of the distribution
of the exogenous variables z. Predictions of choice probabilities can then be
made for different populations, or for the same population following
changes in some external variables, or even following the introduction of
entirely new alternatives.

A review of discrete choice models and their application is given by
McFadden (1976), with further discussion by Manski and McFadden in
chapter 1 and by McFadden in chapter 5.2 As an example, in the case that
provided the starting point for this research, the alternatives are the modes
of transportation available for traveling from home to work, such as car,

1. Two related papers address the questions of sample design and estimation from
choice-based samples: Manski and McFadden, chapter 1, and Lerman and Manski
(1978).

2. Any discrete response or outcome can be analyzed, not necessarily choice. In such
cases the terminology ‘‘qualitative response” or “‘quantal response” is more appropriate
than “discrete choice” or “probabilistic choice.”
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bus, subway, or car pool; the attributes of the individual are socioeconomic
characteristics such as family income and home location; and typical
“attributes of the alternatives are the times and costs of each mode.?

The estimation procedures described in the following sections can be
applied to quite general probability models P(i | z, 9), subject only to some
mild regularity and identifiability conditions. Only a few probability
models, however, have been found useful in econometric applications,
regardless of whether the sample is random, stratified, or choice-based. The
tasks of specification and estimation may be quite intractable unless the
form of the probabilities is very much restricted. Thus the only probability
models used in practice are the well-known logit and probit models. The
nested logit model, a special case of the generalized extreme value model
developed by McFadden (1978) (see also Williams 1977 and Daly and
Zachary 1979), has also been used recently.* These models can all be
derived from an underlying random utility maximization model with a
linear additive utility function (see McFadden 1973, 1978); but they are still
useful and convenient parametrizations even when utility maximization or
stochastic thresholds are not appropriate as underlying models.

Besides the general form of each estimator, we shall also give the
particular form that it takes when the choice probabilities are specified by a
multinomial logit model. Because of the special properties of the logit
model, the estimator in this case is often greatly simplified. The multi-
nomial logit form of the probabilities is
P(il2.0) = Mexp V.(z,0) ,

Y. expV;(z,0)

ji=1

@.1)

where M is the number of alternatives. The actual specification of V;(z, 9)
does not matter here: it is just a summary statistic or index number

3. Another type of application uses repeated observations on the same individuals, as for
example in studies of unemployment, of labor-force participation (Heckman, chapter 3),
or of welfare dependency, where now the probability P[i(¢) | z(z), 8] is conditioned on the
previous outcome (2 — 1) as well as on z. Panel data of this kind may be analyzed in
terms of a “dynamic™ discrete state model, invovling time-dependent transitions between
the different states. Choice-based sampling in such cases, however, can lead to additional
complications which are not covered in the present work.

4. The estimator derived here (see section 2.14) has been applied in estimating a nested
logit model of transportation mode choice (McFadden, chapter 5) from an enriched
choice-based sample (Cosslett 1978).
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representing the attractiveness or desirability of alternative i. In the
random utility maximization model it is the average utility (for all subjects
with the same characteristics z) of alternative i. In practice it generally has
the linear form (used also in the probit and nested logit models)

Vi (zise) = Z Zia Ga = zi ) 99 (22)

for i=1,..., M, where the subvector of exogenous variables z; is
supposed to contain attributes of alternative i and socioeconomic
characteristics of the individual, but not attributes of the other alternatives.
When specifying the model, one generally includes a full set of alternative-
specific dummy variables (one fewer than the number of alternatives), and
some further simplifications occur in the case of the logit model with a full
set of alternative dummies.’

2.3 Stratified Sampling and Choice-Based Sampling

Three types of sampling procedure are of interest here: random sampling,
stratified sampling, and choice-based sampling. A random sample is self-
explanatory and is typified by the household survey in which households
are selected randomly within some geographical area.

In stratified sampling the population is first classified in subsets on the
basis of one or more exogenous variables ; a random sample is then drawn
from each group, but different groups are sampled at different rates. Thus
in a study of choice of transportation mode for travel between home and
work, one might want to sample suburban residents at a higher rate than
city center residents (provided that residence location is not an endogenous
variable in the choice model). As another example, the study may be
designed to determine the significance, if any, of one particular exogenous
variable (such as educational background) in determining the response
probabilities ; one might therefore select a sample which is more or less
homogeneous in the other exogenous variables.

In choice-based sampling, on the other hand, the classification of the
population into subsets to be sampled is based instead on the choices or

-outcomes: for each alternative a random sample is drawn of those
individuals who chose that alternative. This may be considered as an
endogenous sampling process, as opposed to the exogenous stratification

5. A dummy variable on alternative j is a variable z;, such thatz;, =1 and z,, = 0 for
i J.
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just described. Thus in a study of transportation mode choice one might
select for interview, say, 200 subjects using each mode (bus, rapid transit,
car, car pool, etc.) rather than rely on a random household survey in which
the proportion of subjects using some modes may well be very small (e.g.,
for the Los Angeles area only a few percent would be found to travel by
bus). In a study of consumer behavior, a sample might be drawn from those
consumers who actually bought the product in question and supplied
personal information on a so-called warranty card. (In this last case some
information on the characteristics of the whole population of consumers is
also needed.)

Consider another example of choice-based sampling: in the study of the
incidence of some disease, one would examine, say, 100 subjects hospital-
ized with the disease plus another 100 unaffected persons from the general
population. In the epidemological literature, this type of sampling is
referred to as a ““case-control,” or ‘“‘case-referent,” study, as opposed to an
exogenously sampled cohort study; see, for example, Seigel and Green-
house (1973) and Miettinen (1976). One should note, however, that the
term “‘case-control” is often used to describe studies where the samples are
not only choice-based but also matched on one or more exogenous
variables. Thus in a study of the effects of coffee drinking on heart disease,
for example, one might first study 100 persons with heart disease and then
find a sample of 100 unaffected subjects with the same composition by, say,
age, race, sex and residential area as the affected sample. One then looks for
any signficant difference in the coffee-drinking habits of the two samples,
the confounding effects of the matched variables having been reduced or
climinated. This type of sampling can also be analyzed by the methods
described in this chapter. But in econometric work, with which we are
primarily concerned here, the problem is generally tackled with some form
of multivariate analysis rather than by matching.

There are also more complicated sampling procedures, involving
stratification on both exogenous and endogenous variables at the same
time. These will not be considered here, but a formalism for describing
more general types of stratification is given by Manski and McFadden,
chapter 1. The term “stratified sampling” will be reserved for the case
where all the variables defining the subsamples are exogenous; alt other
stratifications will be referred to as choice-based sampling.®

6. This differs from the terminology of Manski and McFadden in chapter 1, who use
stratified sampling to refer to all stratifications—endogenous, exogenous, or mixed.
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Choice-based sampling appears to have been first considered by Warner
(1963); see also Warner (1967).” More recently, Lerman and Manski (1975,
1978) have discussed in some detail t reasons for considering choice-
based sampling, in the context of transportation demand. As is apparent
from the examples we have given, advantages may be gained from efficient
sample design (shared to some extent with stratified sampling). A very large
random sample may be needed to provide useful information on in-
frequently chosen alternatives, and it may not be possible by stratifying on
exogenous variables to find individuals with a high probability of selecting
those alternatives. In addition random surveys involving household
interviews tend to be expensive in comparison with on-board and similar
surveys where problems such as identifying the subpopulation of interest
and making initial contact (possibly for later interview by telephone or
mail) are less severe. Partly for this reason large household surveys are
sometimes updated by subsequent small-scale, choice-based surveys, but
consistent methods of integrating these samples have not always been clear.

As shown by Lerman and Manski (1975), and by Manski and Lerman
(1977), (1) estimation from stratified samples does not present any new
problems, since the maximumn-likelihood techniques that have been
developed for particular choice models in the case of random sampling
continue to yield consistent, efficient estimates of the parameters 0 in the
case of stratified sampling, but (2) these estimation procedures lead to
inconsistent (and thus asymptotically biased) estimates in choice-based
sampling, a fact not always recognized in empirical applications. This leads
to the problem of obtaining maximum likelihood estimators for choice-
based samples.

In practice a purely choice-based sample of the kind we have described is
not likely to be useful. If a logit model is used for the choice probabilities,
and if the model contains alternative-specific dummy variables, then the
coefficients of the model are not identifiable from a purely choice-based
sample (Manski and Lerman 1977). If a probit model is specified instead, it
is in theory identifiable from a purely choice-based sample, but in fact the
coefficients of the dummy variables will be poorly determined—
identifiability rests on the assumption that the true probabilities are exactly
represented by the probit form. Alternative-specific dummies are always
necessary in practice, to allow for the effects of unobserved attributes.

7. Warner’s subsequent analysis was based on discriminant analysis rather than on a
probabilistic choice model.
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The underlying reason for this identifiability problem with purely
choice-based samples is the lack of information about the choices and inde-
pendent variables in the population as a whole. The leads us to consider
hybrid sampling procedures, in which a choice-based sample is combined
with additional survey data or statistics taken from a random sample
of the entire population under study. A comparatively small amount
of this additional information may be sufficient. Two examples of
hybrid sampling procedures are the following:

1. Enriched sample. A random sample is enriched by addition of a choice-
based sample for one or more alternatives that occur infrequently but are of
interest in the analysis. For example, a study of the probability of
unemployment might reinforce a random sample of labor-force parti-
cipants by a sample of persons currently drawing unemployment benefits.
The combined sample is then used for estimation.

© 2. Prior knowledge of the aggregate shares. One may know the proportions

of the whole population that select each alternative, that is, the aggregate
demand for each of the alternatives. For example, one might have data

giving the total number of people traveling to work in some city by each
mode: car, bus, rail, and so on. If the known aggregate shares are
incorporated as a constraint in the estimation procedure, a purely choice-
based sample is identifiable.

In the next four sections a number of hybrid sampling procedures that
appear to be of practical value are listed and defined more precisely. These
are the sampling schemes for which we shall derive maximum likelihood

estimators.
2.4 Generalized Choice-Based Sample

As a generalization of the choice-based sampling procedure, one may take
each choice-based subsample to be a random sample on some subset of the
full set of chosen alternatives, not necessarily on a single alternative. Three
special cases of this sampling scheme have already been mentioned: the
purely choice-based sample, the enriched sample, and the random sample.
As an example of the more general scheme, consider a rail travel demand
study in which two of the alternatives have the traveler parking his car at
the railroad station and the traveler taking a taxi to the station (plus two
analogous alternatives for, say, air travel). A choice-based subsample of
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rail travelers would then consist of a random sample on two modes out of
four.

Suppose the entire sample is made up of S subsamples, labeled by s, with
s=1,...,5. Subsample s is a random sample drawn from those cases
where the chosen alternative is in the set £ (s). This set # (s) is a subset of
the full set of alternatives {1, . . . , M}. The various subsets # (s) need not
be mutually exclusive. There is no loss of generality in assuming that the
subsets # (s) are all different, because observations from two surveys with
the same sampling rule can be combined into a single subsample.

A purely choice-based sample is given by the special case

O ={1}, F@Q)={2},..., AM)={M},

with § = M. A random sample is given by the trivial case

FM)={l,..., M},
with S =1. A simple enriched sample, with enrichment on only one
alternative, is given by

) ={1}, F@={1,2,..., M},

with S = 2. Note that an enriched sample can be considered from two
points of view: as a random sample in which the number of cases with
rarely chosen alternatives is increased by adding choice-based subsamples,
so as to improve the quality of the estimates, or conversely, as a choice-
based sample (possibly not including all alternatives) to which a random
subsample has been added, thus providing enough information about the

population as a whole to make the model identifiable.
A generalized choice-based sample will not always allow a choice

probability model to be estimated. A certain amount of overlapping
between the sets #(s) is needed. For a logit model with a full set of
alternative-specific dummy variables, sufficient conditions for identi-
fiability are®

1. All alternatives are included, namely,

S
U £ ={1.2..., M} 2.3)

8_ It is also assumed that each subsample s is sufficiently large that all the alternatives in
F (s) are actually observed.
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2. The subsets #(s) cannot be grouped into two (or more) mutually
exclusive sets of alternatives, that is, if &, and &, are any two nonempty

subsets of {1, ..., S} such that

FUF={1,...,8}

then
( U /(S))O( U /(s))¢¢. (2.4)
ses seS 2

In most cases, however, a simpler condition for identifiability will be
assumed : let one of the subsamples be a random sample of the whole
population.

2.5 Sample with Kﬁown Aggregate Shares

Besides sample design the estimation procedure also depends on the extent
of existing information about the distribution of the exogenous variables z
in the sampled population. One may possibly know the functional form of
the distribution pu(z), or the proportions Q; of the whole population that
select each alternative i, or have both pieces of information. Knowledge of
Q, comes from data on the aggregate demand for each alternative, or the
total incidence of each outcome, which is often available in published
statistics. For u(z), however, one requires the joint distribution of what
may be a large number of variables, which, even if known empirically, may
be rather difficult to express in an explicit parametric form. Even if the form
of p(z) were known, its inclusion in the estimation procedure would lead to
serious practical difficulties : for example, multidimensional integrals of the
form (dz p(z) P(i | z,8) would have to be performed for every evaluation of
the objective function and its derivatives in the iteration procedure. For
these reasons we will suppose that the explicit form of ;(z) is not known.
There are then only two sources of information on this distribution : sample
observations of the variables z; and, indirectly, the marginal proportions
O, (when available).

As mentioned, the constraints imposed by known aggregate shares can
allow one to estimate an otherwise unidentifiable choice model from a
purely choice-based sample.® But knowledge of the Q; improves the quality

9. Use of a purely choice-based sample in conjunction with a priori knowledge of the
mode split appears to have been first proposed by Warner (1963).
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of estimates for other sampling schemes too, such as random and enriched
samples. When the Q; are known, the essential difference between
estimation from choice-based samples and from random (or stratified)
samples disappears. Consequently the problem of estimation subject to the
constraints imposed by the @, can be handled independently of the
problems raised by nonrandom sampling : an estimator will be derived that
is applicable to both random and choice-based samples when the Q; are

known.
2.6 Aggregate Shares Estimated from an Auxiliary Sample

In this case the aggregate shares 0, are not known in advance, but they are
estimated from an auxiliary random survey in which the subject’s choice is
determined (but not data on the exogenous variables). Such a survey
should be comparatively inexpensive: for example, a random telephone
survey asking a single question might well suffice (Lerman and Manski
1975). Knowledge of the aggregate shares can considerably improve the
precision of the parameter estimates, even from a random survey ; thus an
auxiliary survey may, depending on circumstances, be more productive
than increasing the size of the main sample, given a fixed sampling budget.

Ifthe auxiliary sample is large enough, the statistical error in determining
the Q; from it can be ignored, and this case reduces to the previous case in
section 2.5. The estimator obtained for the present case is applicable when
the auxiliary sample is smaller than, or of a size comparable to, the main

sample.
2.7 Supplemented Sample

A choice-based sample is supplemented by the addition of a random
sample which provides observations of the exogenous variables but not of
the actual choices. (This is the reverse of the previous case in section 2.6,
where the auxiliary sample provides observations of the choices but not of
the exogenous variables.) An example of a supplementary sample is the
public use sample of the U.S. census. Other types of independent variable
‘might be obtained, for example, from an existing large-scale survey of
psychological attitudes. The survey must, however, provide individual
observations rather than aggregate or marginal totals. A purely choice-
based sample, when supplemented in this way, allows one to estimate a
choice model that would otherwise be unidentifiable.
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It is even possible in some cases to estimate from a choice-based sample
where not all the choices are observed. An example is a market research
type of survey, where data are gathered on consumers who buy some
particular product but not on those who do not buy. If the same exogenous
variables are observed in a random sample of the whole population, then a
choice model can be estimated, even though the random survey is not
concerned with purchases of the product in question. A maximum
likelihood estimator will be given also for this case.

2.8 General Considerations in Maximum Likelihood Estimation

In a random sample the likelihood of observing a case with characteristics z
and chosen alternative i is

f(i,z|0)=P(i|2,0)u(2), (2.5)

continuing the notation of section 2.2 where p(z) is the density function for
the distribution of the independent variables. The log likelihood for a
sample of size N is therefore

N N
Ly®)= ¥ WnP(i12,0)+ ) lnu(z,), 2.6)

where z, and i, are the characteristics and choice of case n.1° Maximization
of Ly (0) with respect to 8 involves only the first sum, which is independent
of u(z), and thus a maximum likelihood estimate 8y can be obtained
without any knowledge of u(z). Given sufficient conditions on the
regularity of the probability functions P(i | z, 8), one may then apply the
classical proofs of consistency and asymptotic efficiency of the maximum
likelihood estimator (for example, as given by Rao 1973). Specific types of
probabilistic choice model have been treated by McFadden (1973),
Hausman and Wise (1978), and others (for a review see McFadden 1976).
The corresponding maximization algorithms have been implemented in
generally efficient and stable computer programs.

For stratified sampling the log likelihood differs from that of equation
(2.6) only in the second sum. Let u (z) be the probability density of z in
subpopulation s, and let s(n) denote the subpopulation (stratum) from

10. The abbreviation z, represents (z;,),. where (z;,) is the matrix of exogenous variables,
explained in section 2.2, corresponding to individual 2.
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which case n was drawn ; then u (z, ) is replaced by g, (z,) in equation (2.6).
Since maximization with respect to 0 involves only the first term, the
maximum likelihood estimators are the same as in random sampling.!!

Next consider a purely choice-based sample. The choice i () is now fixed
by the sample design. Within each subsample, the relevant likelihood is the
probability of observing z, given the choice i. By application of Bayes’ rule
for conditional probabilities, this likelihood is!?

P(i|z,0)u(z)

flz]i,8)= : .

) 010 2.7)
where the marginal choice probabilities are
Q(i16) = dzu(z)P(i|z,0). (2.8)

The actual proportions Q;, which may or may not be observed, are thus Q,
= Q (i | 9*) for a very large total population, 8* being the “true” values of
the parameters. Evidently, the log likelihood Ly (@) corresponding to
equation (2.7) can no longer be separated into a sum of terms involving
only 0 and only u(z).

Maximum likelihood estimation for a choice-based sample therefore
involves maximizing not only over the discrete paraters 8 of the choice
model but also over the space of unknown density functions u(z), or rather,
over the corresponding probability distributions. This problem does not
satisfy the conditions for the classical proofs that the maximum likelihood
estimator is consistent and asymptotically efficient ; it does not even satisfy
the conditions of Kiefer and Wolfowitz (1956) for consistency in the
presence of infinitely many incidental parameters. One must therefore
proceed step by step, as follows:

1. Derive the estimator, guided by the maximum likelihood approach. The
problem must be reduced to a maximization over a finite set of discrete
parameters before the estimation can be carried out. There is no general
theory to guarantee that the resulting estimator will be asymptotically
efficient or even consistent; however, the fact that it is a maximum
likelihood estimator provides the motivation for proceeding to the next two
steps.

2. Prove that the estimator is consistent, by direct attack. A consistent

11. Thus knowledge of u(z) does not improve the estimates of 0 in a stratified sample.

12. See Manski and Lerman (1977). The likelihood for a generalized choice-based sample
is given in section 2.10.
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estimator @y, is one that converges in probability to the true value 8* as N
becomes large.

3. Prove that the estimator is asymptotically efficient. There are two parts
to the proof (see Cosslett 1978, 1981): first, a lower bound is established on
the variance of any unbiased estimator, closely analogous to the Crameér-
Rao lower bound ; and second, the estimator is shown to be asymptotically
normally distributed with a variance equal to this lower bound.

2.9 Notation for a General Choice-Based Sample

The following notation will be used to describe generalized choice-based
samples and the estimators and their asymptotic covariances:
N = the total number of cases,

N, = the observed number of cases choosing alternative i,i=1, ..., M,
NS = the number of cases in subsample s, fors=1,..., S,
Hi = Ni/N’
H =N/N,
Q, = the proportion of the population choosing alternative i,
O, =Zics9 0.
In terms of a choice model with specified probabilities P(i | z, 0), we define
P(£(s)|20)= ¥ P(jlz,0), (2.9)
jef(s)
0Ff®10)= Y Q0(I8= fdlu(Z)P(J(S) |z,8), (2.10)
je F(s)
and
_ S H
P(z,0)= ) QTSP(f(S)Iz,G), 2.11)
s=1 s

with Q(j| 8} given by equation (2.8).
The following notation will also be useful:

5 J1 =g ,
Y 0 otherwise; @2.12)

0 otherwise;

| ={1 ifie #£(s),
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and

-
H
Mﬁ:; =3 Mis ;s (2.13)

s

Note that the expected value of H,, the proportion of the total sample
choosing alternative i, is

s o~

_ Hs

H;=E[H;]= 0, Z A Nis (2.14)
s=1 s

and an alternate expression for P(z, 8) in equation (2.11) is therefore

M

_ H;
P(z,0)= Z jP(z‘lz,O). (2.15)

i=1 i
The following abbreviated notation will also be used
(F@) = [F@)u()dz,
P, = P(i|z,0%),

1 P(s)=P(#(s9)12,6%),
P = P(z,0%).

(2.16)

We assume that Q; > 0 for all i and that every alternative is included in at
least one of the subsamples (see equation 2.3); thus we almost always have
H, > 0 for sufficiently large V.

2.10 The Likelihood Function for Choice-Based Samples

We first consider the case of a generalized choice-based sample (section 2.4)
for which the aggregate shares Q; are not known. Special cases of this
include purely choice-based samples and enriched samples. Subsample s is
a random sample of those subjects whose choice is in the subset of

alternatives 7 (s).
The likelihood for a single observation in subsample s is now

P(i|z,0)u)

f,z| £(s5),0)= 00618 Nis> .17}

and so the log likelihood for the sample is
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N N
Ly®:;w=Y nP(i,z,0)+ Y lnu(,)
n=1

n=1
- i Nsln{jdw(z)P(f (s) | z,ﬂ)} (2.18)

The log likelihood is to be maximized over all possible parameter values 0
and probability densities p(z). If one attempts to maximize with respect to
u(z), it is apparent that the resulting empirical density fi(z) will have all its
weight concentrated at the observed data points {z, }. We therefore replace
1 (z) by a discrete density with weight w, > 0 at each data point z,. The
appropriate likelihood is then

N N
Ly@;w)= Y InP(i]z,0)+ Y Inw,
=1

n=1 n

S N
- Z Nsln{ z me(j(S)izrmB)}- (219)

m=1

This is to be maximized over @ € ©® and w € W, where W is the unit simplex
N

W={w|w,,>0 and Z w,,=l}. (2.20)
n=1

Note that this procedure corresponds to replacing the (unknown)
cumulative probability distribution of z by the empirical distribution*?
Fy@)= Y w,.

n:Zns>2
It is noted by Kiefer and Wolfowitz (1956) that the empirical distribution is
the maximum likelihood estimate of an unknown distribution function.
When the sample is random, the weights are of course all equal to 1/N. In
the present case the sampling is nonrandom, and the weights associated
with different observations will in general be unequal.

Although the problem has been reduced to parametric form, equation
(2.19), the number of parameters increases with the number of obser-
vations. The next step is to reduce further the maximization to a fixed
number of parameters.

13.1f x and y are vectors with components x,, y, (x =1, . . ., K), then x < y means that
all X inequalities x, < y, hold.
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2.11 Maximization of the Likelihood

First, Ly (8 ; w)is maximized with respect to w at some fixed, arbitrary value
of @ € @. It is straightforward to show that the upper bound,

N
Ly®;w)< Y InP(i,|z,8)+Inw, — Nlnp,, (2.21)
n=1
follows from the regularity conditions assumed for the probability
functions (see assumptions 2.2 and 2.4 in appendix 2.26). In equation
(2.21), w, is the smallest component of w, and po is a positive lower bound
on the probabilities P(i | z, 9). It follows that there is a maximum in int W.
Since Ly (8; w)is continuous and differentiable for w € int W, the maximum
is given by a solution of the equations for a stationary point**

oLy _1 _ ¥ NPIWN 2O _ 2.22)
= N ’ .
OW,  Wn  s=1 Z WP (F(5)|2,,0)
m=1

At any solution of equation (2.22) the matrix of second derivatives
&2Ly /0w, 0w, is negative definite when restricted to W, that is, every
stationary point is a maximum. Because of the bound (2.21), which tends to
— o at the boundaries of W, there cannot be two (or more) maxima in int
W without an intervening saddle point ; thus there is only one maximum.
As a result the required maximum in w is given by a unique solution of
equation (2.22).
Making the substitution

-

A(5,0) = — A, , (2.23)
Y WP (F(5)]200)

m=1
we obtain the concentrated likelihood function

v .
L= In o nOP[2,0) _ Y AnA, (2.24)

S
SN ICOLICOTEN R

14. Since Ly(0; w) is homogeneous in w of degree zero, the additional constraint X, w,
= 1 does not affect the first-order conditions in equation (2.22).
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where s, is the subsample containing case #. In equation (2.24), the weight
factors A are the solution of the constraint equations

N, _&  PUOIZO 2.25)

Y s
A(5,0) = Z At,O)P(£(D)]z,,0)

fors=1,...,S (obtained by substituting for w, from equation 2.22 into
equation 2.23), together with the normalization condition

1 ) 1
¥ s =1 (2.26)
=YL AP 6)2,0)

(obtained by substituting for w, from equation 2.22 in the condition Z,w,
= 1). The weight factors w have now disappeared from the problem.
Because equation (2.22) has a unique solution for we W, it follows that
equation (2.25) likewise has a unique solution for 4 € A4, where A, is the set
of weight factors 4 > 0 that also satisfy equation (2.26).

This can be reformulated in a much more convenient form, as follows.
We maximize the “pseudolikelihood™ function

S % g AP0
- S
TR AP O)12,0)

(2.27)

2

over A€ A,, where A is now considered as a vector of M independent
variables, rather than a function of 8. This equivalence follows from the
fact that the first-order conditions for a stationary point of Ly (8, 4) are the
same as equation (2.25), and the matrix of second derivatives %Ly 0,
A)/0A(s)0A(2) is negative definite at any stationary point when restricted to
A€ Ay Thus L (0, 4) has a unique maximum in 4 € A,, at which point it is
equal to the concentrated likelihood of equation (2.24), apart from a
constant term independent of 8. Note that the number of weight factors is
now M (the number of alternatives) instead of N (the number of
observations).
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Maximum likelihood estimation for a choice-based sample therefore
reduces to the problem of finding 8y and i, such that

Ly®y, iy = ,.max Ly(0,2), (2.28)

where the pseudolikelihood Ly (8, 4) is given by equation (2.27). L, (0, 4) is
called a pseudolikelihood because in general it is not equal to the likelihood
Ly (0; w); the only equality that holds between them is

max Ly(0;w) = max Ly (6,4).
weW FR-Y. YV

The subsidiary condition 4 € A, is inconvenient in that the normalization
condition, equation (2.26), depends on 6. But since Ly (@, 4) is ho-
mogeneous of degree zero in 4, the normalization condition has no effect on
the maximization problem. In practice therefore, one can impose an
arbitrary normalization. A convenient normalization is to fix a weight
factor, say, 4(S) = Hj, and then maximize over

AeA(S)={A|Ms)=0 and A(S)=H,). (2.29)

If only estimates of O are required, this is all that is needed. If estimates of
the aggregate shares O, are also wanted, then the weight factors Zy have to
be rescaled by a factor %y to satisfy the normalization condition, equation
(2.26); see section 2.13.

2.12 Asymptotic Properties of the Unconstrained Estimator

If the exogenous space Z is discrete with a finite set of values, then §, as
given by equation (2.28) s the classical maximum likelihood estimator, and
its consistency is assured by assumptions 2.1 through 2.5 given in appendix
2.26.In fact, even if Z consists of a countable (rather than finite) discrete set
of points, the results of Kiefer and Wolfowitz (1956) establish consistency
of 8. Since a continuous distribution can be approximated arbitrarily well
by a discrete distribution, and since the pseudolikelihood (2.27) is a
function only of the observations and of the parameters of the choice
-‘model, this suggests that the result must be valid also for Z continuous.
However, the usual proofs of consistency of the maximum likelihood
estimator require assumptions which, even though of very general
applicability, do not hold in the present case. In particular, note that while
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the estimated empirical distribution of z converges weakly to the true
distribution, the pseudolikelihood in equation (2.27) does not converge to
the expectation of the true likelihood.

It is therefore necessary to establish directly the consistency of estimators
obtained from equation (2.28). The proof follows a method due to Manski
and Lerman (1977), and used by them to prove consistency of the weighted
exogenous sample maximum likelihood estimator for choice-based sam-
pling.!> A few technical modifications are needed to apply the proof here
(for details see Cosslett 1978, 1981). One finds that

6, - 0*
y24
Ryin(s) == (as.). (2.30)
0,
This provides an interpretation of the parameters 4, that is, the weights Ay
are estimates of the ratios of the sample choice proportions to the
population choice proportions. The weights 4 may thus be viewed as
correction factors, applied to the probabilities that hold for random
sampling. With the normalization condition A(S) = Hj, we also have

1
Ry > K== 2.31)

S

Once consistency has been shown, one may readily establish asymptotic
normality by standard methods: Ly (8, 1) is expanded in a Taylor series
about the true parameter point using the differentiability conditions of
assumption 2.7. This is followed by application of the Lindberg-Lévy form
of the central limit theorem (e.g., see section 2¢.5 of Rao 1973). Positive
definiteness of the information matrix corresponding to the pseudolike-
lihood function follows from assumption 2.8, and from the identifiability
conditions of equations (2.3) and (2.4). (For details, see Cosslett 1981.)

We next consider the asymptotic covariance matrix of the estimates 7,
where we define for brevity the composite parameter y = [0, 4]. If we denote
the log of the pseudolikelihood for a single observation by

AS)P(i]2z,0)

. (2.32)
;1 M) P(F(t)]2,0)

B

I(iz|s,7)=In

15. The method is based on one originally developed by Amemiya (1973) to prove
consistency of the maximum likelihood estimator for the truncated normal distribution.
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and denote expectations with respect to / and z in subsample s by

1
E[Fl= ) .[dz;z(z)TP(ilz,B)F(i,z), (2.33)
i€ g(s) Qs
then the asymptotic covariance matrix of fy is
V=J"1MJ}, (2.34)
where
;g -1 2Ly
w N 07,074
S 4 o*1(s, ?*)]
= HE| - ——7— (2.35)
sgl |: ayaa‘yﬁ
and
_p[Lotuok,
Mip = E[N 07, ayJ
. (s, y*) Ol (s, v* I(s, v* al(s, y*
-3 HS{Es[al(s,y ) 0l(s. ¥ )J_Es[al(s,v )]E[ (5.7 )]}
s=1 a’};a ayﬁ a}’a a'}’ﬁ
(2.36)

Because of the normalization condition A(S) = H, the variables are  and
A1), ..., A(S—1),and Jand Mare (K+ S — 1) x (K+ § — 1) square
matrices. The assumptions in appendix 2.26, as well as the identifiability
conditions of equations (2.3) and (2.4), ensure that J is positive definite and
M is postitive semidefinite.

From equations (2.35) and (2.36), we find that

00
M—J—J(0 G)J, (2.37)

where the (S — 1) x (S — 1) submatrix G is given by

1 /A, 1 A A.
G, =— —:‘—5,+—:—-5—é>
" KZ(Qtz f HS Qt Qt'

Therefore we have

(2.38)
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0 0
=J71— . 2.39
v=1J (0 G) (2.39)
If the information matrix J is partitioned according to y = [0, 4],
A B
= 2.40
J (B/ C)? ( )
then
M f.1oPéP, 13PGP
= el el S 241
Aap <i; Q, P, 00,06, Pab, ao,;>’ 241)
- <0P(5) _Ee) ‘fP>, (2.42)
= 00, P 46,
0? <P(s)P(r)>
=kgi{Z15, —{ —F— 2.43
Ca=k { a O5 7 (2.43)

(see equations 2.14 through 2.16 for notation).
The sample estimate of the variance (1/N )V is obtained from the obvious

estimator

. 1 3% Ly By, 4y)

= 2.44
af N 5'})1 a'yﬁ ( )
assuming of course that N is large enough for asymptotic results to be valid
to a good approximation.

The asymptotic covariance matrix for 0 alone is
Voo = (A —BC™!B)7}, (2.45)

which is independent of the normalization of 4. A lower bound, analogous
to the Crameér-Rao lower bound, can be obtained for the covariance matrix
of #n estimator of @ ; this is briefly discussed in appendix 2.27, while details
of the derivations are given elsewhere (Cosslett 1978, 1981). The lower
bound is in fact equal to N™' V,,, so the estimator 8, obtained by
maximizing the pseudolikelihood is asymptotically efficient.

2.13 Estimation of Aggregate Shares

From the estimated weight factors iy, one can obtain estimates of the
aggregate shares 0., although the primary goal was to estimate 8. To
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estimate 0, we need the absolute rather than relative values of the weights;
we need the scale factor & such that iy satisfies the normalization
condition of equation (2.26). Thus we have

1 N M - N -1
== Y [ S Z)P(F(s) ] z,,,G)] (2.46)
n=1 s=1
For some sample designs there is a simplification. If there is an identity of
the form

_i kP (F(s)|z,0) = ko, (2.47)

where the coefficients k are constants, then from equations (2.25) and (2.26)
A,

A
k= ; k, o (2.48)

For example, in a purely choice-based sample we have

s M
> P(F($)z0) =3 P(i|z,8)=1,
s=1 i=1
and so

. < H

while for an enriched sample (with s = S corresponding to the random
subsample) we have

P(F(S)]z,0)=1,

so that k = 1.
The asymptotic covariance matrix for (8, 4) is then given by

U=#%'V¥, (2.49)

where

W = (I 0) (2.50)
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isa (K+S—1)x (K+ §) matrix with

0k0,4)
=E .
st [ 62,(.5) A'(t) + Kas!]
. kg Qsz ﬁz (2.51)
- ¢ kO Hs Ql .
for s=1,...,S8S—1and t=1,..., S. The corresponding sample

estimate is just

- k, X(t)

¥, =R, — PG (2.52)

st
If there is no identity of the form (2.47), we have to fall back on the more
complicated normalization (2.46).'°

Despite appearances the covariance matrix U is actually symmetric in
theindexs = 1, . . ., S. An explicitly symmetric form can also be obtained,
starting from a symmetric normalization of the weight factors, such as
T.i(s) = 1. The expression given in (2.49) may be more useful in practice,
however, because V is closely related to the inverse of the Hessian
encountered in the maximization of Ly (see equation 2.39).

2.14 The Unconstrained Maximum Likelihood Estimator

To summarize the preceding results, the maximum likelihood estimator
8y, 4y) is obtained by maximizing the pseudolikelihood

As,) P (i, | 2,,,0)

N
[y@,2)=Y In (2.53)

Ky
" Y Ms)P(F(s)|z,.9)
s=1

over @ ® and i€ A(S), as given by equation (2.29). Ay is then rescaled
with the factor iy discussed in section 2.13. If we let N — co with the
relative subsample sizes A, held fixed, then 8y, #y4y) is a consistent
estimator of (0%, {H,/Q,}). The asymptotic covariance matrix U of By,
kyAy) is given by equations (2.49) and (2.39); the matrices appearing in
these expressions can be estimated from sample data via equations (2.52)
and (2.44).

16. See Cosslett (1978) for the asymptotic covariance matrix in this case.
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Two important special cases of equation (2.53) are the enriched
sample with S = 2 and the purely choice-based sample. In the enriched
sample with § = 2, if cases 1, . . . , N, are in the choice-based subsample
(s = 1) and cases N, + 1, . . ., N in the random subsample (s = 2), then

AP(i,]z,0)
Ly(8,4) Z ln{1p(;(1)|z,,,6) + ﬁz}

N P(i,|z,0
+ 3 ln{a (12,8 } (2.54)
n=N;+1 AP(#(1)]2,.0)+ H,
where we put i(1) = 4, A(2) = H, and use the identity P(#(2)|z, 0) = 1.
Note that a term in the summation corresponding to an observation in the
random subsample is not the same as the likelihood of an observation in a
random sample. Heuristically speaking, this is because an observation
from the random subsample conveys some information about the distri-
bution of z: in a purely random sample this information is of no value in
estimating 0, but in the present case it enhances the value of the information

contained in an observation from the choice-based subsample,

In the purely choice-based sample,
VP 0
0 ;.) Z 1 Mﬂ(lu) (ln I Zn’ ) (2.55)
> AP (jlz,0)

i=1

This estimator @, was previously given by Manski (1976 ; see Manski and
McFadden, chapter 1) for purely choice-based samples. The derivation
given here shows that (1) it is a special case of the estimator (2.53), which
thus extends the result of Manski and McFadden to generalized choice-
based samples, including enriched samples, (2) it is the maximum
likelihood estimator, so one is motivated to prove that is indeed asymptoti-
cally efficient, and (3) a general method is available for deriving maximum
likelihood estimators in other cases where the likelihood is complicated by
an unknown probability distribution, such as sampling schemes with
known aggregate shares, with auxiliary samples, or with supplementary
samples (see sections 2.5 through 2.7).

Maximization of the pseudolikelihood can generally be achieved by
fairly straightforward modification of existing computer routines for
maximum likelihood estimation of specific models. In the case of the probit
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model, the main computational cost involves evaluation of the P(i | z, 8}, s0
the transformation involved in equation (2.53) does not add materially to
the cost.

The special case of the logit model is treated separately in section 2.15.
An application of the estimator to the nested logit model (McFadden,
chapter 5) is given by Cosslett (1978). The simplifications found in the
ordinary logit model do not occur for the nested logit model, and it is
necessary to work directly with the pseudolikelihood of equation (2.53).

2.15 The Logit Model as a Special Case

In the case of the logit model, Ly (8, 4) reduces to a form very similar to the
original log likelihood for random samples: the denominator in the
multinomial logit form, equation (2.1), is independent of the choice and so
cancels from the ratio of weighted probabilities in equations (2.53).

Let = (¢, d), where d=(d,, ..., dy) are the coefficients of
alternative-specific dummy variables (subject to some linear constraint,
e.g., dyy = 0). We then denote the log likelihood for a logit model with
random sampling by Ly(é, d). There are two interesting cases where the
pseudolikelihood L, (@, 4) can be reduced exactly to the log likelihood for
random sampling:

1. For a purely choice-based sample, equation (2.55) reduces to

Ly(¢,d,4) = Ly(¢,{d; + In 2(i}}). (2.56)

Thus one can estimate ¢ consistently by proceeding as if the sample were
random, but the dummy coefficients d; and the aggregate share ratios H;/Q;
cannot be separately identified (see Manski and McFadden, chapter 1, and
Manski and Lerman 1977). This sampling scheme cannot therefore be used
for logit model estimation unless estimates of d are not needed, or one is
confident enough in the explanatory power of the observed exogenous
variables not to require dummies, or the mode splits Q; are known in
advance. In the last case, however, a better estimator is available (which
will be described in section 2.19).

2. For a logit model with a full set of alternative dummies, in a general
choice-based sampling scheme (assumed to be identifiable), we have
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N
Ly, d,4)=Ly(¢,d) + ; N.In i(s)

M N
- ) N;In {Z njsl(s)}, (2.57)
j=1 s=1
where new dummy coefficients d’ are defined by
s
di=d +In ( D nis)t(s)) 2.58)
s=1

The pseudolikelihood is thus separable into two parts: the first involves
only ¢ and d’, which can be estimated as if from a random sample, while the
second involves only 4. Maximization of just the last two terms in equation
(2.57) gives A(s); this preliminary calculation is relatively easy because
these terms do not involve the individual observations {i,, z, } but only the
subsample sizes and the numbers of subjects choosing each alternative. £ is
now also a set of correction terms for transforming the estimated dummy
coefficients d’ into consistent estimators d, via equation (2.58).

As an example, consider estimation of a logit model from an enriched
sample with one choice-based subsample. / is obtained by maximizing

Nyln2— ¥ N;in(i+ H,)
je F)

(in the notation of equation 2.54), which gives
3 ~l E 2
A=———""""""

je s
Thus A, /4 is the proportion of subjects in the random sample who choose
the alternatives on which the enriching subsample is based, which is, in fact,
an obvious estimator of J, . The dummy coefficients corresponding to al-
ternatives in the enriching subsample are then corrected (from the values
given by the random-sampling estimator) by subtracting In (1 + H,),
while the remaining dummy coefficients are corrected by subtracting
" InH,.

2.16 [Estimation with Known Aggregate Shares

We now consider the estimation of a generalized choice-based sample when
the aggregate choice proportions Q; are known in advance, perhaps from
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published statistics. This is the case discussed in section 2.5. It is assumed
that all the Q, are given (i.e., M — 1 constraints); analogous estimators can
be obtained when only some of the aggregate shares are known.

The log likelihood is now

N N S
Ly@,)= Y InP(i,|z,8)+ ¥ lnp)— Y NnQ, (2.59)
= s=1

n=1 n=1

where u and 0 are subject to the constraints

jdzy(z)P(i 12,0) = O, (2.60)

The last term in equation (2.59) is constant and can be dropped before
maximizing. As a result the log likelihood does not explicitly depend on the
sampling scheme. The form of the estimator will therefore be independent
of whether the sample is random, purely choice-based, enriched, and the
like. (The asymptotic covariance matrix still depends on the sampling
scheme, however, because it involves expected values taken over the
different subsamples.)

As before, replacement of u(z) by an empirical distribution with weight
factors w, leads to the likelihood

N N

Ly@®;w)= Y InP(ilz,0)+ > Inw, (2.61)
n=1 n=1

to be maximized over 8 € @ and w € W (given by equation 2.20), subject to

the constraints'’

N

Y w,P(ilz,0)=0, i=1,..., M (2.62)
n=1
We have assumed that the constraints are consistent, which is to say that
positive weight vectors w satisfying equation (2.62) do in fact exist. In
general this is true only for certain values of 0, termed “admissible” values
of8. Let @4 < O be the set of admissible ©, and let By, Wy be the parameter

17. Only M — 1 of these constraints are independent if we W, but summation of
equation (2.62) over i yields Z,w, = 1. Hence we can drop the explicit normalization
condition w € W and impose instead the M constraints in equation (2.62) together with
the condition w > 0.
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values that maximize equation (2.61) over 6 € ®{" and w € W subject to
equation (2.62). Then for the present we assume that 8 € int @ exists and
consider only admissible values of 6. The question of inconsistent
constraints is considered in section 2.17.

Consider the maximization over w, at some fixed 0 € @{. Obviously
L, (8; w) is bounded above, because w, < 1. The region W is bounded,
while Ly (0; w) — — co at the boundary of W, and thus a maximum exists in
int W. The matrix of second derivatives 6°Ly (0; w)/0w;0w; is negative
definite, so the unconstrained likelihood Ly (@; w) is strictly concave in w;
since equations (2.62) are linear in w, Ly, (8 ; w) remains strictly concave in w
when subject to the constraints. We conclude that the maximum in w is
unique and is given by a unique solution of the equations for a stationary
value of the Lagrange function

M N
FyO:w, ) =Ly@®;w) —N Y z(j){z W, P(j2,,0) ~ Q,}, (2.63)

j=1 n=1
with Lagrange multipliers A(j), j = 1, . . . , M. Stationary values are given
by

M

Z (/) P(Jj12,8). (2.64)

Il =

It then follows that maximization of Ly (0; w) over w subject to (2.62) is
equivalent to minimizing the dual objective function L{’(8, 4) over 4.'8
This is obtained from £, (8; w, ) by substituting for w from the first-order

conditions (2.64), giving

" Z P(jlz,9)

M
+NY MO, (2.65)

where a constant term has been dropj:ed. The range of 4 corresponding to
w>0is

18. This equivalence between the original constrained maximization and the minimization
of L¥'(8, 4) with respect to 4 can also be shown directly.
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M
Y MAHP(12,9)>0, n=1,2, ..., N} (2.66)

i=1

Ay, = {i

The matrix of second derivatives 62L/0A(i)04(j) is positive definite,
provided that the probabilities P(i | z,, 8), considered as M N-dimensional
vectors, are linearly independent. (From assumption 2.6 it can be shown
that this is true with probability approaching one as N — oc.) The required
minimum is therefore unique.

This is equivalent to minimizing the simpler expression

R v P(i,|z,8
IP@n=7Y In L lnlZn?) (2.67)
n=1

Y M) P(jlz,9)

i=1

over A€ A, subject to the constraint

M

Y M) =1. (2.68)

i=]

This equivalence is easily verified by comparing the first-order conditions
for the two minimization problems.’® Thus maximum likelihood esti-
mation when the Q; are known reduces to finding 8y and 4y, such that

{min £@0,1)}, (2.69)

L @y, iy) = max
68" “icAq

where the pseudolikelihood L (0, 1) is given by equation (2.67) and

M
Ay = {j' |i€eA,, and Z AHi)Q; = 1}, (2.70)

=1

with A, given by equation (2.66).
2.17 Consistency of the Constraint Equations

Let @ be the set of @ for which the population constraint equations (2.60)
are satisfied by some probability measure u(z). Similarly @4 is the set of 6

19. If the first-order equations for the constrained minimization of L{?’ are multiplied by
A(i) and summed over i, the Lagrange multiplier is found to equal N.
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for which the sample constraint equations (2.62) are satisfied by some
positive weight vector w. Clearly @ < @Y.

There does not appear to be any straightforward method of determining
O for a given sample. The question of interest is therefore how the
estimation procedure fails when 0 is “inadmissible.” This can occur in the
following cases:

1. ®“? may be empty. This could arise if the model is badly misspecified,
or if the aggregate shares Q; are determined for a population that is not
really the same as that from which the main sample is drawn.

2. Even if ®“ is not empty, @ may be empty for a finite sample. The
probability of this tends to zero as N — co.

3. Even if ®{ is not empty, it is not known in advance, and we might
choose inadmissible values of @ (except in the special case @%" = @) in
attempting to find 8, and Z. This is obviously the case of most concern.?°

If0* is the “true” value of 0, then by definition 8* € @4, so from now on
we may assume ©@“? # ¢. One can then establish the following results (see
Cosslett 1978 for further details): (1) @’ —» @4 as N » o0 ; (2) @ is an
open set; and (3) @4 is an open set for large enough N. Results 1 and 3
hold for almost all sequences {z,}. Note that assumptions 2.5 and 2.6 are
required (see appendix 2.26), as well as the assumption that P(i |z, 0) is
continuous in z (for almost all z).

Suppose 8, is a consistent estimator of 8*. We shall see that 8 is in fact a
consistent estimator too. From the results above 0*, 8, and 0, are all in
@' for large enough N (a.s.), and thus any consistent 8, is a good
candidate for a starting value of 6.

The following result can be established (Cosslett 1978): the constraint
equations (2.62) are inconsistent if and only if L@ (0, 4) has no minimum
for A€ A,,,, which is the case if and only if A ,, is unbounded. This is not
immediately useful, since there appears to be no simple test for unbounded-
ness of A.,,. But it indicates how the estimation procedure fails if 0 is
inadmissible: the attempt to minimize £ (@, i) over 4 will lead to a
diverging sequence of values of 4.

2.18 Asymptotic Properties with Known Aggregate Shares

For discrete variables z the estimator §, given by equations (2.69) and
(2.67) is the classical maximum likelihood estimator, which is known to be

20. In cases | and 2 maximum likelihood estimation cannot be used.
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consistent and asymptotically efficient. A direct proof of consistency,
applicable to both discrete and continuous variables z, is given elsewhere
(see Cosslett 1978). The result is

8y — 0%,
Ay () -»fQI- (as.), (2.71)

where H,, the expected proportion of the total sample who choose
alternative i, is given by equation (2.14). The asymptotic limit of the
Lagrange multipliers £ (i) does not in principle provide any new infor-
mation since the Q, are already known but, when used in conjunction with
an estimate of the covariance matrix, it does provide a check on the validity

of the estimation procedure.
The estimates are asymptotically normally distributed. As before, the
asymptotic covariance matrix is of the form

V=J"'MJ,

with J and M defined by equations (2.35), (2.36), and (2.33). The differences
from the previous case (where Q was unknown) are: first, that the

pseudolikelihood for a single observation is now

_ P(i|z,9) 2.72)
Y ANHPz,0)

Ji=1

Ii,z|s,7)=1In

instead of equation (2.32); and, second, the estimates A(i) satisfy the linear
constraint (2.68) instead of the normalization condition i(s) = H;.
Equation (2.68) is therefore used to eliminate one of the multipliers, say,
A(M), before differentiating the expression (2.72).

If the matrices J and M are partitioned according to the decomposition

[0, 4], they are found to have the forms

A B,
= 2.73
J (Bé - CQ) @7

and

A 0 0o 0
M=(0 CQ)-J(0 GQ)J. 2.74)



82 S. R. Cosslett

The submatrix A is the same as in the case of unknown Q (see equation
2.41). The submatrices By, C,, and G, are given by

AP, Q. 0Py 0 19P >
= i Xi P -=tP, |=a= ), 2.75
(L 9, — & > 2.76
(CQ)U—<P(P1'-QMP )( j QM M) 2 (2.76)
and
H A,
Gk = hi; (2.77)
Geds =k~ 50,
with 4,; given by equation (2.13). We therefore have
(A + ByCy “'By) ! 0
= i 2.78
v ( 0 (CQ+B(’2A"BQ)‘1 -G, ( )

Note that V,, has improved from (A — BC™'B’) ! when Q was unknown
(equation 2.45) to (A + ByC5'Bp) ™" now that Q is known.!

Sample estimates of the submatrices A, By, and C, are obtained as
before from J, given by equation (2.44), except that the pseudolikelihood
L, is of course replaced by L{?’ as defined in equation (2.67).

A lower bound on the covariance matrix of 8, analogous to the Cramér-
Rao lower bound, can be obtained also in the case of known aggregate
shares (see Cosslett 1978). This lower bound is again equal to N™! V,,, so
that the estimator 8, is asymptotically efficient.

2.19 The Constrained Maximum Likelihood Estimator

To summarize the results in sections 2.16 through 2.18, the maximum
likelihood estimator @ is obtained from the pseudolikelihood

[P@D= Y In ! ® (2.79)

SR VERD

by minimizing over 4 € A ,,and maximizing over 8 € @§". The region A ;) is
given by equation (2.70): it is the region where ;4(j)Q; = 1 and where the

21. Since C and C, are positive definite, the old V, exceeds the new Vg, by & positive
semidefinite matrix.
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denominator in equation (2.79) is positive for every observation. @' is the
region where the constraint equations (2.62) can be satisfied for some
w > 0;if @ is not in @4, then A,,, is unbounded, and the minimization will
fail, with a divergent sequence of 4 giving ever-decreasing values of
L0, 4).

If N — oo with the relative subsample sizes held fixed, then éN is a
consistent estimator of @*, and /,, (i) converges in probability to the known
ratio ./Q,. The asymptotic covariance matrix of 8y and Ay(1), ...,
Jy(M — 1) is given by equation (2.78). The submatrices appearing in this
expression can again be estimated from the sample value of the Hessian
matrix at convergence.

As before, actual computation of the estimates will involve modifying
existing routines to carry out the transformation from the random sample
likelihood to the pseudolikelihood. However, more substantial changes are
now required because the stationary value is a saddle-point, rather than a
maximum, in the combined parameter space. The only practical method of
locating the saddle-point appears to be to solve all the first-order
conditions for a stationary point as a set of simultaneous nonlinear
equations.?? This is evidently less efficient than the hill-climbing techniques
that can be used when the stationary point is known to be a maximum.

The subsidiary condition 4 € A ,, should not present any probiems. The
linear constraint (2.68) can be imposed explicitly. At the boundaries of A ,,
both the pseudolikelihood and its gradient become infinite, so any
reasonably effective search algorithm will stay inside A,,, if it starts there.

The condition 8 € @4 is more serious. We require a starting value of 8 in
O, but ®{Y is unknown. (If OF is disjoint, we may have to start in that
part containing the maximand 0,.) A suitable starting point is suggested by
the fact that 4, has a known asymptotic probability limit: set A(i) = H,/Q.,
the limiting value, and maximize the pseudolikelihood with respect to @ at
this value of 4. Call the maximand 8. Then 6 = 8y and A(:) = H,/Q; are
used as starting values for the search algorithm to find a stationary point.

In fact &y is one form of the Manski-McFadden estimator for this
problem (Manski and McFadden, chapter 1). It is known to be consistent.
Thus, according to the results in section 2.17, 8, € O for large enough N
(almost always), and therefore (B, {H;/Q;}) is a very promising starting

22. Existing saddle-point routines, for example, those designed for Kuhn-Tucker type
problems, are applicable only when the objective function is linear in Lagrange
parameters, which is not the case here.
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point. We note that an alternative form of the Manski-McFadden
estimator, using the sample values H, instead of their expectations H, (see
appendix 2.28), has a slightly better asymptotic variance, and so may

provide a better starting point.

But 8, should be an improvement over 8y in that : (1)if we are not using a
logit model with a full set of alternative dummies, 8y is in general not
asymptotically efficient;?* and (2) by testing whether there is in fact a
stationary value in 4, the estimation procedure provides a check against
inconsistent constraints. There is also a method of avoiding the problem of
inconsistent constraints altogether where the Q; are considered as sample
statistics from an auxiliary sample rather than as a priori constraints (see

section 2.21).

2.20 Estimation of the Logit Model with Known Aggregate Shares

As in the case of the unconstrained estimator, there is a drastic
simplification in the case of the logit model with a full set of alternative-
specific dummies. In the notation introduced in section 2.15, we have

M

LP(#.d,2) = Ly(p,d) — ¥ NIni(), (2.80)
i=1

with

d; =d, + In A(i). (2.81)

Maximization over @ = (¢, d’) just involves the term L, (¢,d’) and so is the
same as for a random sample. Minimization over 4, subject to equation
(2.68), is trivial and yields A(i) = H;/Q;. Therefore in this case both the
constrained maximum likelihood estimator and the Manski-McFadden
estimator (see appendix 2.28) reduce to the ordinary maximum likelihood
logit estimator, apart from a correction term In (H;/Q;) to be subtracted
from the estimated dummy coefficients ;.24

23. We have the somewhat counter-intuitive result that a better estimate of 8 is obtained
by using sample estimates £(i) for the weight factors than is obtained by using the “true”
values H,/Q..

24. It follows that the Manski-McFadden estimator is asymptotically efficient in this case.
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2.21 Estimation with Aggregate Shares Inferred from an Auxiliary
Sample

Estimation from a generalized choice-based sample plus an auxiliary
sample is discussed in section 2.6. It differs from the case of known
aggregate shares, considered in sections 2.16 through 2.19, only in that the
Q, are not given a priori; rather they are estimated with the aid of an
auxiliary random survey in which subjects are asked which alternative they
chose. No other data is collected in the auxiliary survey.?®

Let there be N, cases in the auxiliary sample, and define

Hy= N,/N,

where N is the number of cases in the main sample (as before). Let A4/ bethe
number of subjects in the auxiliary sample who chose alternative /. If cases
1, ..., N are in the main sample, and cases N + 1, ..., N+ N, in the
auxiliary sample, the log likelihood can be written as

N N
Ly@:p)= ), mP(il2,0)+ ) Inplz,) (2.82)

- Y N, ln Udz#(z)P(j(s)[z,e)}

M
+ '21 A In {fdzu(z)P(jlz,B)}.
f=

A maximum likelihood estimator may then be found by essentially the
same method as in sections 2.11 and 2.16. Details of the derivation
(Cosslett 1978) will be omitted, and we shall just give the resulting
estimator.

The pseudolikelihood is given by

N .
Ly@6s) = 3 In é(s,)P(tnMIZ..,O)
LY E)P(F$)2,,0)0+ Y [1—ANP(F]2,,0)

s=1 Jji=1

AT (2.83)

J

25. Lerman and Manski (1975) refer to such a survey as a supplementary survey.
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There are now two sets of weight factors: A(j),j=1,...,M,and {(s),s

=1, ..., S. The estimators are determined by

Ly @y, Ex, iy) = max {max s.v.Ly (9,:,1)}, (2.84)
E, 4

where max s.v. stands for maximum stationary value. For the pseudolike-
lihood L, (8, &, 4), the stationary value in (&, 4) is not necessarily unique: if
there are several stationary values, we take the one at which Ly (6, ¢, 4) is
largest.2® The quantity &y is not really independent but is given in terms of

i, by the identity

i (2.85)

If we let N — co, with H, and {H} fixed, then

) 6, —» 0%,
Axl) = Ho, (2.86)
L)~ as)

N Q- P

s

Although the stationary value in the weight factors is not necessarily
unique, it does always exist—there is no problem analogous to that of
inconsistent constraints, which can arise in the case of known aggregate
shares. In particular, note that the present estimator is not equivalent to
using the estimated value ;= #;/N, in the constrained maximum
likelihood estimator of section 2.19. In principle therefore the problem of
inconsistent constraints can be avoided by treating the given values Q, as
preliminary estimates from an auxiliary sample of size N, setting A
= N,Q,;, and then using the estimator given by equations (2.83) and (2.84).
Of course in many cases this is how known values of O were measured in the
first place—even if N, is not known, a rough estimate should be adequate
here.?” Against this we have to weigh the practical difficulty of estimating

26. The maximum stationary value may in some cases be a saddle-point or even a local

minimum.
37. An incorrectly specified N, leads to estimates that are consistent but no longer

asymptotically efficient.
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from equation (2.84) when the equations for a stationary value may have
multiple solutions.

2.22 Asymptotic Variance of the Auxiliary Sample Estimator

As with the other maximum likelihood estimators already considered, the
asymptotic covariance matrix has the form given by equations (2.34)
through (2.36). There are two differences. First, some of the observations
are in the auxiliary sample, which we treat as a special subsample with
s = 0. For this subsample expectations are given by

E,[F]= _; 0 F(i) (2.87)

instead of by equation (2.33). Corresponding to equation (2.32), the
pseudolikelihood for a single observation is

Tils=0,9)= — In A(}) (2.88)

for the auxiliary sample, and
£(s)P(i]z,8)

M

S
Y EOP(F®) 20+ Y 1 -A)IP(]z0)
=1 1

Jj=1

T(i,z|s,y)=In

s

(2.89)

for the regular subsamples.
The second difference arises from the identity (2.85), which means that

we need consider the covariance of the estimates 8y and 4y only.
Consequently 87/8y has not only an explicit dependence on 4 but also an
indirect dependence via &, which is a function of 4 given by equation (2.85).
The appropriate expressions for J and M are found to be

(s, v*) & Olis,y*)9()

YT 2.90
a‘yaa’yﬂ =1 a)"aaé(t) a'}’p] ( )

s

Jaﬂ = Z ﬁsEsl:—
=0

s

M«

where 0&(t)/dy, is evaluated at the true parameter values and

s ol(s,y*) oI, ?*)] [57 (s, 9%) [57 (s, Y*)]}
M, = H E — E; E; .
af sgo s{ sI: 3y, dvg 07 3y

291)
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In this formulation J is not symmetric, and we have
V=J"'MJ).
From equations (2.90) and (2.91) we have

Au (Bh)m}Q,
J= (2.92)
o, O
Bai + (Ch)IJ HJ H_(SU
and
M = B~ (BhB'),;,  (BhC),;
5. — 0.0,
(ChB");, C., — (ChC),; + L}}Q_Q, : (2.93)
[+]

where (for this estimator only)

H 10P ap 125-_52

i 1 O, P, 36,06, Fa6,06,/ (2.94)
B -<@_ﬂ€f> ,
“"\éo, P aq,/ (2.95)

PP,
C""=< PJ> ’ (2.96)
with
- S
P= Z EGS)P(F(5)]2,0) + Z [1 = A()IP(j]|z0). (2.97)

The matrix (h;;) is given by equation (2.13).

A proof of asymptotic efficiency has not yet been established for the
auxiliary sample estimator, but it is anticipated that one will follow along
the same lines as existing proofs (Cosslett 1978, 1981) for the estimators

given in sections 2.14 and 2.19.
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2.23 Special Cases of the Auxiliary Sample Estimator

There are two special cases of interest where the maximum likelihood
estimator given in section 2.22 for auxiliary samples can be somewhat
simplified :

1. When the main sample is purely choice-based, the maximum like-
lihood estimator is

Ly @y, Ay) = max {m?x sv. Ly (e,z)}, (2.98)

where (for this case only)

A1) P (i, 12,,6)

N M
Ly@®,4)=3Y In - - 2 Al a),
=LY D+ GAPGZ8) T

i=1

(2.99)
with
1 ifN,> A,
{i=19 0 N =, (2.100)
—1 ifN; <N}

Thusif N, = #; for some alternative, the corresponding weight factor A(f)
disappears from Ly, and so can be ignored in the estimation procedure.
While the stationary value is a minimum for those (i) with {;= —1,the
sign of the second differential is in general indefinite for the remaining
weight factors. The weight factors 4 have been redefined in deriving
equation (2.99) from (2.83), and the asymptotic limit of Ay(i) is now
| (H;/Q) — H, |-

2. When the probability model is a logit model with a full set of
alternative dummies, there is a drastic simplification. In terms of the log
likelihood for a random sample, Ly(@, d), see section 2.15, we have

M N
Ly©,5,4)= Ly(¢.d) ~ ¥ N,-ln{l —MD+ ¥ n,-sé(S)}

j=1

§ A, 10 A()), (2.101)

j=1

5
+Y N née) -
s=1
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where the composite dummy variable coefficients d’ are related to the true
coefficients d by

S
d;=d,.+1n{1 —ii)+ ¥ nistf(s)}, (2.102)

with £(s) given as a function of 4 by equation (2.83).

Then 4y and &, are obtained by finding the stationary values of the last
three terms in equation (2.101); although nonlinear simultaneous equa-
tions in 4 have to be solved, the main sample data {i,, z,} are not involved.
Estimates 8y = [y, d5] are obtained from Ly (¢, d’), as if the sample were
random, and the estimated dummy variable coefficients are then corrected
according to equation (2.102), using the estimates 4, and &,.

2.24 Estimation with a Supplementary Sample

In addition to the main sample, the generalized choice-based sample, one
can have a supplementary sample consisting of individual observations of
the exogenous variables but not of the subjects’ choices—for example, a
census tape (see section 2.7). Unlike the other sampling schemes considered
earlier, a supplementary sample allows one to estimate at least some of the
parameters of a choice model even when the main sample does not cover all
the alternatives—for example, it may consist only of subjects who bought
some particular product or service. Although a census tape does not
identify buyers and nonbuyers, the information it provides on the
distribution of the exogenous variables may be enough to identify the
model.

Let there be N, cases in the supplementary sample and /N cases in the
main sample, and again define

Ny

H,=—.

° N
Ifcasesl, ..., Nareinthe mainsample,andcases N + 1, ... ,N 4+ Nyin

the supplementary sample, then the log likelihood is
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N+ No

Ly(®;4) = z P, 12,0+ T lna()

S
- Y #n { .[dzy(z)P(/(s)lz,O)}. (2.103)
s=1

A maximum likelihood estimator can be derived by the same methods as
before: (By, Ly ) is given by

Ly (8,,4y) = max max Ly(0,4), (2.104)

6c® i>0
where the pseudolikelihood is

As,) P (iy | 2,,6)

N
Ly@®,4)=> In

S
=l Z j(s IZ",9)+H0
N+ Ng S
-y ln{z i(s)P(j(s)lzn,0)+Ho}. (2.105)
n=N+1 s=1

The estimators can be shown to be consistent :

BN - 9*,

An($) = -g— @s.), (2.106)
as N — oo with H, and {H,} fixed. Asymptotic normality then follows by
standard methods, and asymptotic efficiency can be proved along the same
lines as in the case of the generalized choice-based estimator (Cosslett
1978). Unlike previous cases there is no spectal simplification when P(i | z,
0) corresponds to a logit model with alternative dummies.

The asymptotic covariance matrix is again of the form given by
equations (2.34) through (2.36), except that the sums over s are extended to
cover the supplementary sample, say, s = 0. Expectations over this special
subsample are given by

Eo[F@)] = | F2)u(z)dz (2.107)

instead of equation (2.33). The pseudolikelihood for an observation in the
supplementary sample is
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S
Iz|s=0,y)= — ln{ Y AN P(F()]2,0) + Ho}, (2.108)
t=1

while for the remaining subsamples it is
P(i|z,0
IG,z]s,y)=In — 4s)P(i]2,9) (2.109)
Z A P(F()]2,0) + Hy

The matrix J is then the same as for a general choice-based sample without
a supplementary sample (equations 2.40 through 2.43), except that P is
replaced by P = P + H,, and k is omitted from equations (2.42) and (2.43).
The expression for M, equation (2.37), is now changed to

0 o
M_J—J(0 G)J—Mo, (2.110)

where G is given by equation (2.38) and

<l aﬁ><1 aﬁ> <1 aﬁ><P(t)>

P o9,/ \P o6,/ \Pob,/\ P

M, = H, <1 613><P(s)> <P(s)><P(t)> @110
Pog,/\ P P P

Finally, consider a case where not all alternatives are sampled : suppose
the main sample consists entirely of subjects who have chosen alternative 1.
For all other estimators considered, the “information matrix” J would be
zero. When the estimator also incorporates the data from a supplementary
sample, however, the asymptotic covariance matrix for 0 is given by

v < (0 P,/86,) (8 P,/00,)
0= Ho P, (P, + Q,H,)

_< dP, /a6, >< 8 P,/06, >< P >-1}-1 2.112)
P+ QO Hy/\P + 0O, Hy/\P,+ Q0 H, ‘
In general this matrix will be nonsingular, provided we omit parameters

that do not enter P(1 | z,0), and thus the model shouid be identifiable for at
least a subset of the parameters.
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2.25 Comparison of Estimators and Sample Designs

A qualitative picture of the relative efficiency of different estimators and
sample designs can be obtained by numerical studies of simple choice
models. For design of an actual sample—if the option were available—
these calculations would of course be repeated with realistic models and
parameter values appropriate to the case being studied. There are three
main questions of interest:

1. Asymptotic bias. If the problem of consistently estimating a choice
probability model from a choice-based sample is ignored, and the model is
estimated by conventional means as if it were random, then what is the
magnitude of the bias in the estimators?

2. Sample design. Given a consistent estimator, how does the asymptotic
variance depend on the sample design, with respect to the relative
subsample sizes and prior knowledge of the aggregate shares?

3. Choice of estimator. Several different estimators are available for
choice-based samples, some asymptotically efficient and some not (see
Manski and McFadden, chapter 1). In particular, when the aggregate
shares are known, there are three estimators of interest: the constrained
maximum likelihood estimator derived in sections 2.16 through 2.19; the
Manski-McFadden estimator (chapter 1, equation 1.36); and the WESML
or Manski-Lerman estimator (Manski and Lerman 1977, see also appendix
2.28). How do these estimators compare, asymptotically, for different
ratios of subsample sizes and aggregate shares?

Some results will be given for three particularly simple cases : the probit,
logit, and arctangent models, in each case with two alternatives and one
exogenous variable z. The sample is taken to be a purely choice-based
sample. We consider different values of the parameter 6, different mean
values of z, and different relative sizes of the subsamples, as well as the
optimal sample design for each value of 6 in each model. The utility
function is just z6 for alternative 1. The probability functions are as
follows:

1. Probit model

z0

= [ oo(-37)
P(l|z,0)=—= | exp| —5¥")dx. (2.113)

N

- X
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2. Logit model

1

3. Arctangent model
1
P(1 |z,9)=§+%tan"(20). (2.115)

The distribution of the exogenous variable u(z) was taken to be the normal
distribution N (m, §). Calculations were carried out for two values of the
mean m =1 and m = 2. For comparability of the different probability
models, the biases and asymptotic variances were calculated at specified
values of O, rather than of 6. The following values of Q, were used : with m
=1,0,=05,07509; and with m =2, 9, = 0.5, 0.75, 0.9, 0.95, 0.99,
0.995. The larger values of Q, are not used when m = 1 because for this
distribution of z they cannot be realized by any probability function
P(ifz, 0).

In calculating the asymptotic bias when a choice-based sample is
estimated as if it were random, we also include an alternative-specific
dummy variable on alternative 1: the utility z6 is replaced by z6 + ¢, where
¢ is also to be estimated. (The true value ¢* is taken to be zero.) This is
because, in the case of the logit model, the bias is known to be confined to
alternative dummies, and can be explicitly calculated in terms of Q (see
sections 2.15 and 2.20). The questions of interest thus apply only to the
other two models : to what extent is the bias absorbed in the coefficient of
the dummy variable, and is this bias well approximated by the correspond-
ing correction in the logit model? The asymptotic variance calculations, on
the other hand, were carried out without a dummy variable, using the
models given by equations (2.113) through (2.115) as they stand.

Note that questions of bias and relative efficiency in small samples have
not yet been considered for these estimators and sample designs and might
present a picture quite different from the asymptotic results.

Tables 2.1 (probit model) and 2.2 (arctangent model) present the results
on asymptotic bias when the choice-based sample is estimated as if it were
random, using the maximum likelihood estimator. The true value 8* is also
given in each case. In all cases ¢* is zero. Three sample designs are
considered: H,; = 1/4, 1/2, and 3/4. In the logit model there is no
asymptotic bias in 8, while the asymptotic bias in ¢ is given explicitly by
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Table 2.1
Asymptotic bias for choice-based sample estimated as a random sample
Probit model H =025 H, =035 H, =075
m=1
Q,=05 =0
Q 0 0 0
) —0.675 0 0.675
¢, —0.689 0 0.689
Q, =0.75, 6* =0.768
) 0.781 0.808 0.768
) —1.32 —0.690 0
¢, —132 —0.659 0
0, =09, 6*=3.03
) 3.31 3.28 3.18
) -1.90 —1.29 ~0.646
¢, —1.84 —1.23 —-0.614
m=2
Q,=05 6*=0
({ 0 0 0
1) —0.675 0 0.675
¢, —0.689 0 0.689
Q, =075 6*=0.348
) 0.349 0.368 0.348
¢ —1.34 -0.710 0
¢, —134 —-0.671 0
0,=09, 0*=0.719
({ 0.832 0.854 0.809
¢ -2.11 —1.48 -0.759
¢, —191 -1.27 —0.636
0, =095, 6*=1.01
) 1.28 1.29 1.22
¢ —-2.66 —2.04 -1.30
¢, —2.26 —1.64 —1.03
Q,=099, 0* =205
0: 2.84 2.79 2.69
¢ —-3.7 -3.07 —2.38
¢, =304 ~-246 —1.87
0, =0.995, @6*=3.12
) 421 4.14 4.03
¢ —3.95 -3.34 —2.67
¢, —343 —2.84 —2.25
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 (H( -0,
¢°“1“{QI(1 —HI)}'

In table 2.2, the values of ¢, are given for comparison with the asymptotic
estimates ¢. In the case of the probit model we find empirically that a better
approximation to the bias in ¢ is given by the following ad hoc correction
to the bias term from the logit model:

_ ¢, - 6% [probit]

The values of ¢, are given for comparison in table 2.1, with the limiting
value ¢, \/ﬂ /4 when 6* = 0. From table 2.1 we see that for moderate
values of @, (up to 0.75) the bias in § is less than 10%, but it increases with
Q,—for m =2 and H; = 0.5 it reaches 27% at @, = 0.95 and 33% at Q,
= 0.995. Smaller, but not negligible, differences are found between qﬁ and
¢,, also increasing with Q,. In the arctangent model, table 2.2, the bias is
already large (309, or more) for Q, = 0.75, while at larger values of Q, we
find that §is only a fraction of the true value 8*. The arctangent model is,
however, known to be somewhat pathological for extreme values of the
mode split. Generally the bias in § is upward in the probit model and
downward in the arctangent model. It is clear from table 2.1 that results on
asymptotic bias in the logit model remain only approximately true when
carried over to the probit model. Although it is speculative to generalize
from this simple example to the multivariate, multialternative case, biases
of 309; or more could well occur if the choice-based nature of the sample is
ignored.

In tables 2.3 through 2.5 we compare the asymptotic covariances of § for
different estimators and sample designs. Three sampling schemes are
considered : choice-based sampling with known Q ; choice-based sampling
with Q unknown; and random sampling. In each of the choice-based
sampling schemes three different designs are given for the relative
subsample sizes: (1) a pseudorandom sample, in which the subsample sizes
are proportional to the population shares H, = Q;, (2) equal subsample
sizes H, =1/2, and (3) subsample sizes chosen so as to minimize the
asymptotic variance of §. The optimizing values of H, for the third design
are also given in these tables; the optimal design depends on which
estimator is used. Note that, when Q is known, the choice-based estimator
with H; = Q, has the same asymptotic variance as the estimator for a
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Table 2.2
Asymptotic bias for choice-based sample estimated as a random sampie
Arctangent model H =025 H, =05 H, =0.75
m=1
0,=05 6=0
g 0 0 0
é -10 0 1.0
¢ —110 ¢ 1.10
0, =075 6*=134
0: 1.02 0.949 1.34
¢ —-197 0.807 0
do —220 —1.10 0
Q0,=09, =154
5_ 3.30 4.82 8.48
¢ —2.64 —-1.67 —-0.944
¢, —3.30 -2.20 -1.10
m=2
0, =05 6*=0
({ 0 0 0
o —-1.0 0 1.0
éo —1.10 0 1.10
Q, =075, 6*=0.534
Q 0.486 0.366 0.534
) —-197 —0.710 0
¢ —2.20 -1.10 0
0, =09, 6*=180
Q 0.636 0.533 0.815
¢ —-2.23 —0.985 —-0.423
¢ —3.30 -2.20 -1.10
Q, =095, 06* =389
({ 0.679 0.594 0.935
¢ -2.28 -1.06 —0.562
oo —4.04 —-2.94 —1.85
Q, =099, 6*=249
] 0.863 0.866 1.43
¢ —2.48 —-1.37 —0.987
b —5.69 —4.60 —-3.50
Q, =0.995, 6%*=720
) 1.14 1.32 2.26
6 271 —~1.75 —1.46
6, —6.39 —-5.29 —-4.19
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Table 2.3
Asymptotic efficiency of choice-based sample designs and estimators

Pseudorandom  Equal shares, Optimal  Optimal

Probit model design, H, =Q, H, =1/2 design value of H,
m=1
0, =0.75
Q known
MLE 61.5%; 84.6%, 100.0% 0.17
MM 250 41.7 458 0.33
WESML 25.0 44.1 49.8 0.32
Q unknown
MLE 58 7.8 7.8 0.46
Random 13.0
g, =09
O known
MLE 26.2%; 89.2%, 100.0% 0.29
MM 24.7 86.6 97.3 0.29
WESML 247 54.0 55.2 0.57
Q unknown
MLE 17.6 39.1 39.6 043
Random 223
m=2
0, =075
Q@ known
MLE 87.1% 95.0% 100.0%; 0.13
MM 18.6 26.1 26.5 0.44
WESML 18.6 353 46.8 0.22
Q unknown
MLE 04 0.6 0.6 0.49
Random 3.1
Q, =09
@ known
MLE 62.1% 95.2% 100.0%; 0.30
MM 229 62.3 64.9 0.37
WESML 229 88.6 94.9 0.37
Q unknown
MLE 1.3 3.6 3.7 0.45
Random 6.3
Q, =095
_Q known
MLE 40.7%, 95.5% 100.0%; 0.34
MM 174 79.7 83.8 0.35

WESML 17.4 89.8 89.8 0.51
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Table 2.3
(continued )
Psecudorandom  Equal shares, Optimal  Optimal
Probit model design, H, =@, H, =1/2 design value of H,
Q unknown
MLE 1.6 7.5 7.6 0.43
Random 6.1
Q, =099
Q@ known
MLE 9.5% 96.9% 100.0% 0.38
MM 5.9 95.7 98.9 0.38
WESML 5.9 45.5 533 0.71
Q unknown
MLE 14 17.8 17.8 0.46
Random 34
Q, =0.995
Q known
MLE 4.5% 98.4% 100.0% 0.42
MM 3.6 98.2 99.8 0.42
WESML 3.6 24.6 33.1 0.79
Q unknown
MLE 14 23.0 23.0 0.49
Random 2.6

random sample, so there is no separate entry in the table for random
sampling with known Q.

For choice-based sampling with known @, two other estimators are
considered, as alternatives to the maximum likelihood estimator (MLE):
the Manski-McFadden estimator (MM) and the WESML estimator (see
appendix 2.28). These are of interest because, although in general not
asymptotically efficient, they are relatively easy to compute.

As a basis for comparison, consider the maximum likelihood estimator
for known Q with optimal sample design. The tabulated values are
asymptotic efficiencies, defined as the asymptotic variance of this maximum
likelihood estimator with optimal design divided by the asymptotic
variance of the estimator and sample design in question.?® (Results are not
given for Q, = 0.5 because in this case var 6 = 0 when Q is known.) The
general features of the results are as follows.

28. This method of presentation was proposed by McFadden. In general, when 6 is
unknown, the optimal design cannot be determined, and the efficiency level 1 is
unobtainable.
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Table 2.4
Asymptotic efficiency of choice-based sample designs and estimators

Pseudorandom  Equal shares, Optimal Optimal

Logit model design, H, =Q, H,=1/2 design value of H,
m=1
0, =075
Q known
MM a6 00" 950" o1
WESML 2.6 423 46.6 0.34
Q unknown
MLE 438 6.2 6.2 0.50
Random 11.8
0, =09
©Q known
MM 5y 850 %677 o
WESML 238 51.8 52.8 0.57
@ unknown
MLE 16.0 31.2 31.2 0.49
Random 21.2
m=2
0, =0.75
Q known
MLE 86.7% 94.5% 100.09; 0.09
MM 19.8 27.6 28.0 0.44
WESML 19.8 37.5 49.3 0.22
Q unknown
MLE 0.3 0.4 0.4 0.50
Random 29
0,=09
Q known
MLE 62.2% 94.3%; 100.0%; 0.26
MM 24.8 64.1 66.9 0.37
WESML 24.8 88.9 91.9 0.41
Q unknown
MLE 0.8 1.8 1.8 0.50
Random 52
Q, =0.95
Q known
MLE 41.5%; 94.7%, 100.0%; 0.30
MM 18.7 79.4 83.6 0.34

WESML 18.7 85.0 85.6 0.54
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Table 2.4
(continued )
Pseudorandom  Equal shares, Optimal  Optimal
Logit model design, H, =Q, H, =1/2 design value of H,
@ unknown
MLE 09 34 34 0.50
Random 49
0, =0.95
Q known
MLE 9.0% 95.0% 100.0%; 0.35
MM 5.6 93.1 98.3 0.35
WESML 5.6 41.7 48.9 0.71
O unknown
MLE 0.9 8.9 8.9 0.50
Random 2.7
Q, =0.995
Q known
MLE 3.9% 95.7% 100.0% 0.37
MM 3.0 95.3 99.6 0.37
WESML 30 -21.8 29.0 0.79
Q unknown
MLE 1.0 129 12.9 0.51
Random 2.1

1. Knowledge of Q greatly improves the precision of the estimates, as can
be seen from the low efficiency of the estimators for unknown Q. We should
note, however, that knowledge of @, should have greatest impact for a one-
variable model without an alternative-specific dummy and in general the
value of this information will be less. In particular the very small relative
efficiency at moderate values of Q, is related to the fact that in this model 6
is necessarily zero if Q, is known to be 0.5, that is, the relative efficiency is
zero when @, = 0.5. This artificial situation will not occur in more complex
models.

2. At moderate values of the mode split (e.g., @, = 0.75) the Manski-
McFadden and WESML estimators are comparable and are considerably
less efficient than the maximum likelihood estimator. For intermediate
values of Q, (e.g., Q; = 0.9t00.95 for m = 2) the efficiency of the WESML
estimator increases and comes close to that of the maximum likelihood
estimator. (For m = 1, notenough values of O, have been tabulated for this
effect to be apparent). At larger values of O, the efficiency of the WESML
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Table 2.5
Asymptotic efficiency of choice-based sample designs and estimators

Pseudorandom  Equal shares, Optimal Optimal

Arctangent model  design, H, =Q, H, =1/2 design value of H,
m=1
Q, =075
@ known
MLE 53.2% 75.7% 100.09, O
MM 20.8 36.0 40.1 0.32
WESML 20.8 313 31.9 0.43
@ unknown
MLE 2.5 2.6 2.7 0.62
Random 8.1
0, =09
Q known
MLE 19.3% 74.09, 100.0%;, 0.10
MM 18.2 71.1 92.9 0.16
WESML 18.2 32.4 34.2 0.62
Q unknown
MLE 10.3 8.8 11.4 0.79
Random 15.6
m =2
0, =075
Q known
MLE 83.5% 91.3% 100.0%, O
MM 28.0 38.6. 39.3 0.41
WESML 28.0 50.8 59.9 0.29
Q unknown
MLE 0.08 0.09 0.05 0.55
Random 1.8
0,=09
@ known
MLE 52.9% 84.09; 100.0%, O
MM 322 74.0 82.3 0.23
WESML 322 533 57.3 0.64
O unknown
MLE 0.04 0.04 0.05 0.73
Random 1.7
0, =095
Q known
MLE 27.0% 78.1% 100.0% O
MM 16.1 73.8 87.9 0.15

WESML 16.1 32.2 374 0.70
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Table 2.5
(continued )
Pseudorandom  Equal shares, Optimal Optimal
Arctangent model  design, H, =0, H, =1/2 design value of H,
Q unknown
MLE 0.04 0.03 004 0383
Random 1.1
0, =099
Q known
MLE 2.2% 64.4%; 1000% O
MM 1.7 63.7 93.9 0.06
WESML 1.7 8.2 10.5 0.76
Q unknown
MLE 0.04 0.03 0.05 0.94
Random 0.5
0, =0.995
Q known
MLE 0.8% 59.8% 10009, O
MM 0.7 59.6 97.0 0.03
WESML 0.7 4.7 6.0 0.80
Q unknown
MLE 0.05 0.03 006 096
Random 04

estimator declines, and it is rapidly overtaken by the Manski-McFadden
estimator. For large values of @, the Manski-McFadden estimator is
virtually indistinguishable from an asymptotically efficient estimator.

3. The efficiency of the equal-shares sample design is not very much less
than the efficiency of the optimal sample design, for all the estimators
considered and for both known Q and unknown Q (except for large values
of Q, in the arctangent model). This holds even when the optimal value of
H, is not close to 0.5. The optimal value of H, depends of course on the
unknown true values of the parameters. This result, however, suggests that
(1) efficiency is not very sensitive to the sample design if H; is reasonably
close to its optimal value, so that low-grade estimates of the parameter
values (e.g., from analysis of a preliminary survey) could be used to
determine a good approximation to the optimal design, and (2) if the
parameter values are uncertain, a reasonable rule of thumb is to use equal
shares.

Table 2.6 compares the relative efficiency of choice-based sampling with
equal shares versus random sampling, using maximum likelihood esti-
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Table 2.6
Relative efficiency of maximum likelihood estimators for equal shares, choice-

based sample versus random sample

o, Q known Q unknown

Probit

m= 0.75 1.38 0.60
0.9 3.40 1.75

m=2 0.75 1.09 0.19
0.9 1.53 - 0.57
0.95 2.35 1.23
0.99 10.2 5.30
0.995 217 8.83

Logit

m=1 0.75 1.38 0.53
0.9 3.44 1.47

m=2 0.75 1.09 0.16
0.9 1.52 0.35
095 2.28 0.69
0.99 10.5 3.28
0.995 24.7 6.26

Arctan

m=1 0.75 1.42 0.32
09 3.83 0.56

m=2 0.75 1.09 0.05
0.9 1.59 0.02
0.95 2.90 0.03
0.99 29.0 0.06

0.995 74.5 0.10
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mation in both cases. The cases of known Q and unknown @ are considered
separately. The table gives the relative efficiencies, defined as the asymptotic
variance of the maximum likelihood estimator for a random sample
divided by the corresponding asymptotic variance for the choice-based
sample. Thus a tabulated value exceeding one means that the choice-based
sample is more efficient than a random sample of the same total size. When
Q is known, the choice-based design is always more efficient than the
random sample. The results for all three models are remarkably similar.
The more extreme the mode split (the larger the value of Q, ), the greater is
the relative efficiency of the choice-based design. When @ is unknown,
random sampling is more efficient for the arctangent model, and for smaller
values of Q, in the other models; for large values of Q, in the probit and
logit models the relative efficiency of the choice-based design is still
substantial, however.

The improvement can be quite significant: a relative efficiency of 10
means that the precision can be improved by a factor of,/(10/r) for a fixed
sampling budget, where r is the cost of collecting an observation in the
choice-based sample relative to a random sample.

2.26 Appendix: Conditions on the Choice Probability Model

Of the following assumptions some are stronger than strictly necessary for
proofs of consistency of maximum likelihood estimators. They are,
however, generally satisfied in practical applications and allow expeditious
proofs.

ASSUMPTION 2.1: The choice set C (of alternatives /) is finite.

ASSUMPTION 2.2: z e Z and 0* € int ©, where Z and © are given closed,
bounded subsets of Euclidean spaces.

ASSUMPTION 2.3: The model is identifiable: if @ # 0* and 6 € @, there is
a region Q < Z, such that

j dzu(z)P(i|z,0) # f dzuz)P(i|z,0%) - (2.116)
e

Q

for at least one choice alternative 7 included in the sampling procedure.
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ASSUMPTION 2.4: P(i|z, 0) is strictly positive for ze Z, 8 € ©. This
condition may be relaxed slightly, so as to allow P(i | z, 8) to be zero forall @
for any specified set of values of (i, z): this covers the situation where choice
i is unavailable at certain values of z (Manski and McFadden, chapter 1).
We assume here, however, that the remaining set of z is still closed.

ASSUMPTION 2.5: P(i|z, 0) is continuous in @ for 8 € ©.
To show consistency of the estimator for the case of known aggregate
shares, a further assumption is needed.

ASSUMPTION 2.6: The P(i| z, ) are linearly independent, that is, there

exists no set of nonzero constants {a;(8),j=1, ..., M}, such that

M

Y 2,0)P(j|2,6)=0 @2.117)
j=1

for almost all z.2° This is to hold for all @, except possibly for an exceptional
set of @ which is nowhere dense and does not contain 0*. Assumption 2.6
does not hold when all the variables are alternative-specific dummies, but in
that case the coefficients 0 are fully determined by the aggregate shares O,
and an estimator is not needed.

For establishing asymptotic covariance properties, two more assum-
ptions are needed.

ASSUMPTION 2.7: The first two derivatives of P(i | z, 8) with respect to @
exist and are continuous in 8, for 8 in some neighborhood of 8* and for all

zeZ.

ASSUMPTION 2.8: The K derivatives P(i|z,0%*)/00,(a =1, ... ,K)are
linearly independent on C x Z, that is, there is no nonzero vector k, such

that

K 5P(i|z,0*
> kr———(ggz )0 (2.118)
a=1 a

for all i and z (except possibly for a subset of Z with zero measure u).
In practice the only difficulty that may occur is verification of the
identifiability assumption. There are apparently no general criteria for
identifiability in nonlinear models, and the question must be studied on a
case-by-case basis. One method that is sometimes applicable is to establish

29 This means for all ze Z', where Z’ € Z is such that (7 u(z)dz = 1.
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the negative-definiteness of the expectation of the matrix of second
derivatives of the likelihood function at @ = 8* (Rothenberg 1971).
Sufficient identifiability conditions for the multinomial logit model have
been given by McFadden (1973).

In discussing identifiability from choice-based samples, we assumed that
the model was already identifiable in the sense of assumption 2.3, that the
probability of it not being identifiable from a random sample tends to zero
as the sample size becomes large.

2.27 Appendix: Derivation of Asymptotic Properties

We give here a very brief discussion of the methods by which consistency,
asymptotic normality, and asymptotic efficiency may be proved for the
estimators given in sections 2.14 and 2.19 (see Cosslett 1978, 1981 for
details of the proofs).

The proof of consistency does not involve any essentially different
methods from those used by Amemiya (1973) to prove consistency of the
maximum likelihood estimator for the truncated normal distribution, and
by Manski and Lerman (1977) to prove consistency of the weighted
exogenous sample maximum likelihood estimator for a purely choice-
based sample. Manski and McFadden, chapter 1, have also proved
consistency of a number of other estimators by a similar procedure.

The proof basically involves three steps: (1) to show that the expected
value of the pseudolikelihood has a unique maximum at y = 7%, (2)to show
that the pseudolikelihood converges uniformly to its expected value, and
(3) to conclude that the point at which the pseudolikelihood is maximized,
$5, converges to the point at which its expected value is maximized, y*. The
case of known aggregate shares is complicated by the fact that the
minimization over 4 and the maximization over 8 have to be considered
separately. A technical problem arises here: it cannot immediately be
shown that the minimum over A lies within the domain of uniform
convergence, and a slight extension of Amemiya’s lemma 3 (Amemiya
1973) is needed (see Cosslett 1978).

Given consistency, the proof of asymptotic normality is fairly standard
Since enough assumptions have already been made to establish uniform
convergence of the pseudolikelihood, we need only assumption 2.7 on the
derivatives of P(i|z, 8) with respect to 0, rather than Cramér type
conditions involving third derivatives (e.g., see Amemiya 1973 for the
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appropriate treatment). The only substantive point is to establish positive-
definiteness of the information matrix J, as defined in sections 2.12 and
2.18. _
The proof of asymptotic efficiency, on the other hand, does require a
special approach because the usual derivation of the Cramér-Rao bound
(e.g.,see Rao 1973)is applicable only to a finite set of parameters. There are
problems in defining an information matrix when the number of para-
meters is infinite, or, worse yet, when the estimation problem involves an
unknown function. A brief outline of the method, in the case of unknown
aggregate shares, is as follows. First, we consider two statistics: a vector t,
which is an unbiased estimator of @ and ¢, which is an unbiased estimator of
{dzu(z) ¢(z), assuming here that u(z) is continuous. The test function ¢(z)is
arbitrary, except for normalization conditions,

[dzp(z) =0, [dz[dp@)]* =1, (2.119)

and some mild regularity conditions. A lower bound on the variance of §,,
say, can be established by essentially the same method as is used to derive
the Cramér-Rao bound ; the only difference is that differentiation of z, with
respect to the parameter of which it is an estimate is replaced by functional
differentiation with respect to ¢(z), subject to the conditions imposed by
equation (2.119). We then have to search the space of test functions ¢ for
one that gives a maximal lower bound: this is done using the calculus of
variations to find a stationary value with respect to ¢(z). The resulting
lower bound on the covariance matrix is found to be the same as V,,,
equation (2.45). This is the required result because 6, could be taken as an
arbitrary linear combination of the actual parameters.

Ifthe aggregate shares are known, we consider instead just the statistict, .
But instead of partial differentiation with respect to 6, we subject it to
simultaneous variations of the form

{9—»0 + 00;
= u(l + &69),

such that the aggregate shares Q; = {dzu(z)P(i| 2, 8) remain unchanged
- fori= 1, ..., M.For any suitable £(z, 0) this leads to a Cramér-Rao-like
lower bound on, say, var (6, ). Then a &(z, 8) is found that yields a maximal
lower bound : this bound is in fact equal to V,, given in equation (2.78), as
required.

(2.120)
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2.28 Appendix: Alternative Estimators for Generalized
Choice-Based Samples with Known Aggregate Shares

Two other consistent estimators have been proposed for choice-based
samples when the aggregate shares Q; are known : the Manski-McFadden
estimator (see Manski and McFadden, chapter 1, equation 1.36) and the
Manski-Lerman, or WESML (weighted exogenous sample maximum
likelihood), estimator (Manski and Lerman 1977 ; also chapter 1, equation
1.19). These can immediately be extended to generalized choice-based
samples. For reference we give here the corresponding pseudolikelihoods
and asymptotic covariance matrices.
1. The Manski-McFadden estimator is the value of @ that maximizes

v R p(i,,0)
Ly@®=Y In g“"’ , (2.121)
"=l Z —’P(jlzmﬂ)
=1 9;
over 0 € @, where i(n) is the alternative chosen by subject n. Note that the
weights involve the sample choice proportions H; rather than their
expected values H,.3° This estimator is asymptotically efficient in the case
of the logit model with a full set of alternative-specific dummies (in which
case itis identical to the constrained maximum likelihood estimator), but in
general its asymptotic covariance is not optimal. It is, however, relatively
easy to compute.
Its asymptotic covariance matrix is

VIMM] _ A1 A_IBQG[MM]B'QA—I, (2.122)

where A and B,, are given by equations (2.41) and (2.75) and

H H,
GMMI = '51 et el (2.123)
T 0.0
2. The WESML estimator is the value of 8 that maximizes
o N O
Ly(©@) = Z ﬂln{P(in | z,,0)}, (2.124)
n=1 Hi(n)

30. For a purely choice-based sample H; = H,. But in general use of H; rather than H,
results in a less efficient estimator, both for the Manski-McFadden and the WESML

estimators.
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over 0 € ©. Its asymptotic covariance matrix is

ViVl =J-1MJ !, (2.125)
where
M /10P, 0P,
= i; <Eﬁﬁ> (2.126)
and

w-5 e a(w)E) m

This differs from the covariance matrix given by Manski and Lerman
(1977) for a purely choice-based sample, because we have adopted a
different sampling scheme in which the subsample sizes N, are fixed in
advance (are not themselves random variables).

The WESML estimator i1s not asymptotically efficient, except in the

special case @, = H,,i=1,..., M.
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