5 Econometric Models of Probabilistic Choice

Daniel McFadden

An object can have no value unless it has utility. No one will give anything
for an article unless it yield him satisfaction. Doubtless people are
sometimes foolish, and buy things, as children do, to please a moment’s
fancy; but at least they think at the moment that there is a wish to be

gratified.
—F. M. Taussig, Principles of Economics, 1912

5.1 Economic Man

The classical economists made the assumption of homus economicus
virtually tautological: if an object were chosen, then it must have
maximized the utility of the decision maker. By contrast, contemporary
economic analysis of consumer behavior has focused on the objective
market environment of economic decisions and has excluded whim and
perception from any formal role in the utility maximization process.!

From the standpoint of the observer unmeasured psychological factors
introduce a random element in economic decisions. The result is a
probabilistic theory of choice which has many features in common with
psychophysical models of judgment (Coombs 1964, Luce and Suppes 1965,
Bock and Jones 1968, Krantz, Luce, Suppes, and Tversky 1971, Krantz
1974).

Probabilistic choice models lend themselves readily to econometric
implementation, particularly for choices among discrete alternatives. This
chapter develops and compares a number of these models in forms suitable

for econometric applications.

This research was supported in part by the National Science Foundation, through grant
SOC75-22657 to the University of California, Berkeley, Portions of this chapter were
written while the author was an Irving Fisher Visiting Professor of Economics at the
Cowles Foundation for Research in Economics, Yale University. An early version was
presented at the Third World Congress of the Econometric Society, Toronto, Canada,
1975. The author has benefited greatly from discussions with Amos Tversky at the
formative stage of this chapter and has borrowed freely from his ideas. Charles Manski
and Steven Cosslett have also provided useful comments. The author retains sole
responsibility for errors.

1. Also excluded in the conventional consumer analysis is consideration of procedural
rationality, the question of how an organism with perceptual and computational limits
makes a decision; see Simon (1978). This chapter will not take up the question of
probabilistic choice theory in the presence of bounded rationality. However, we note that
the distributions of demand attributed in this chapter to taste variation or errors in
judgment could often be reinterpreted as a consequence of bounded rationality, and vice
versa.
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5.2 Discrete Choice

Many empirically important economic decisions involve choice among
discrete alternatives. Examples are decisions on labor force participation,
occupation, educational level, marital status, family size, residential and
work location, travel mode, and brands of commodity purchases. The
problem of economic discrete choice parallels the decision context in which
psychophysical models have been applied successfully. On the other hand,
analysis of discrete choice behavior using conventional marginalist con-
sumer theory is quite awkward. For these reasons we concentrate on a
probabilistic consumer theory for discrete choice.

An example helps to clarify the conceptual and empirical issues involved
in the study of discrete choice. Consider the choice by commuters of auto or
bus mode to work. For the example assume the number of commuters is
fixed, so that we can concentrate on the proportion of commuters choosing
bus. We expect this proportion to be a function of the relative travel times
and costs of the two modes. An empirical approach to forecasting, say, the
effect of transit fares on bus patronage, would be to fit a demand function
to aggregate time-series data, disregarding theoretical foundations. How-
ever, a priori information on the form and structure of the demand
function implied by an analysis of decision behavior may permit sharper
forecasts. In particular, if the relationship between individual decisions and
aggregate demand is understood, then extensive data on individual choices
can be used to refine estimates of the aggregate demand function.

An approach to such problems often used by the new home economists is
to assume that individval demand is the result of utility maximization by a
representative consumer whose decision variable is the proportion of trips
taken by bus. Since this decision variable is continuous, conventional
marginal analysis applies. Market demand is pictured as the aggregate of a
population ofidentical representative consumers, so that market demand is
just individual demand writ large.?

While the single representative consumer model may be a useful analytic
device under appropriate assumptions (see section 5.6), it provides a poor
description of individual behavior. What we observe is a population split
into mostly full-time auto users or full-time bus users. The effect of rising

2. See, for example, Becker and Stigler {1977), where the conceptual foundation for
common tastes is advocated with scant attention to the practicalities of econometric
demand analysis with limited data on consumer characteristics.
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transit fares is felt primarily at the extensive margin where some individuals
are switching from bus to auto. The conceptual implausibility of a model of
identical consumers with fractional consumption rates is even more
obvious for decisions such as level of education or family size.

These comments on the difficulty of using the concept of identical
representative consumers as a basis for modeling discrete choice behavior
provide the kernel of a solution for the problem. Suppose we introduce a
population of consumers in which tastes vary explicitly. For example, we
might consider a population of consumers with quadratic utility functions
whose coefficients are distributed in the population according to some
specific parametric probability distribution. Then, we can express pro-
portions such as the share of bus commuters in our example as the
probability that an individual drawn randomly from the population will
have tastes such that the utility of traveling by bus exceeds that for auto.
The parameters of the aggregate demand function will then be the
parameters of the underlying probability distribution of taste coefficients.

The idea of taste variation in a population influencing aggregate demand
behavior is an old one. Many of the classical consumer demand studies,
such as Prais and Houthakker (1971), discuss this as a nuisance to be
eliminated by assumption. Seminal studies by Tobin (1958), Warner
(1962), and Quandt (1968) use the idea explicitly in the analysis of specific
problems of discrete and limited choice. More recently the analysis of
econometic models with random parameters has been motivated by the
presence of unobserved variations among economic agents. The topics
discussed in this chapter are a natural extension of the idea of taste
variation to general questions in discrete choice analysis.

The demand behavior of populations of consumers can be analyzed at
two distinct levels. At a theoretical level we can examine the general
implications for the structure of aggregate demands that can be drawn
from the hypothesis of a population of preference-maximizing consumers.
The most basic question is whether individual preference maximization has
any implications for aggregate demand structure. A related question is
whether the model of individual utility maximization is identifiable from
the observed distributions of demands, or whether other simpler or less
restrictive models could generate the same observations. These topics are
discussed in sections 5.3 through 5.8. These sections also consider sufficient
conditions for an aggregate demand system to be consistent with the
hypothesis of a population of preference-maximizing consumers.
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At a practical level we can take as given the hypothesis of a population of
preference maximizers and seek parametric demand structures suitable for
econometric analysis. Sections 5.9 through 5.16 survey a number of
alternative model structures and summarize their features. Sections 5.17
through 5.19 treat in more detail the estimation of a proposed model
structure, the tree extreme value, or nested multinomial logit model.
Appendixes give computational formulae for several of the models.

5.3 Probabilistic Consumer Theory

In sections 5.4 through 5.8 we shall first define a probabilistic choice
system, describing the observable distributions of demands by a population
of consumers. Second, we shall state the hypothesis of random preference
maximization, which postulates that the distribution of demands in a
population is the result of individual preference maximization, with
preferences influenced by unobserved variables. Third, we consider the
features of the observable distributions of demands that are necessary or
sufficient for their consistency with the hypothesis of random preference
maximization.

The development of population demand behavior parallels exactly the
conventional treatment of the individual consumer, with distributions of
observed demands and preferences replacing a single demand system and
preference order. The usual necessary conditions for consistency of an
individual demand system with preference maximization have population
analogues, as does a stochastic version of the theory of revealed preference.
Sufficient (integrability) conditions for an observed demand distribution to
be consistent with a distribution of preferences are much less complete than
the analogous treatment of individual demand.

5.4 Probabilistic Choice Systems

A probabilistic choice system (PCS) is defined formally by a vector (I, Z, &,
2,S, P), wherel is a set indexing alternatives, Z is the universe of vectors of
measured attributes of alternatives, & :1 —» Z is a mapping specifying the
observed attributes of alternatives, 4 is a family of finite, nonempty choice
(or budget) sets from I, S is the universe of vectors of measured
characteristics of individuals, and P:I x # xS —[0, 1] is a choice
probability.
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The index set I is imposed by the analyst and is assumed to be external to
the actual choice process. Any natural or intrinsic indexing of alternatives
which may affect choice is included in the vector of measured attributes
z e Z,. The universe of measured attributes Z will be treated here as an
abstract set; in later applications it will usually be assumed to be a
rectangle, or else a countable dense set, in finite-dimensional Euclidean
space. The choice probability P(i|B, s) specifies the probability of
choosing i€, given that a selection must be made from the choice set
B c # and that the decision-maker has characteristics s € S. We use the
notation P(C | B,s) = Z,.cP(i| B,s). Choice probabilities are assumed to
satisfy the following two conditions:

pcs 5.1: Choice probabilities are nonnegative and sum to one, with
P(B|B,s) = 1.

pCs 5.2: Choice probabilities depend only on the measured attributes of
alternatives and individual characteristics; if B =1{j, ..., i}
and B’ = {ij, ..., i,} have 2, =&(i) = §() for k=1, ..., n, then
P(i, | B,s) = P(i; | B/, s).

It should be noted that a PCS is analogous to a conventional
econometric specification of a demand system, with the functional
specification of the demand structure and the distribution of errors
combined to specify the distribution of demand.

5.5 The Random Utility Maximization Hypothesis

The hypothesis of random utility maximization (RUM) is defined formally
by a vector (I, Z, £,S, p), where (I, Z, £,S) are defined as for a PCS, and p s
a probability measure depending ons € S, on the space of utility functions
on 1.3 The probability u gives the distribution of tastes in the population of
individuals with characteristics s € S.*

3. The space of utility functions is RY, where R is the real line, Give R' the product
topology, and define the measurable sets in R! to be the Borel sets in this topology.

4. Each utility function is a specified ordinal representation of a preference relation on I.
One could alternately start from a probability measure # on the set of preference
relations on 1. From this random preference maximization model, choice probabilities
could be deduced directly. When the preference relations are representable by utility
functions, the measure 7 on preferences and the representation mapping induce a
measure p on the space of utility functions. Technically a preference relation on I is
defined as a subset p of I x I containing all the pairs (i, j) with i at least as desirable as j,
and having the properties that (i, /) € p and (J, k) e p =(i, k)€ p. Let T be the set of all
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Let @ denote a family of nonempty, finite choice sets, as earlier. Let u®
denote the restriction of u to Be 8.° The following assumptions are

imposed on u:

RUM 5.1: The restriction of i to the space of utility values on a finite set of
alternatives B € # depends on the measured attributes of these alter-
natives; if B = {i;, .. . , i,y and B" = {if, . .. ,i;} havez, = £(i) = E(i)
fork=1,...,n then u® =u%.

RUM 5.2: The probability of “ties” is zero;

u({U e R | u(iy) = u(iz)},8) = 0.
The next assumption states that choice is determined by utility maximi-

zation.

RUM 5.3: Each RUM (1, Z, &, S, ) and family of choice sets B e 2
generates a PCS (I, Z, &, A, S, P) via the following mapping: for
B={i1,...,i,,}e.@,ses,andk=1,...,n,

P(i.|B,s) =u({UeR"U(®4) Z U(ij)forj= 1,...,n}s). (5.1)

The assumption RUM 5.2 guarantees that there is almost always
a unique utility-maximizing alternative, so that (5.1) is well defined, with
P(B|B,s)=1.

When the restriction of utoB = {iy, . . . ,i,} € # can berepresented by a
probability density /®, so that u®(A,s) = faS By - oo Uy 5 8)duy L duy
for each measurable subset A of R”, then the choice probabilities can be
rewritten

preference relations on I, and . a Boolean o-algebra of subsets of T. Then 7:# x 8§ —
[0, 1] is a probability measure provided n(*,s) is nonnegative and countably additive

on £, with n(T) = 1. Suppose a subset To =T is measurable and has n(T,) = 1, and that
there exists a measurable mapping  :T, — R', giving an ordinal representation of each
p € T. The probability measure u will obviously depend on the choice of the
representation mapping . In many applications I can be assumed countable. Then every
preference relation on I has a representation U:I x T — [0, 1] defined by

U(l, p) = UjeA(i.p)z_Js where A(tv p) = {Jei ‘ (l,_])Ep}

More general representation theorems are discussed in Debreu (1962). Note that the
range of ordinal utility can be restricted without loss of generality to the unit interval, so
that all positive moments can be assumed to exist.

S.ForB=1{i,...,L}e%, u® is a probability measure on the finite-dimensional space
R" of vectors (u(i,), . . - » ¥(i,)) of utility levels for the alternatives in B.
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+ uy uy
P(i|B,s)= J‘ J j FB(uy, . . ., u,;;8)duy ... du,
+ o0
= j F¥(u, ... u;s)du, (5.2)

where FB is the cumulative distribution function of f®, and F} denotes the
derivative of F® with respect to its first argument. Alternately, letting

G®!(w,, ..., w,; s) denote the cumulative distribution function of
Way - ooy W) = (u(ix) — u(iy), . . ., u(i,) — u(i,)), the choice probability
satisfies®

P(i,|B,s)=G*1(0,...,0;5) (5.3)

The problem of finding econometrically feasible PCS consistent with
RUM is attacked by using (5.2) to generate choice probabilities con-
structively from parametric families of probabilities u, or by demonstrating
constructively or indirectly that candidate PCS are consistent with some

probability u.
5.6 Stochastic Revealed Preference

Does the hypothesis of a population of utility-maximizing consumers
imply any restrictions on the distributions of observed demands? An
affirmative answer was given by Marschak (1960) and Block and Marschak
(1960), who established the necessity of conditions such as regularity and
the triangle inequality.” A necessary and sufficient condition for con-
sistency with random preference maximization, analogous to the strong
axiom of revealed preference for the individual consumer, has been
established by McFadden and Richter (1970). Let (B, C) be a pair of sets
withB € # and C < B. Ifan individual offered an alternative from B makes

6. The relation of F® and G®' is

+ 00
G*lwy, ..., W)= [ Fru+w,, ..., u+w)du

u= —o

7. A PCS satisfies regularity if C = B € B"=P(C | B,s) 2 P(C|B/,s), and the triangle
inequality if P(i| {i, j},s) S P(i| {i, k}.s) + P(k| {k,j}.s).
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a selection in C, call (B, C) a successful trial. Then the strong axiom of
revealed stochastic preference states that for any finite sequence of trials
(B!, CY, ..., (BM, CM), with repetitions permitted,

M

Y P(C"|B"s)= N(B',CY, ..., (B CY), (54)
m=1
where N((B', CY), . . . , (B¥, C)) is the maximum number of successful

trials in the sequence consistent with a single preference order. This dxiom
implies a variety of necessary conditions that can be used to screen PCS for
consistency ;® however, it does not provide a practical sufficient condition

for consistency.
Suppose a PCS is consistent with RUM. Are there alternative theories of

individual behavior which can generate the same PCS, but which for
reasons of generality are to be preferred to the classical model of individual
utility maximization? One more general alternative is immediate. We
might view the individual himself as drawing a utility function from a
random distribution each time a decision is made. Then the individual is a
classical utility maximizer given his state of mind, but his state of mind
varies randomly from one choice situation to the next. ® Intraindividual and
interindividual variations in tastes are indistinguishable in their effect on
the observed distribution of demand.

The hypothesis of intrapersonal random utility is appealing on method-
ological grounds, since it fits the same data as the conventional theory,

8. Consider, for example, the PCS known as the maximum model (McFadden 1974) with
I={1,234} Letl; ={1, 2} and I, = {3, 4}. The binary choice probabilities satisfy
PG| i)y = v My +v;), with oy = 3,0, = 2,83 = 4, v, =3 for the example. For choice sets
of more than two alternatives, only the available alternative in I, with the highest scale
value is retained, and similary for I,, with choice between the retained alternatives
satisfying the binary choice probabilities; for example, P(1]123) =uv,/(v, + v3) and
P(2|123) = 0. For the trials (12, 1), (34, 3), (234, 2), and (124, 4), equation 54

yields P(112) + P(3]34) + P(2]234) + P(4]124) =421/210 > 2 = the maximum
number of successes consistent with RUM. Hence the maximum model can fail to satisfy
the axiom of revealed stochastic preference.

9. We confine our attention to the case where the drawings of utility functions for
successive decisions are independent. More generally one could introduce learning,
experience, and habit by making the probability distribution over utility functions
dependent on history. Data collected on series of decisions by cross sections of
individuals would permit the identification of intraindividual and interindividual
components of variation in tastes. Some of the econometric analysis for this extension is
given in Heckman, chapters 3 and 4. A general treatment of the topic awaits future

research.
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with weaker postulates.'® The intrapersonal random utility modelis in fact
of considerable historical and contemporary importance in psychological
theories of individual choice. It was first suggested by Thurstone (1927),
and it forms the basis for many current models of individual choice
behavior put forward in psychology by Luce (1959), Tversky (1972), and
others, and tested with reasonable success. In addition to providing
evidence on the plausibility of the intrapersonal random utility model as a
theory of individual choice behavior, the psychological literature provides
analytic results and functional forms that can be adapted for economic
applications.

5.7 Aggregation of Preferences

One useful method for examining the consistency of PCS with RUM is to
test compatibility with sufficient conditions for consistency. The author is
unaware of any general analogue for RUM of the simple sufficient
(integrability) conditions of individual utility theory. A restricted, but
useful, result of this sort is obtained when individual preferences have
sufficient structure to aggregate to a social (indirect) utility function
yielding aggregate demands. In this case the home economist’s traditional
representative consumer with fractional consumption rates can be assigned
the social utility function, justifying this approach as an analytic shortcut
consistent with some underlying population of utility maximizers who
make discrete choices.

Suppose the consumption of an individual is defined by a vector x of the
quantities consumed of divisible commodities and choice of a discrete
alternative i which has a vector of measured intrinsic attributes w. The
individual has a utility function U:X x W x I = [0, 1], where X x Wisthe
space of pairs of vectors (x, w). The utility function is assumed to satisfy the
direct utility (DU) assumption

DU: X is the nonnegative orthant of a finite-dimensional real vector
space, and W is a closed set in a finite-dimensional real vector space. The
utility function U( - , -, i) is continuousonX x W foreachie L U(-,w,i)
is twice continuously differentiable on X, with éU/éx 20 and
10. A particular attraction is that the hypothesis permits retention of much of the

apparatus of classical welfare economics. If a criterion for interpersonal comparisons
exists in the theory, then it can be applied to intrapersonal comparisons as well.
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|60/éx | > 0, and is strictly differentially quasi-concave, for each we W
and ie "

The individual has income y and faces a vector of prices r > 0 for
divisible commodities and a cost ¢ associated with the discrete alternative.
For a specified discrete alternative i with measured attributes w, the
individual chooses x to maximize utility subject to the budget constraint
r-x + g = y. Theresultis a conditional indirect utility function V(y — gq,r,
w, i; U) defined for y—¢>0,r>» 0, weW, iel, and U satisfying
assumption DU by

Viy—qrwi;U)=max {Txwi)rx2y—g} (5.5)

This function has the indirect utility (IU) properties:?

51 Forr>0,y—g>0 weW,icl, and U satisfying the utility
conditions of DU V(y — ¢, 1, W, i; U) is continuous in (y — ¢, ¥, W), twice
continuously differentiable and homogeneous of degree zero in(y—-q,r),
strictly differentiably quasi-convex in r, and has oV /oy — q) > 0.13

[w5.2: (Roy’s identity): The maximum of U(x, w, i) subject tor-X =
y — gis achieved at a unique vectorx =X(y — ¢.I, W, i ; U) which satisfies

ovjor
v /ey

X(y—q:r’“l’i;ﬁ): (5.6)

When r » 0 and y — ¢ > 0 are confined to a compact set, there exists a
monotone transformation of U, given by by U = (e*V — 1)/(¢* — 1), which
for « sufficiently large implies the corresponding transformation of Vis
convex in r.** Thus for most applications ¥ can be assumed without further
loss of generality to be convex in r.

Suppose the consumer faces a finite set of discrete alternatives B € 4.
With alternative i € B is associated a vector of measured attributes, z; =

11. U(x) is strictly differentiably quasi-concave if t - oU0/ox =0and t-t =1 imply
'[620/0xox’]t < 0; see McFadden (1978b, pp. 30, 368).

12. See, particularly, Diewert (1977), and also McKenzie (1957) and McFadden (1978b,
p. 34).

13. Strict differential quasi-convexity requires if t - ¥/or =0 and t 't =1, then
t'(8*Vjoror )t > 0.

14. The hessian of ¥ = (2 — D)j(e* — 1) is Uy = (Vi + 2V, V))ae®" [(e* — 1), where
V., = 8*V/orér. A sequence (¥ — ¢, r), in the compact set, @ = + o, 4~ ¥, = 0, ¢t -t
=1, and ¥t < 0 has a subsequence converging to t* and (y — ¢, 1), at which t* - V|
=0 and t*'V_t* < 0, contradicting the strict differential quasi-convexity of ¥ in r. Hence
there exists a finite positive & for which the result holds.
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(¢,,x,w;) = &(i) in our earlier terminology. Income y is a component of the
vector s of consumer characteristics. The unconditional indirect utility
function of the consumer is then

V*(J’ — QB7 I',WB,B; 0) = max V(y - qi’ l', wia ia U)s (5’7)

ieB

where y — qg denotes a vector with a component y — g;, and wg a vector
with a component w;, for each je B. For almost all y — qg, consumer
demand for the discrete alternatives is given by Roy’s identity,'?

ov*

_ 94;
EI7E

Oy
|1 ifjeBandv; 2 yforkeB,
|0 otherwise,

8;=D(j|B,s;U)=

(5.8)

where y, = V(¥ — ., W, k; U). The population choice probabilities then
satisfy'®

P(JIB7S) = EUISD(]I B:E; U)
={D(jIB,;s;Du@l,s)
=u({UeR" | V(y —q;r,w;,j;U)
; V(y_qksrswk’k;fj) fOI’kGB},S). (59)

We shall now seek sufficient conditions on preferences such that a social
utility function can be defined, with fractional consumption rates for the
discrete alternatives, which yields the PCS (5.9). This problem is closely
related to the classical analysis of community preferences by Gorman
(1953); see also Chipman (1974), Muellbauer (1976), Shapiro (1975), and
Lau (1977).

15. Except for qg in a closed set of Lebesgue measure zero and (by RUM 5.2) p-
probability zero, the maximum in (5.7) is achieved at a unique alternative. On the open
set where & e B is the unique maximum, V*(y —qg, T, Wg, B; O) = V(¥ — g, 1, w; D),
and V* shares the regularity and differentiability properties of ¥ given in IU 5.1, for
almost all price vectors.

16. Given (g;, r, w;) = £(i) and the maximizing vector X(y — ¢g;, 1, W;, I; U, one obtains
for each i the conditional indirect utility U(i; 0) = O(X(&(), i; D), i) = V(EG), i; O).
Thus there is a mapping from the set of U to the set of U:1 —[0, 1]. With a slight abuse
of notation, we write u(4U, s) rather than u(dU, s), with the understanding that the
mapping above is applied.
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First, we define a utility function with fractional consumption rates.
Define A ={6eR'"|6,=Z0 and Z,6, =1} and Ay ={deA |, =0 for
i¢ B} for Be #. Consider U:X xA xS —[0, 1]. For r>» 0, Be %,
Yy ~qg > 0, and wy e W, with (y — g¢;, r, w;) = £(i), define

V(,V - QB,T,WB, B,S)
=max {U(x,8,s)|xeX,0€Apr X+ qg-p Sy} (5.10)
' x,é

We term U a social utility function, and ¥ a social indirect utility function,
if the choice probabilities satisfy Roy’s identity,

_é_‘z

P(i|B,s)= —g—‘{; . (5.11)
oy

Suppose individual conditional indirect utility functions have the form

_q_;((:),w,i;U)’ (512)

where y > g + a (r, w, i; U) and ¢ and § are homogeneous of degree one,
concave, and nondecreasing inr.!” The linearity of ¥'in (y — g) implies that
V* in (5.7) is additively separable into a term independent of & and a term
independent of y. Consider the function ¥ defined by!?

V(y - q,r,w,i;ﬁ)=y

V(y —qBar’wByB9s) = EUIsma;’x V(y - qiar’wiai;fj)

1 ~
= E(T){y + Eypmax [— g — olr,wy i U)]}- (5.13)

17. That (5.12) is an indirect utility function follows immediately from the concavity of
the associated expenditure function, y =g + a(r, w, i; ) + uf(r), for u Z 0. The quasi-
convexity of ¥ in (y — ¢, r) can also be demonstrated by a direct caiculus argument. The
aggregation properties of (5.12) were first noted by Gorman (1953), who provided the
following characterization of the direct preference map: U(x, w, i) = Max {U°®) |
U'x— R, w, i) = 1}, where U° and U" are concave in %, U* is homogeneous of degree
zero in X — %, and U° does not vary over the population. This dual structure can also be
derived from composition rules for concave conjugate functions; see McFadden (1978b,
p. 49-60).

18. It is assumed here that the expectation exists. Note however that, while the ordinal
utility function [ can be assumed to have a range contained in the unit interval, and
thus have an expectation, the transformation of utility necessary to achieve additive
separability in (5.12) may yield a function whose expectation (5.13) does not exist. In
section 5.8, a modified definition of ¥ is employed which precludes this possibility.
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The terms [ —g; — a(r,w, i; U)] are convex in (gg, r). Since the maximum of
convex functions is convex, and a nonnegative linear combination of

convex functions is convex,

G(qp.r,Wg, B,s) = Ey|, max [— g; — at,w;,i;0)] (5.14)
ieB

is convex in (gg, r). Then ¥ = (¥ + G(qg, I, Wg, B, s)/B(r) is invertible to a
concave expenditure function y = #8(r) — G(qg,r,Wg,B,s) foru = Oand s
therefore an indirect utility function.

Applying (5.8) to this preference structure yields

~ 0 Lo~
D(jIB,s;U) = — = max [— g, — afr,w;,i;U)], (5.15)
qj ieB
and hence from (5.9)

P(j|B,s)=Ey,D(j|B,s;U)

_ 0G(gg, 1, Wg, B,s)
oq;

ovjeq;
o (5.16)

Therefore ¥ is a social indirect utility function yielding the PCS.'?

When this conclusion holds, the demand distribution can be analyzed as
if it were generated by a population with common tastes, with each
(representative) consumer having fractional consumption rates for the
discrete alternatives and the social indirect utility function V.

It should be noted that the utility structure (5.12) yields choice
probabilities that are independent of current income. However, tastes (the
distribution of U') may depend on individual characteristics that are
correlates of current income such as historical wage rates, income levels, or
occupation. Then these variables may enter the PCS.

5.8 The Williams-Daly-Zachary Theorem

The conclusion derived from the preference structure (5.12), that the
resulting choice probabilities are given by the gradient of a surplus function

19. The associated direct utility function U satisfies

Ox, §,s) = Inf {V(y —qp, ¥, Ws, B, $) [ "X + Qg -5 Sy, Be B}
Y%
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G satisfying (5.14) and (5.16), can be strengthened by giving necessary and
sufficient conditions on G for (5.14) and (5.16) to hold. These conditions
will then provide practical criteria for the derivation of PCS consistent with
RUM having the structure (5.12). The essential elements of the following
arguments are due to Williams (1977) and to Daly and Zachary (1976).

Consider a preference structure satisfying RUM and representable in the
additively separable form (5.12). For B € 8, let F(eg;r, wg, B,s) denote the
cumulative distribution function, induced by the probability measure on
the set of U, of the random vector ¢, with components ¢; = —a(r, w,, i ; U)
for i e B. If F can be characterized by a density f(gg, r, wg, B, s), then this
random preference structure will be said to be of additive income random
utility maximizing, AIRUM, form.2°

A function G(gg, r, wg, B, s) will be termed a social surplus, SS, function
if it has the following properties:

ss5.1: ForB={l,...,m}e %, Gis a real-valued function of g3 € R™,
re X withr>» 0, wge W™ and seS.

SS 5.2: G is a positively linear homogeneous, convex function of (gg, r).

$S 5.3: G has the additivity property that G(qg + 6,1, wg, B,s) = G(qg, T,
wy, B, s) — 6, where € is any real scalar and qg + 6 denotes a vector with

components g; + 6.

SS 5.4: All mixed partial derivatives of G with respect to qg exist, are
nonpositive and independent of the order of differentiation, and satisfy
G(gs, T Ws, B, ) — G(0g, £, W, B, s) = [5(d/d)G(Y(1), T, wg, B, 5) dt,
where V is any path between ¥(0) = 0z and (1) = gg.*"

§s5.5: lim G;(qg, r,wy, B,s) = —1 forieB.
gi— —©

ss5.6: Suppose B={i,..., i,}e%®, and B' ={i}, ..., ipn, ...,
irsn} € Bsatisfy(g,,w,) =(q,,w,)fork =1,...,m Then G(qg, T, Wy,
B, sy =G((gg,+ o0, . .. ,+00), I, wg., B', S).

20. The condition for F to be characterized by a density is that it be absolutely
continuous with respect to Lebesgue measure on R™. Note that the linear homogeneity of
a(r, w;, i; 0) inr implies that F(leg, Ar, wg, B, s) = F(eg, 1, wg, B, s) for 1 > 0. When
there is no ambiguity, the abbreviated notation F(eg) and f(eg) will be used. Note that in
the utility structure {5.12), B can in general be a function of r and s.

21. The partial derivative of a function G with respect to its ith argument is denoted G,.
Then G, , ., denotes the mixed partial derivative of G with respect to (g;, - - . , g).
0y is an m-vector of zeroes.)
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Consider a PCS with choice probabilities given by functions
P(i|B, s) =7;(qg, T, Wg, B, s). This will be termed a translation-
invariant probabilistic choice system, TPCS, if it satisfies PCS and the
following conditions:

TPCcs 5.1: The functions 7, are defined for ieB ={l,..., m}eB,
ggeR", reX withr» 0, we W™, andseS.
TPCS 5.2: =, is homogeneous of degree zero in (qg, I)-
TPCSs 5.3: For a real scalar 8, n;(qg + 6, T, Wg, B, S) = 7,(qg, T, W, B,s).
TPCS 5.4: lim #;(qg, r, W, B, s) = 1.

gi—?— ©
TPCS 5.5:  All mixed partials of x; with respect to components of gg other
than g, exist, are nonnegative and independent of order of differentiation,
and satisfy

7,(qg, T, Wg, B,S)

q2 m

= ) J‘ ,2,.... m(ql’Q2’ e ém,r’wB’Bss)dqb L] d‘?m,
- e o)

with analogous conditions for m,, . . . , T2

TPCS 5-6: ni,j(qn, r, WB, B, S) = nj’i(qg, r. WB, B, S)

TPCS 5.7: Suppose B = {i;, ..., i,,} €% and B’ =iy sy s
ir.n} B satisfy (g, W) =4y w,) for k=1, ..., m Then, for
k=1,...,m,

Rk(qB,T,WB,B,S) = nk((q’B’! + R, .-y + CD),I',WB,,B’,S).

The following theorem links additive-income random utility-
maximizing forms, social surplus functions, and translation-invariant
probabilistic choice systems.

THEOREM 5.1: Consider B ={1,...,m}e%.

1. Suppose AIRUM holds, with individual indirect utility having the form
u(@) = (y — g; + &)/B(r), with zg distributed in the population with

22. The partial derivative of 7; with respect to its jth argument is denoted =; ;. Then
.» denotes the mixed partial derivative of %, with respect to (¢a, - - - » Gn)-

......
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cumulative distribution function F(gg, r, wg, B,s) and density f(gg, r, wg, B,
s). Define

+
G(gg,r,wg,B,s) = J [F(0g + t,r,wg,B,s) — F(qg + 7,1, Wy, B,s)] dr.

==

(5.17)

Then G exists and is a social surplus function satisfying SS.
Further

V(y - qlb r, wBs Bs S) = (y + G(qB’rsta B,S))/ﬂ(l‘) (518)

is a social indirect utility function; that is, the PCS associated with this
AIRUM form satisfies

P(i|B,s) = 7;(qg. ¥, Wg, B,s) = — G;(qg.T, Wg,B,s) (5.19)

and satisfies TPCS.

2. Suppose G(gg, T, Wg, B, s) is a social surplus function satisfying SS. Then
(5.19) defines a PCS satisfying TPCS. Further there exists an AIRUM form
such that G satisfies (5.17) and (5.18).

3. Suppose P(i | B,s) = m;(qg. I, Wg, B, s) is a PCS, satisfying TPCS. Then
there exist an AIRUM form and a social surplus function that satisfy SS
and (5.17) through (5.19).

LEMMA 5.1: If ATRUM holds, and the distribution F(gg, r, wg, B, s) has
first moments, then G defined by (5.17) also equals

+

G(qg,.r,wg,B,s) = f {mix (¢; — g;) — maxg; }f(an)dsn. (5.20)

- ®©

Because the definition (5.17) of the social surplus function normalizes its
value to zero for gz = 0, for any nonprice attributes wyg, the social indirect
utility function (5.18) cannot be used to make welfare comparisons when
nonprice attributes change. The following result gives a modified definition
of the social surplus function which permits such comparisons.

LEMMA 5.2: Suppose AIRUM holds. If the distribution F(gg, r, wg, B, s)
has first moments, then



214 D. McFadden

+ o

G(qg, ¥, W, B,s) = f I?Eag‘ (&: — q:)f (¢g)deg

- ®

is a social surplus function, satisfying SS, which when substituted in (5. 18)
yields a social indirect utility function, permitting welfare comparisons for
nonprice attribute changes.

Alternately suppose nonprice attributes are compensable in the sense
that given wg, & > 0, there exists 6 > 0 such that F(gg + 0, r, wg, B,
s) = F(eg, T, Wy, B, 5) = F(gg — 0,1, wy, B, 5) for all g5 and wg with | wy
—wg| < 6. Then G(qg, T, Wy, B, s) =[Z2[F(0g + 1, T, Wg, B, 5) —
F(qg + 1,r,wy,B,s)]dr, where wgisa fixed vector of nonprice attributes, is a
social surplus function satisfying SS. When this function is substituted in
(5.18), the social indirect utility function permits welfare comparisons for a
fixed set B and subsets of B (choice sets formed by letting g; — + oo for
some i€ B), and for nonprice attribute changes.

The proofs of the theorem and lemmas are lengthy and are deferred to
section 5.23. Several comments on this theorem are in order. First, the
conditions TPCS are usually easy to check for an empirical PCS. If they
hold, the PCS is consistent with RUM. Thus TPCS is a useful set of
sufficient conditions for consistency. Note, however, that, while TPCS is
necessary and sufficient for an AIRUM form, there are many PCS
consistent with RUM that fail to satisfy TPCS and AIRUM. Second, a
useful way to generate PCS consistent with RUM is to start from a social
surplus function satisfying SS. A variety of functional forms are known
that satisfy SS; several are given in the remainder of this chapter.

A third comment is on welfare analysis of alternative policies involving
discrete choice. When preferences have an AIRUM form, the social
indirect utility function (5.18), incorporating a social surplus function
defined by (5.17) or by lemma 5.2, permits ready comparison of the social
desirability of alternative policies. When the vector of prices r of
nondiscrete commodities is unchanged under alternative policies, welfare
comparisons can also be made using the social surplus function G. Then G
yields an analytic expression for Hicksian consumer’s surplus and (since
income effects are absent) Marshallian consumer’s surplus: for any path
¥:00, 1] » R™ with §(0) =0, ¥(1) = g,
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1
G(gg,T, Wg, B,s) = — j i 7, (P (), 1, wg, B,S)¥ | (1)d1, (5.21)
i=1
=0

the usual sum of areas under demand curves. Since consistent use of
consumer surplus welfare comparisons is grounded on utility structures of
the additively separable form (5.12) in conventional problems, we conclude
that the presence of discrete choice places no new restrictions on the
validity of consumer surplus methods. For further discussion of consumer
welfare judgments involving discrete choice, see Rosen and Small (1979).

A fourth comment regards the definition of the variables qg. In the
argument surrounding (5.12), g; was interpreted as the price of alternative i.
The utility function (5.12) was interpreted as the indirect utility function
resulting from maximization of a translated homothetic utility function
subject to a budget constraint. However, (5.12) can alternately be given the
interpretation of a utility function that is additively separable and linear in
some physical attribute of the discrete alternative. Consider a utility
function with the general structure of (5.12),

.+ oolr, W, 1,8 U
_1 (B(r 2 ) (5.22)

Take g, to be the level of some physical attribute of alternative i, and w; to
be a vector of the remaining attributes of the alternative, including its price.
Let « and 8 depend on the vectors of individual characteristics, including
income. Then theorem 5.1 can be applied to establish the existence of a
social surplus function G and probabilistic choice system 7; which satisfy
(5.17), (5.19), and all the conditions SS and TPCS except the homogeneity
properties SS 5.2 and TPCS 5.2. With suitable added assumptions on o and
B, (5.21) will be an indirect utility function satisfying IU, and hence will be
dual to a direct utility function satisfying DU.?® This interpretation
permits a very general dependence of the PCS on income and prices.
However, the logic of the interpretation requires that it be sensible to
consider alternatives in which the attribute g, varies, with all other
attributes remaining unchanged. The additively separable utility structure

23. An example that satisfies IU 5.1 for all real values of ¢; is B(r, s) a (positive) constant
and « a quasi-concave, zero-degree homogeneous function of r and the income
component y of s which is twice continuously differentiable in (r, y), has da/8y < 0 and
dajor = 0, and is strictly differentiably quasi-concave.
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also requires that marginal rates of substitution between attributes other
than ¢; not depend on the level of g;.

The reinterpretation of (5.22) can also be made for noneconomic choice
contexts, with (r, s) interpreted as individual characteristics, (g;, ;) as
physical attributes of the alternative, and u as the direct utility associated
with the alternative.

Finally, note that ¢; may itself be a function of underlying raw attributes
of the alternatives. This function may be parametric; however, it cannot
depend on tastes U.

Suppose (L, £, J) is a probability space, and G’ is a social surplus
function and n! the associated PCS, for each j e L. Then it is obvious that
the probability mixture G* = [LG’J(d))is again a social surplus function,
with a probabilistic choice system given by the corresponding probability
mixture ¥ = [, niJ(d)). This observation can be used to derive a variety of
PCS obtained as mixtures of simpler PCS.%*

Suppose 7;(r, wg, B, s) is an arbitrary probabilistic choice system
depending on individual and economic characteristics (s, r) and alternative
attributes wg. Then the choice system
. (G T, Wa, By ) = — e Bs) (5.23)

Y. e %m;(r,ws, B,s)

jeB

where the qg are artificial variables, satisfies all the conditions TPCS except
the homogeneity condition TPCS 5.2 and the condition TPCS 5.7 that the
choice probabilities of a set depend only on the measured attributes of the
alternatives in that set. The proof of theorem 5.1 then implies the existence
of a social surplus function

G(qg) =In Y e %m;(r,wg B.s), (5.24)

jeB

satisfying (5.19). This function fails to satisfy SS 5.6. We conclude that
TPCS 5.7, or SS 5.6, are essential if the condition for a probabilistic choice
system to be consistent with RUM is to be nonvacuous.

24. An example is the DOGIT model of Gaudry (1977), obtainable as a mixture of a
multinomial logit and captive population PCS.
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5.9 Criteria for Parametric Probabilistic Choice Systems

Assuming a population of random utility maximizers as a maintained
hypothesis, the practical question is how to construct parametric PCS
suitable for econometric and policy analysis. The criteria one may wish to
impose on parametric PCS, beyond consistency with RUM, are (1)
sufficient flexibility to capture patterns of substitution between alternatives
and (2) a structure and parameterization facilitating estimation and
computation. One approach to generating parametric PCS is to start from
a parametric RUM model and derive the choice probabilities con-
structively. The primary drawback to this approach is that for many
parametric RUM, the construction of the choice probabilities is analyti-
cally intractable, or results in functional forms that are impractical for
empirical computation and analysis.

A second approach to specifying parametric PCS is to start from a
practical system of choice probabilities and verify constructively or
indirectly its consistency with RUM. One useful method is to test
consistency with the sufficient conditions TPCS given in the preceding
section.

5.10 Specification of Variables

Continuing the terminology of section 5.7, we consider an individual witha
vector of measured individual characteristics s, one component of which is
income y. The individual faces alternatives characterized by vectors of
measured nonprice attributes w; and a budget constraint g; +r X =,
where g; and r are the prices of the discrete alternatives and divisible
commodities, respectively. The individual has a utility function of (x, w;)
which varies over the population. Without loss of generality, we can
attribute this variation in utility to a vector of unmeasured nonprice
attributes w; and a vector of unmeasured individual characteristics 6. Let
U(x, w;, s, ©;, 6) denote this utility function.

The vector w; contains information on real, or intrinsic, properties of
the alternative, and in addition, nominal, or extrinsic, information such as
labels attached by the observer for identification purposes. For example, a
travel mode may be described by real variables such as time and number
of transfers, as well as nominal labels such as bus, express, or alternative 4.
It is reasonable to postulate that behavior depends solely on real proper-
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ties of an alternative. However, an observed nominal label which is
correlated with an unobserved real variable may appear in the population
to be related to choice behavior. For example, a label that identifies a
transportation mode as “bus” may be correlated with an unobserved real
variable measuring the schedule flexibility of alternative modes and thus
may act as a proxy for the unobserved real variable. The similarity of
alternatives should also be perceived by individuals in real terms, but
nominal classifications may act as proxies for the unmeasured real
variables.

Some analyses of choice behavior, such as tests of the RUM hypothesis
and the nature of similarity perceptions, can be carried out in PCS where
alternatives are characterized partially or completely in nominal terms.
This is particularly true in experimental applications where the universe of
distinct alternatives is finite and saturated models are used where each
alternative has a nominal label. However, analysis of economic behavior
and forecasting is best done in real models. For example, knowledge of the
historical effect of nominal variables, reflecting underlying unobserved
real effects, is of little use in forecasting when unmeasured real variables
change.

Empirical experience in travel demand forecasting (McFadden et al.
1977) suggests that it is difficult to construct purely real models using
conventional market data alone. In terms of research strategy this suggests
that most models using existing data will require nominal variables, but
with their use limited, and that data collection should emphasize more
extensive measurement of real variables.

5.11 Functional Form

The primary issues in choice of a functional form for a PCS are

computational practicality and flexibility in representing patterns of
similarity across alternatives. Practical experience suggests that functional

forms that allow similar patterns of interalternative substitution will give
comparable fits to existing economic data sets. Of course, laboratory
experimentation or more comprehensive economic observations may make
it possible to differentiate the fit of functional forms with respect to
characteristics other than flexibility.
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Currently three major families of concrete functional forms for PCS have
been developed in the literature. These are logit models based on the work
of Luce (1959), probit models based on the work of Thurstone (1927), and
climination models based on the work of Tversky (1972). Figure 5.1
outlines these families: the members are defined in sections 5.12 through
5.18.

Thurstonian forms Lucean forms Tverskian forms
Binomial probit Binomial logit Elimination by -—

// aspects (EBA)

l T

f
|
|
|
Multinomial probit (MNP) Multinomial logit (MNL) Elimination by |
strategy (EBS) :
/ \ I
1
|
Captive populations (DOGIT) Cardell Preference :
tree (PRETREE) 1
I
1
L I
Generalized Tree extreme __ _ |

extreme value value (TEV) -

(GEV)
Figure 5.1

Concrete functional forms

In considering probit, logit, and related models, it is useful to quantify
the random utility-maximizing hypothesis in the following terms: consider
a choice set B = {1, ..., m} € #. Alternative i has a column vector of
observed attributes z, and an associated utility u; = a'z;, where a is a vector
of taste weights. Assume a to have a parametric probability distribution
with parameter vector 0, and let § = p(0) and Q = 2(0) denote the mean
and covariance matrix of a. Let zg = (2,, . . . , Z,,) denote the array of
observed attributes of the available alternatives. Then the vector of utilities
ug = (4, . . . , 4,) has a multivariate probability distribution with mean
B’z and covariance matrix zg€Qzg. The choice probability P(i| B, s) for
alternative i, also written P(i | zg, 8), then equals the probability of drawing
a vector ug from this distribution such that %, z u; forje B. For calculation
note that ug_; = (¥, — 4y, . . ., Uj_q — Uy, Uppy — Uy o ooy U — u;) has
a multivariate distribution with mean B’zz_; and covariance matrix
zy_Qzg ., wherezg ;, =(Z; — 2. . . ;21 —ZpyZisy — - - - 52 —z;),
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and that P(i|zg, 8) equals the nonpositive orthant probability for this
(m — 1)-dimensional distribution.?®

The vector of attributes z, of an alternative in this formulation is a
function of the raw data (q;, W;, I, s), where (g;, ;) measure characteristics
of the alternative and (r, s) characteristics of the individual and the
background economic environment. Since any continuous (indirect)
utility function can be approximated on a compact set to any desired
degree of accuracy by an appropriate linear-in-parameters specification,
and z; can incorporate complex transformations and interactions of the
raw data, there is virtually no loss of generality in assuming the utility
structure , = a’z;.2® Note that if Z, includes a (nominal) dummy variable
specific to alternative i, then the corresponding component of a can be
interpreted as the contribution to utility of unobserved attributes of this
alternative. The condition that u; be homogeneous of degree zero in the
prices (g;, r) will be met by requiring that z, be homogeneous of degree zero

25. Suppose « has a multivariate density g(), with characteristic function
+®

() = J et g(a)da.
-®

;ll"heq uy_; = @'z ; has the characteristic function Eé**-* = y(zg_;7), and associated
ensity

h(ug-;) = Qmy~"* J e"'"‘n-j'y(zs_jt)dt
Then

+

P(j|2g,0) = (2m)~"""

|L——§O

=
e"iTe-iy(zg_t)drdug_;.
ug-;¥ - ® — o

Starting from a density g with a closed form characteristic function, these formulas can
be used in a few cases to obtain simple closed forms or expansions for the choice
probabilities. More generally these formulas can be used, with suitable transformations
of variables, to obtain numerical integrals of dimension 2(m — 1) or less for the choice
probellbillities. However, some special structure is usually needed to make this approach
practical.

26. Suppose indirect utility can be written in the form U(t, t,), with t; = (g;, w;, T, 5) and
1, a vector of unobserved attributes of alternatives and individual characteristics that



Econometric Models of Probabilistic Choice 221

in (g;, r), and that the distribution of a be invariant with respect to price
level.

5.12 The Luce Model

A PCS that permits easy computation and interpretation but has a very
restrictive pattern of interalternative substitution is the muitinomial logit,

MNL, form

Bz
P(i|2g. ) = ————. (5.25)

Y efn

jeB

This form was first suggested by Luce (1959) as a psychological choice
model derived from an axiom of independence from irrelevant alternatives,
[IA:?" If ie A < B; then®®

P(ilzg,B) = P(i| 24, B) P(A | zg, ). (5.26)

determine the utility function. As noted earlier, variations in the utility functions of
individuals can always be attributed to an unobserved vector t,. Suppose T and T* are
compact sets of t; and t,, respectively. Suppose U is uniformly Lipschitzian in t; on T

x T* with constant M ; that is, | U(t, ) = U@, 1) | S M|t —tf| for 4, 2T and

1, € T*. Suppose T is defined—by translation, scaling, and extension if necessary—to
equal T = {t;eR" |1, 2 0, £, ¢;; £ 1}. Let K be the set of integer vectors (k;, . . ., k,)

with (k,/N, . .., k,/N)eT, and define

Zy oot &) =231 thll—ty— - LN TN YRy L k!
Consider an approximation U to U defined by
Ut,t;) = Z %y okn (B2, ok (1)

(k1. - kn)eK

with o, 4 (v) = U((ky/N, ..., k,/N), 7). Given e > 0,if N = nM?/e*, then | U(t,, 1)
~ O(t;, 7.) | <eon T x T* (see McFadden 1978b, p. 236). Since T* can be chosen so
that the probability of unobserved variables failing outside T* is as small as we please,
the RUM U will yield a PCS which is as close as we please to the PCS generated by U.
Note that this justification from approximation theory for a linear-in-parameters form
does not imply that this approach is efficient, or even practical, for all applications.

27. The binary logistic curve is of much earlier vintage.

28. P(A|2g.8)= 3 P(j|2s.0).

Jj€A
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This system satisfies TPCS and can be derived from a social surplus

function

G(gg)=In ) e ¥ (5.27)
jeB

where g; = —p'z;.

The Luce model was shown by Marschak (1960) to be consistent with
RUM. A constructive demonstration due to Marley is reported in Luce
and Suppes (1965); see also McFadden (1973) and Yellot (1977).
Specifically, if the u; are independently distributed, with

Problu, s yj=e """ (5.28)

then (5.2) yields (5.25) by an easy integration.?® The distribution (5.28) is
called a type I extreme value, or Weibull, distribution.

An implication of the MNL form is that all cross elasticities are equal;
that is, for i #J,

210 P(i | 25, 0)

Jin ij = ﬁkz]kP(]l Zg, 0)’ (5'29)

and the elasticity does not depend on i This property is not plausible in
some choice situations ; see Debreu (1960) and McFadden, Tye, and Train
(1977). The lack of flexibility of the Luce model is characteristic of a wider
class of models satisfying the following property, called order inde-
pendence:ifi, je A, i, j¢B, and k e B, then P(i| A) = P(j | A)if and only
if P(k|BuU {i}) < P(k|Bu {j}).*° Aclassic example shows that models
satisfying order independence yield implausible conclusions when there
are strong contrasts in the similarity of the alternatives. Suppose the
alternatives are trips by auto (1), red bus (2), or blue bus (3). Suppose
individuals treat the two buses as virtually equivalent and at prevailing
travel times and costs divide evenly between auto and bus, so that
Dia =P13 = P23 =0.5, P12z =05, and py3 =p3;> = 0.25.3! Consider

29 In the terminology of the preceding section with ¥, = a’z; and « random, assume that
the first m components of z are dummy variables for the m alternatives, that

@1, - - - are nonrandom, and that (a;, . . ., &,) are independently distributed, with
Ew, = B; and Proble; — §; = 4] = exp[—e~*]. Note that at least one normalization, say,
=m B, =0, is needed for identification. In applications some or all of these B; may be
restricted to zero.

30. We assume with little loss of empirical generality that all choice probabilities are
positive. This property was introduced by Tversky (1972a).

31. Define p; = P(i| {i,j}) and py = PG, k).
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A ={1, 2, 3} and B = {3}. By order independence p,,; > p,;5 implies
Ps; < P32, contradicting the probabilities we have constructed in light of
the pattern of similarity of the alternatives.

Tversky (1972) has shown that order independence is equivalent to a
property of PCS termed simple scalability: forB = {1, ..., m} thechoice
probabilities can be written as functions P(i | B,s) = m;(q,(r, w,.8), . . .,
q,.(r, w,, 8)) of scale values (undesirability indices) ¢;(r, w;, s) of the
alternatives, with =, increasing in g, for j # i, and decreasing in ¢;, 7; going
to zero when g; — + oo, and the form of the function 7, depending on the
attributes of the alternatives solely through the scale values. Then clearly
functional forms that are sufficiently flexible to accommodate cases of the
red bus/blue bus type must depend on the orientation of alternatives in
attribute space, as well as scalar measures of their desirability. For
example, choice systems satisfying TPCS will be simply scalable if the
social surplus function has the weakly separable form G(h(gy, Wy, T,
), - - » hu(Gps Wi ¥, S), T, 8). Similarly PCS derived from RUM of the
form described in the preceding section will be simply scalable when the
attributes of alternatives shift only the mean of the distribution of utility
levels.

Estimation of the multinomial logit model is discussed in McFadden
(1973). A method for guaranteeing convergence of maximum likelihood
estimation algorithms is discussed in section 5.20.

Because of its computational simplicity, the multinomial logit model
has been a primary focus of attempts at functional generalizations. Some
of these are discussed in section 5.13.

5.13 Thurstone’s Model V

Thurstone (1927) proposed a random utility model for psychometric
choice in which the utility levels of the alternatives are normally distri-
buted. For binary choice this yields the probit model widely used in
analysis of binary data; see Finney (1964) and Cox (1970). Multinomial
probit, MNP, models are discussed in Bock and Jones (1968), McFadden
(1976), Hausman and Wise (1976), Daganzo, Bouthelier, and Sheffi
(1976), and Lerman and Manski, chapter 7.

Supose the utility of alternative i is ¥, = a'z;, where « is multivariate
normal with mean § and covariance matrix AA’. Additive normal vari-
ations in utility are incorporated in this formulation as random
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coefficients of alternative specific dummy variables contained in z. The
vector uy is multivariate normal with mean zxf and covariance matrix
zzAAz;. The choice probabilities satisfy

P(i|zg,B,A) = N{(— zB—iﬁazB—iAAlz;!—i)ﬁ (5.30)

where N(gg, Qg) is the multivariate normal cumulative distribution
function, with zero mean and covariance matrix Qg, evaluated at gg, for
any set of alternatives B. This general structure and notation for the PCS
follow from section 5.11 and the property that linear transformations of

normal vectors are again normal.
In the case that alternative-specific dummies are included among the

attributes, it is convenient to redefine u; = —¢; + a’z;, where—g; is the
mean of the alternative-specific effect. Then
P(i|2g,98,B,A) = N(gg-: — zg_;B. 25 AA'Zy_), (5.31)

and the choice probabilities satisfy TPCS, with a social surplus function 32
+oo
G(gg, 2P, 25AA'Z8) = J‘ [N(— zgB + 1,25AAZp)
1= -
— N(qg — zgB + 1, 2gAA'Zg)] d!

=—q — [N(Qg—1— 2p-1B + 1,281 AA'zg )

t

- N(— ZB_lﬁ + Z‘,ZB_IAA'Z‘;_I)]dI. (5.32)

« .8

o]

Evaluation of the choice probabilities or the social surplus function
requires numerical integration or approximation of (m — 1)-dimensional
multivariate normal orthant probabilities. This is practical with con-
ventional expansions for m\§ 3 but generally impractical for m > 5; see
Hausman and Wise (1978). A procedure due to Clark (1961) that

32. Recall that in the notation adopted beginning in section 5.11 the attributes (z;, q;) are
assumed to be homogeneous of degree zero in economic prices. Thus, if g; is the price of
the discrete alternative, it is here assumed to be a relative price. The conditions SS and
TPCS in section 2.6 are stated in terms of a vector of absolute prices and impose the
restrictions that the social surplus function and choice probabilities be homogeneous of
degree one and zero, respectively, in these prices. For the current application the prices in
SS and TPCS should be reinterpreted as being relative, and the homogeneity conditions
in SS 5.2 and TPCS 5.2 should be ignored.
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approximates the maximum of two normal variates by a normal variate is
reasonably accurate for m <10 when the underlying variates have
comparable variances and nonnegative correlations; see Daganzo,
Bouthelier, and Shefi (1977), Lerman and Manski, chapter 7, and
Horowitz (1979).

When the MNP model has the form (5.31) with only the coefficients of
alternative-specific dummy variables distributed randomly, the covariance
matrix zz_;AA'zg_ ;. depends only on the nominal labels of alternatives
contained in z, by PCS 5.2. If in this case there is no plausible link between
nominal labels and degree of similarity, the covariance matrix will have a
structure independent of the alternatives in the choice set, making the
model simply scalable, and hence subject to the criticisms given the Luce
model. More generally, with stochastic variation in coefficients of a other
than dummy coefficients, the MNP model permits quite flexible patterns of
substitution across alternatives and components of variance structure for
taste variations. The primary difficulty in application of the MNP model is
the lack of practical, accurate methods for approximating the choice
probabilities when the number of alternatives is large. There are also some
technical issues in formulating iterative algorithms for maximum like-
lihood estimation in MNP models; see section 5.20.

5.14 Tversky Elimination Models

Choice can be viewed as a process in which alternatives are eliminated from
the choice set until a single alternative remains. Formally, an elimination
model is defined by a transition probability O :# x £ x 8 x T -0, 1],
with T ={1,2, ... } and with Q(A | B,s, ) interpreted as the probability
that, starting from a set of alternatives B at step ¢, decision makers will
reach in the next step the set A by eliminating some alternatives. The
transition probabilities must satisfy Q(A | B, s, t) 2 0, 0(&F |B,s, 1) =0,
OB |B.s, 1) <1,and 232 0(A |B,s, 1) = 1. Choice probabilities equal
the sum, over all possible chains, of transition probabilities for the chain.
When the transition probabilities are stationary (independent of ¢), the
choice probabilities are given by the recursion formula

P(i|B,;s)= Y Q(A|B,s)P(i]As), (5.33)

Aeyn

where FE={AcB|A<=B 0 # A}
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Concrete elimination models are specified by parameterizing the tran-
sition probabilities Q. Tversky (1972a, 1972b) has introduced an important
class of elimination by aspect, EBA, models in which there is associated
with each A € & a nonnegative scale value v, = V(z,), and the transition
probabilities satisfy

Q(A|B,s) = A (5.34)
Ve
Cegy

for A e # §. Tversky shows that this model can be interpreted as the result
of a choice process in which decision makers sample from some distri-
bution over aspects of alternatives, eliminating alternatives that fail to have
the sampled aspect. The scale value v, is interpreted as the probability of
drawing an aspect that is unique to A and common within A. The EBA
model is consistent with a population of preference maximizers, each with
lexicographic preferences over aspects.

The Luce model is a special case of the EBA family, obtained when
v, = 0 for A containing more than one element. More generally the EBA
model can accommodate complex patterns of substitutability of alter-
natives, with v, measuring the similarity of the alternatives in A. An even
more general family of elimination models that are consistent with random
preference maximization and permit nonstationary transition probabilities
can be defined by considering strategies for selecting aspects. These

climination-by-strategy, EBS, models are discussed in section 5.24.
The EBA functional form has considerable potential for econometric

applications. When the scale functions V are log-linear in parameters,
In V(z,) = BazZ,, the choice probabilities can be written as sums of
products of MNL forms. Maximum likelihood estimation could be
carried out for such systems with relatively minor modifications of current
MNL computer programs. One drawback of EBA for econometric
applications is that the motivation for the model provides little guidance
for parametric specification of the scale function V.

5.15 Generalized Extreme Value Models
A number of authors have sought variants of the MNL form that retain its

computational advantages while permitting more flexible patterns of
substitution. Most of these variants must be rejected because they are
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inconsistent with RUM or fail to accommodate substitution patterns of

the red bus/blue bus type.*?

The MNL model can be derived from a RUM with independently
extreme value-distributed utility levels. One approach to generalizing the
MNL model is to start from a more general multivariate extreme value
distribution. Suppose alternative i has a scale value g; = —pz;. The
following result gives a large class of logitlike PCS. These are termed

generalized extreme value, GEV, models:

THEOREM 5.2: For B={l,...,m}e %, consider H(yg, Zg, s) satisfy-
ing

GEV 5.1: H(yg, Zg, S) is a nonnegative, linear homogeneous function of
ye = 0.
GEV 5.2: lim H(yg, Zg, S) = + .

yirtw
GEV 5.3: The mixed partial derivatives of H exist and are continuous,

with nonpositive even and nonnegative odd mixed partial derivatives.

GEV5.4: UB={i,...,i,}eBandB ={ij, ..., ipn ..., ins,}€R
satisfies 2, =z, fork =1,...,m, then

H(yg,2g,s) = H((yg,0, . . ., 0),2g,5).

If H satisfies GEV and B = {1, . . ., m}, then

Fl(eg,2g,8) =exp{— H(e ™, ..., e *,1g,8)} (5.35)

is a multivariate extreme value distribution. A random utility-maximizing
model in which utility levels are distributed F(ug + qg, Zg, S) for Be &
satisfies AIRUM and has a social surplus function

G(qg,2g,8) = E max u, — y
icB

=InH(e %, ...,e 9 24,8), (5.36)
where y is a constant independent of B, and choice probabilities satisfying

33. Models that may fail to be consistent with RUM are the cascade and maximum
models of McFadden (1974), the universal logit model of McFadden (1975), and the fully
competitive model of McLynn (1973). Models with insufficient flexibility to accommodate
reasonable patterns of substitution are the cascade and fully competitive models and the
DOGIT model of Gaudry (1977).
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0
7; (Qg, Zg,S) = — é—qfln H(e %, ..., e %, 1g,8). (5.37)

This theorem is proved by first showing that F in (5.35) is a cumulative
probability distribution; that is, the range of F is the unit interval and the
density f of F is nonnegative. The range condition follows from GEV 5.1
and GEV 5.2, and the nonnegativity of / can be established by induction
on the order of a mixed partial derivative of F, using GEV 5.3. The
formulae (5.36) and (5.37) for the social surplus function and for the
choice probabilities follow by direct integration from (5.35). A formal
proof is given in McFadden (1978a).

Property GEV 5.1 of H implies that the function G defined in (5.35)
satisfies SS 5.1 and SS 5.3. Property SS 5.6 is a consequence of GEV 5.4.
An induction argument using GEV 5.3 establishes SS 5.4. To show SS 5.5,
note that

— H; (yB’ Zg, S)
G, =B (5.38
H(yBa ZB’ S) )

with y;, = e %74 As g; » — o0, yg converges to a vector yp With one in
component i, zeroes elsewhere. Since H(yg, Zg, 8) = H(Yg, Zg, s) > 0 by
GEV 5.2, (5.38) has the limit — 1 as g; - — co. Under the assumptions of
this section the g, are homogeneous of degree zero in absolute prices and
SS 5.2 need not be imposed. Then G is a social surplus function, and
theorem 5.1 gives an alternative, nonconstructive proof that an AIRUM
model exists with PCS satisfying (5.37).

When the social surplus function (5.36) depends on the z; only through
the terms B'z; = —g;, the PCS is simply scalable. Hence GEV models with
flexible crossalternative substitution require dependence of H(yg, g, s) on
the orientation of alternatives zg.

The GEV model reduces to the Luce model when

1 -6
H(yks zBa S) = [Z yil/l_o] 2

ieB

0 < o < 1. An example of a more general function satisfying GEV is

1—a(z¢)
H (Y, 25,8) = X a(lc)[z yil“""""] ; (5.39)

CeFy ieC
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with a(zo) = 0 and 0 £ 6(z¢) < 1.>* The PCS for (5.39) can be written

P(i|B,s)= Y P(i|C;s)Q(C|B,s), (5.40)
Cef;l
where
B2/l —c(z0)
P(i|C,s) = ———— forieC, (5.41)
Z ePzill —o@o)
jecC
and
(1 —a(zc) hc
0(C|B,s) = —28 (5.42)
Z a(zA)e(l—a(u))h’
Aef;
with
he=1In Y ef=/i=c@o, (5.43)

jeC

This can be interpreted as a PCS in which decision makers invoke a subset
of alternatives C from B and then select an alternative from C. Conditional
choice of an alternative from a set C has choice probabilities (5.41) of the
MNL form. Associated with a set C is an inclusive value ¢ which equals the
social surplus obtained from the MNL form (5.41). Choice probabilities for
the invoked set C are multinomial logit functions of the inclusive values.
The function 6(z) is a measure of the similarity of alternatives within C.
When the alternatives in C are very similar and ¢(z¢) is near one, the
conditional choice probability (5.41) selects with high probability the
alternative with the highest value in C of B’z;. Then k¢ is approximately

max B'z/(1 —o(zg), and in the choice of an invoked set

ieC
using the probabilities (5.42), the set C is assessed approximately as if it
contained a single alternative with a scale value max B'z;.

ieC
Functions of the form (5.39) can also be nested to multiple levels to yield
a broader class of functions. For example, the two-level nested function

34. GEV 5.2 requires for each ie B that a(zo) > 0 for some subset C of B containing i. A
similar condition is required on (5.44).
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H(yg.Zp,8) = ‘ 2 a,(zc)

#* C cB
" (1 —~o20zp))/1 —01(zc) |l —a1(zc)
Z a,(zp) Z y o)
0+DbcC ieD
(5.44)

satisfies GEV when a,(z¢) = 0, a5(zp) = 0,and 0 < 04(2p) = o,(z¢) < 1for
D < C. The PCS generated by (5.44) can be written, anatogously to (5.40)
through (5.43), as a sum of products of transition probabilities, with each
transition probability corresponding to a level in the nest and expressable
in an MNL form giving the choice at the next level of the nest, conditioned
on the invoked set at this level. The variables in this transition probability
are inclusive values of the next stage alternatives. The bounds on the
parameters in (5.44) imply that the coefficients of inclusive value at each
level lie in the unit interval ; this condition can also be shown using theorem
5.1 to be necessary for consistency of the PCS, from (5.37) and (5.44), with
AIRUM.

Choice probabilities of the form (5.40) through (5.43) were apparently
first derived for a special case by Cardell (1977). Alternative derivations of
PCS with the nested MNL structure (5.40) through (5.43) have been given
independently by Ben-Akiva and Lerman (1977) and Daly and Zachary
(1976).

As the example (5.40) through (5.43) and its obvious extensions make
clear, GEV models can be interpreted as <: mination models with
nonstationary transition probabilities, or elimir.ation-by-strategy models
in the terminology of section 5.24. The transition probabilities have MNL
forms as in the elimination-by-aspect mode] (5.34) but with a different
definition of the scale values. Inspection suggests that EBA and GEV
models are roughly comparable in flexibility and complexity.

5.16 Preference Trees

The elimination-by-aspects and generalized extreme value models both
permit very general patterns of similarities between alternatives.
Psychological analysis suggests that judgments of similarity often exhibit a
more restricted structure in which statements such as “‘A is more like B than
itis like C** have behavioral meaning; see particularly Sattath and Tversky
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(1977), and also Rumelhart and Greeno (1971), Edgell et al. (1973), and
Sjoberg (1975). With this structure alternatives can be arrayed in a
preference tree with the least similar alternatives on the most distant
branches; an example is given in figure 5.2. In economic choice it is
reasonable to postulate that crossalternative substitutability is related to
perceived similarity, so that alternatives on distant branches are the least
substitutable. This suggests that choice in a tree be modeled as a process of
transitions through a fixed hierarchy of nodes, eliminating undesirable
branches until a single alternative is reached.3? It is clear from figure 5.2
that preference trees can accommodate examples of red bus/blue bus type
by making the bus alternatives very similar to each other.

Walk ()

Drive (d)

Red line Blue line
bus (r} bus (b)
Figure 5.2

A preference tree for transportation modes

The general notation used in sections 5.14 and 5.15 to describe
transitions specializes readily to preference trees and will be used for the
model definition. (Later, for convenience in applications, we introduce an
index notation for nodes.) A node in a preference tree s identified by the set
of elemental alternatives at the ends of the branch below this node. This
characterization can be applied to the tree formed by pruning away all
branches not containing an alternative in a specified set of elemental

alternatives.

35. When data are observed only on final choices, as is usual in economic applications, it
is impossible to determine whether this elimination heuristic describes decision processes
used by individuals. There is some evidence from verbal protocols in laboratory
experiments supporting hierarchical elimination as a description of the cognitive choice

process.
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Any set B € Z can be identified as the stem, or uppermost node, of the
tree formed by pruning all branches not containing elements of B. Define
& g to be the family of nodes immediately below the stem of the pruned tree
and Z % to be the family of all nodes in the branch starting from B. In figure
5.2, forexample, F ;5 4wy = {{W}> (>0, dy}and F¥, i = {{w},{r,b,d},
{d3, {r, b}, {r}, {6}, {r, b, 4, w}}, while # ., = {{w}, {r, b}} and
F koo = 1w} {r, b}, {r}, (B}, {r, b, w}}.

We shall define a hierarchical elimination system, HES, for a specified
preference tree to be one in which the PCS satisfies a recursion relation

P(i|B,s)= Y P(i|Css)Q(CI|B,s) (5.45)
Ce¥s

for some family of transition probabilities betwen adjacent nodes. For each

B e # and i € B, the preference tree identifies a unique sequence of nodes

{(l=B,cB,c---<B, =B with B;_, € # g, The choice probability

can be written

P(i|B,s)=Q(B,|B;,s)Q(B, |Bs.s)... QB 1 |B,s). (5.46)

Then observations on choices are equivalent to observations on tran-
sitions, and maximum likelihood estimation of the parameters of an HES
can be interpreted as maximum likelihood estimation of the parameters of
the transition probabilities using observations on transitions. If the
transition probabilities have computationally practical functional forms,
fully efficient (full information) maximum likelihood estimation of the
system parameters may be feasible. More generally it may be possible to
formulate a sequence of computationally simple conditional maximum
likelihood procedures, corresponding to levels in the tree, which yield
consistent, but not in general efficient, estimators. These observations will
apply to the two parametric specifications of HES based on the EBA and
GEV models.

First consider the EBA model applied to preference trees. This
specialization has been developed by Tversky and Sattath (1979), who
derive its properties and report experimental evidence on its validity. Let
ve = V(z¢) be anonnegative scale value associated with a node C, where z,.
is a vector of observed attributes of the alternatives in C.°° One can

6. The vector z is defined as in section 5.12 to incorporate the effects of attributes of
alternatives, individual characteristics, and their interactions. We interpret z as the
vector of attributes common to or representative of the alternatives in C.
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interpretu, as a measure of the set of aspects of alternatives that are unique
to C and common within C. Define a2 nonnegative scale valuev§ associated
with the branch with stem C,

vE= Y va (5.47)

.
Ac¥ .

For C e & define the transition probabilities

v x*
Q(C|B,s)=—“— (5.48)
3 o
AeFy
We term a PCS satisfying (5.45) through (5.48) a hierarchical elimination-
by-aspects, HEBA, model.

The EBA model (5.33) through (5.34) applied to a preference tree, with
the specified scale valuesu, for nodes in the tree and zero scale values for
other subsets of the choice set, permits direct transitions from a node to any
node in the branch below it, in contrast to the hierarchical protocol
employed in HEBA. Despite this apparent difference the two models yield
the same PCS. This can be seen for the example in figure 5.2. by writing out
the choice probabilities. A general equivalence theorem has been proved by
Tversky and Sattath. Since EBA is consistent with random preference
maximization, this theorem estabishes that HEBA is also consistent. These
authors refer to HEBA in either of its equivalent forms as a PRETREE
model.

For econometric applications the scale functions ¥ can be assumed with
little loss of generality to be log-linear in parameters, In V(z¢) = Bczc for
nodes C in the tree. Then, as in the general EBA model, the transition
probabilities can be written as sums of MNL functional forms, with
O(B, | B,,s) 2 simple MNL form, and the transition probability at a node
B, at level j in the tree depending on By, and on terms appearing in the
transition probabilities atlevels 1, . . . ,j — 1. Thena sequential procedure
that will yield consistent parameter estimates under normal regularity
conditions is to first estimate the parameters of g by conditional
maximum likelihood estimation applied to level 1 transitions, then estimate
the parameters of By, using level 2 transitions, substituting the estimate of
Bs, obtained at level 1, and so on. Computational formulae for this
procedure can be developed analogously to the formulae given in section
5.22 for the following model.
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Next consider the GEV model applied to preference trees. Define scale
valuesp, = e~ % = &#'%, where we assume with little loss of generality thaty,
is log-linear in parameters § and use the notation ¢; = — p’z;. Define a
function o(z.) measuring the similarity of alternatives at node C. Assume
0 < 6(zo) < 1, with increasing o denoting greater similarity, or correlation
of attributes. Let 8, = 1 — a(z¢). Assign scale values to nodes using the

recursion

A
vA=|: y vé""‘] ) (5.49)
CeFA

The probabilistic choice system for this model then satisfies the recursion
(5.45) for hierarchical elimination, with transition probabilities

1/6

Q(C|B,s) = ——— (5.50)
> oy
AcFp
The conditions GEV require 8, < 0y for A € . We term (5.45), (5.49),
and (5.50) the tree extreme value, TEV, model. ForB = {1, . . ., m}eB,
this model has a social surplus function

G(qg. 2, B)=InH(e ™, ..., e ", 25,B), (5.51)
where H is defined recursively by H(y,, z;, {i}) = y; and for any node A,

BA
H(y,,24,A) = [ Z H(YC,ZCsC)UeA] . (5.52)

CeFa

Estimation of the TEV model is discussed in sections 5.17 through 5.18.

Since the HEBA and TEV models have similar structures and possible
levels of parameterization, one would expect them to give similar fits to
data. To test this conjecture numerically, we considered the simple three-
alternative preference tree illustrated in figure 5.3. The HEBA and TEV
models are fitted to binary choice probabilities that come from this tree;
HEBA and TEV are each just identified by the binary probabilities. Then
the multinomial choice probabilities implied by the models are compared.
A simple MNP model is included in the comparison.
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U1z

Y1 Yo

b. TEV

Figure 5.3
Simple HEBA and TEV preference trees

Let p,; denote the binary choice probability of i over j, and P; the
multinomial choice probability. Assume the alternatives are numbered so
that p,, > 0.5. Tversky and Sattath show that the preference tree
configuration in figure 5.3 then implies a trinary condition,

P13
Pz Pa (5.53)
P21 P23

P32

The TEV model for this preference tree must also satisfy (5.53). Hence we
compare these models for the set of binary choice probabilities satisfying

(5.53).
The HEBA model for figure 5.3 can be written

21
P2 = >
v + 0,
U1 =+ U12
P13

= 3
Uy +U3+Ulz
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Uy + Vg5
p23= 3
v, + v3+ 7y,
p. = by + Uy P12
1= >
vy + vy + 05+ Uy
UV, + 0V
P, = 2 12 P21 (5.54)

U, + Uy 4 Uy + Uy,

wherev,,v,,05,0;, are treated as parameters, with the normalization
v, = 1. The TEV model is generated by the function

H(yy, y2. ¥3) = 012 + ¥ + s, (5.55)

with p,, = 0 In H(y,, 5, 0)/0 In y,, Py = 0 In H(yy, 2, ¥3)/0 1n yy, and so
on. The parameters of the model are y;, y,, Vs, and 6, with the
normalization y; = 1.

To form an MNP model with a similarity structure mimicing figure 5.3,
we assume the multivariate normal random utility vector (i, ¥, ¥3) has u;
independent of u, and u,. Imposing the trinary condition (5.53) implies a
common variance for #, and #,. Then this model also has three independent
parameters.

Table 5.1 compares the multinomial probabilities from these three
models for a selection of values of the binary probabilities. For the MNP
model both the exact probabilities and approximate values obtained by the
Clark method are given. Appendix 5.21 gives computational formulas.

The most striking feature of table 5.1 is the closeness of the multinomial
probabilities predicted by HEBA, TEV, and MNP. The absolute deviation
of HEBA and TEV for these cases is at most 0.0074, and the maximum
relative deviation is 6 percent. The absolute deviation of TEV and MNP is
at most 0.016. The relative deviation of TEV and MNP can rise to 22
percent for small probabilities but for probabilities over 0.1 is under 6
percent. We conclude that at least for simple preference trees such as figure
5.3, these models are for all practical purposes indistinguishable. Cases 4, 5,
and 6 paraliel the red bus/blue bus example, with case 4 corresponding to
high similarity of the bus alternatives and case 6 to low similarity. All three
models generate the intuitively plausible multinomial probabilities for
these cases.

The Clark approximation to the MNP probabilities is quite inaccurate in
a few cases, with absolute deviations as high as 0.1 and relative deviations
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for small probabilities as high as 50 percent. This approximation generally
follows the pattern of overpredicting small probabilities and underpredict-
ing large ones. For this example the HEBA and TEV models provide better
approximations to MNP than the Clark method.

Table 5.1 includes the nonsimilarity measure 6 from the TEV model and
1 — p from the MNP model. Each measure lies in the unit interval, with
smaller values corresponding to a greater degree of similarity. There is no
simple relationship between the two scales.

5.17 Estimation of Tree Extreme Value Models

The tree extreme value (TEV) model introduced in section 5.16 generalizes
the functional form of the Luce, or multinomial logit, model to accom-
modate the patterns of interalternative substitution found in preference
tree similarity structures, while retaining many of the computatonal
advantages of the MNL model. In particular the TEV model can be written
as a nested sequence of multinomial logit models, and consistent parameter
estimates can be obtained from a sequence of MNL estimators.

For econometric analysis it is convenient to introduce an index notation
for the TEV form and write it as a nested multinomial logit (NMNL)
model.

Suppose a tree has nodes at H levels, indexed h =1, ..., H, with H
denoting the stem of the tree; see figure 5.4. A node at level A in the tree is

indexed by a pair (i,, g,), where o, = (f+1, - - - » In) is the index of the
adjacent node at level & + 1 in the tree. Thus the elemental alternatives, at
level 1 in the tree, are indexed by vectors (iy, . . . , iy ), while the alternative

nodes at level H are indexed by integers i,. For a choice set B let B, denote
the set of elemental alternatives contained in B which are in the branch of
the tree below node o,. We shall also use B,, to denote the set of indices i,
such that (i,, ;) is a node immediately below g, in the preference tree
pruned to the set of elemental alternatives in B the interpretation will be
clear from the context. Note that B, =B, B, is the singleton ¢, when
6,€B, and C =B, can be interpreted as a choice set whose alternatives
are confined to the branch below the node a,, with C,, =B, fork < hand
c=¢C, =C,, fork>h

Let x! . denote the vector of observed variables common to the alter-
natives below node i,0,, and let y* be a commensurate vector of taste
weights. Associate with alternative 6, the scale value
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Level
1 h=H=3
11 h=2
111 112 122 132 113 213 114 124 224 h=1
Preference tree
2 34 4 h=3
12 32 13¢ 24 h=2
112 132 213 124 224 h=1
Decision tree pruned to B = {112,132, 213, 124,224 }
B =¢ By =By =By =¢
B, = 112,132} By, = (112}
By = (213} By = 1213}
B, = {124,224} By, = {124, 224}
By, = {132}
Figure 54
Index notation for preference and decision trees
H
= h
Vs _expl:z yh.xah_l:ls (5'56)
h=1
wheres, €B,,_,.Letf,, ... ,60,, be dissimilarity parameters at the nodes
on the path leading to g, with
0<8§, £6,,=...26,,=1 (5.57)
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Then (5.49) and (5.50) imply

h 1
exp [xild'l y /60‘1] 3 (5.58)
Y. exp[xiy'/6,]

i1eBg,

0@®B,,|B,,,s) =

For o, = i,0, define

1
Vi, =In ) exp [x?m g—} (5.59)

ijeBg,
Recursive application of (5.49) and (5.50) for A =2, .. ., H yields

Q [Bihah ‘ Ba;.’ s]

ke o0 0:4./0
— exp[xlhdhv/eo’h-*-ylha‘h lha')./ a;.] (5.60)
Z exp [x ?a;. yh/eo‘h + yi Oh 0.— ah/oah]
ieBg,
and
h b . 0.
Vinerowss =10 % CXP[M'FZ"M]- (5.61)
i€Bgy, 05;. 90-;.

The expression y; ,, is termed the inclusive value of the branch below node
i,6,. A necessary and sufficient condition for this model to be consistent
with GEV is that (5.57) hold, or equivalently that the coefficient of each
inclusive value, 6, ,,/8,,, lie in the unit interval.

For some estimation methods, it is convenient to introduce the notation

h

P |7 61, %

o I:edh, 95,,’ g } (5.62)
where B, ={1,..., m}, aixd commensurately
z?;.ah = [x?hd;,’ 0’ Tt 0’ yi;‘ahﬂ 0’ -t 0] (5'63)
Then the model can be written

h h

Q[ih | 0';.71{'.,,,, ﬁ,‘] = °xp [z"m' Gh] 3 (5.64)

Y explzf,, ..

ieBay
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ya;. =In Z exp[zlah . ]

ieBg,

The social surplus function for this PCS, from (5.36) and either (5.60) or
(5.64), is

izrcB
=In ¥ exp[zi, 7] (5.65)
izrcB

These formulae use the conditions that ¢y is empty and 6, = 1.

It should be noted that the form (5.60) implies that the coefficients of
variables other than the inclusive values will differ across nodes at the same
level in the tree by scale factors inversely proportional to the dissimilarity
coefficients for these nodes.?”

5.18 Sequential Estimation

Suppose a sample of T independent observations on choices from a set B
is observed. Let z __ denote the vector of variables for observation ¢
associated with A-level node g, ;. Let m,, _, equal the number of times the
choice at observation ¢ lies in the branch below node o, - ;. (Repetitions at
an observation are permitted but not required.)

The conditional log likelihood of the observed transitions from the node

o, at level A + 1 in the tree is

Z Z mlhm.! ln Q[Bu,a'h am h:rh: :h]’ (5.66)

t !hEBah
and from all the nodes at level 2 + 1 is
L' = Z L,,. (5.67)
The unconditional (or full information) log likelihood of the sample is
H
L=Y L (5.68)
h=1
37 When all the variables in x.,, enter as interactions with a dummy variable for node

., and hence are specific to node a,, the parameter restrictions implied by (5. 60) are
sansﬁed trivially.
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Direct maximization of the full information log likelihood yields efficient
estimators of the parameters y*, . ..,y#¥ and 6, , h =1, ..., H, under
standard regularity conditions.?® While this approach presents a few
technical problems, it appears to be practical when the preference tree is not
too complex.>’

An alternative estimation procedure is sequential: estimate B, by
maximizing L, , use the estimated value of B,, to compute the inclusive
value variable at level 2, then estimate 2, by maximizing L,,, conditioned
on the estimate of B , and so on. At each step one is estimating an MNL
model by the maximum likelihood method, a standard problem for which
fast and reliable algorithms exist. Since the estimation at step 4 involves
only the parameter subvector g% rather than the full parameter vector
B :h=1,..., H), computation costs are further reduced. Amemiya
(1976) has pointed out that the use of estimators from previous steps to
construct variables in the conditional likelihood at step 4 modifies the
asymptotic covariance matrix of the estimators of g} , so that standard
errors produced by conventional MNL programs are incorrect. Com-
putational formulae for the corrected covariances are given in section 5.22.

The sequential estimation procedure may be considerably less efficient
than full information maximum likelihood estimation, particularly where
the first-stage conditioning selects a small subsample with limited variation
in some explanatory variables. A hybrid procedure is to use sequential
estimation to obtain consistent estimators and then carry out one Berndt-
Hausman-Hall-Hall (1974) step for the full-information log likelihood
function to obtain efficient estimates. The gradients and hessians required
for sequential or full-information maximum likelihood estimation are
given in section 5.22.

5.19 An Application

The author and his associates have investigated work-trip choice among
four travel modes (auto alone, bus, rapid transit, carpool) in the San
Francisco Bay Area; see McFadden (1974), Train (1978), Train and
McFadden (1978), and McFadden, Talvitie, and Associates (1977). We

38. See, for example, the conditions given by Manski and McFadden in chapter 1.

39. Uniike the simple MNL model the full information log likelihood function is not
concave in parameters, complicating the numerical analysis problem of seeking and
verifying a global maximum. In particular, the function is highly nonlinear in 6, near
zero, creating problems of overfiow and roundoff.
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consider here estimation of nested multinomial logit models for several
preference tree structures used for a sample taken in 1975 of 616
commuters. Table 5.2 gives estimates of the Luce (MNL) model. Estimates
of alternative two-level trees, obtained by the sequential method, are given
in table 5.3. Two of these structures have also been estimated by Cosslett
(1978), using the full-information method ; his results are reproduced in
table 5.4.

The MNL model in table 5.2 indicates that commuters are adverse to
time and cost of travel, with access (walk plus wait) time valued at 146
percent of the decision maker’s wage, and on-vehicle time at 30 percent of
the wage. Specification analysis of alternative models (McFadden, Talvitie,
and Associates 1977) suggests that improved models are obtained by
disaggregating alternatives by access mode, allowing interactions of on-
vehicle times with mode dummies (to capture differential degrees of
unpleasantness of time on different modes), and including socioeconomic
and auto access variables in interaction with the alternatives. Assessment of
the results given here on tree preference structures should be made with the
limitations of the basic variable specification in mind.

Table 5.3 considers the seven possible two-level preference trees for
mode choice. The names given these trees suggest aspects which when used
in making similarity judgments will yield these trees; for example, “own
auto access” is an attribute of the drive-alone mode and (because access is
normally by auto) the rail mode, but not the remaining modes. The
parameter estimates are obtained by the sequential procedure; corrected
standard errors are given, using the formulae of section 5.22.4% Variable
definitions are as in table 5.2, except that “left-branch dummy” indicates a
second-stage dummy variable and “inclusive value” indicates the variable
defined in (5.59). For the NMNL model to be consistent with GEV or
AIRUM, it is necessary that the coefficient of inclusive value lie in the unit

40. The coefficients of cost/wage, on-vehicle time, access time, and the identified mode-
specific dummies are estimated in the first stage. Then inclusive values are calculated at
these coefficients. In models 2, 5, and 6, there are two inclusive value coefficients, which
in these models ate constrained to be equal. The coefficients of inclusive value and the
left-branch dummy are estimated in the second stage. Then corrected standard errors are
calculated using the formulae of section 5.22. The magnitude of the correction is
indicated by the following list of standard errors for the coefficient of inclusive value:

Model 2 3 4 5 6 7 8
Correct SE 0.109 0217 0270 0.162 0446 0283 0.304

Uncorrected SE 0091 0102 0.178 0.153 0.176 0.151 0.266
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Table 5.2
An MNL model for travel mode choice (model a)*

Parameter estimate

Variable Symbol (standard error)
Cost/wage, in minutes per c/w —0.037
round trip (0.006)
On-vehicle time, minutes ovT —0.010
per round trip (0.009)
Access time, minutes per AT —0.054
round trip (0.010)
Auto alone dummy DA —0.03
(0.37)
Rail transit dummy DR —1.06
(0.28)
Carpool dummy DC -1.74
(0.37)
Log likelihood® —505.10

*The alternatives and sampie for this and following models are

Mode Number Percent share
A : Auto, driven alone 378 61.4
B: Bus 68 11.0
R : Rail rapid transit 33 54
C: Carpool 137 22.2
616

*The log likelihood with dummies only is — 567.60.
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interval 4142 In models 2, 5, and 6, the coefficients of inclusive values in the
two branches are constrained to be the same. This is not required by the
TEV model; however, differing values can be accommodated in the
sequential estimation procedure only by imposing a nonlinear constraint
that the coefficients in one branch be a scalar multiple of the coefficients in
the other branch, or else by treating the coefficients in the two branches as
independent.

The alternative models 1 through 8 yield coefficients of cost, on-vehicle
time, and access time of expected sign.** There is considerable variation
between the models in the magnitude of coefficients, with models 2 and 3
implying a sharper discrimination among costs than the remainder.
Estimated values of on-vehicle time range from 27 percent of the wage in
model 2 to 92 percent in model 6. Extimated values of access time range
from 79 percent of the wage in model 2 to 394 percent in model 5, with most
values in the 100 to 200 percent range. Thus the value of time estimates are
quite sensitive to model specification.

Full information maximum likelihood estimates of models 2 and 6 have
been calculated by Cosslett (1978), and are given in table 5.4. In these
models the coefficients of inclusive value in the two branches are allowed to
differ. Thus the log likelihood is larger for these estimates both because of
full model maximization and because of an additional parameter.
Cosslett’s estimates of model 2 do not reduce the log likelihood sub-
stantially compared to sequential estimation. However, there are sub-
stantial changes in coefficient values, implying a sensitivity to estimation
method not reflected in the asymptotic standard errors. Thus caution
should be exercised in interpreting these coefficients. In the FIML estimates
of model 2, the coefficients of inclusive values in the two branches are not
significantly different.** FIML estimation of model 6 results in a sub-

41. The inclusive value coefficients in models 2, 4, and § are significantly different from
one at the 1 percent confidence level, and in model 3 at the 15 percent confidence level.
In all four models the coefficient of inclusive value is significantly different from zero at
the 1 percent level. It should be remembered that these tests are not independent.

42. The test statistic T = 2[L(k) — L(1)}, where L(k) is the log likelihood for model k,
has an asymptotic distribution satisfying Prob[T < ] 2 « for X2(a) = t. Hence T > X7(a)
implies that the null hypothesis model 1 holds can be rejected with significance level at
least «. By this criterion model 1 is rejected at least at the 5 percent level in
(nonindependent) tests against models 2, 3, 4, and 6.

43. The coefficient of on-vehicle time in model 7 is reversed in sign but insignificant.
44. Under the null hypothesis that these coefficients are the same, the difference in the

estimated coefficients is asymptotically normal with mean zero and variance equal to left
coefficient variance + right coefficient variance — 2 (covariance of coefficients).
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Table 5.4

Full information estimates of MNML models
Model 2

Preference tree Own auto access

Parameter estimates?®
(standard errors)

Cc/W —0.029
(0.006)
ovr —-0.007
(0.006)
AT —0.032
(0.010)
AD 0.37
(0.29)
RD —0.30
(0.31)
CcD —-1.11
(0.34)
Left inclusive value 0.48
(0.14)
Right inclusive value 0.59
(0.16)
Log likelihood® -501.1

6
Transit distinct

—0.056
(0.009)

—0.015
(0.010)

—0.055
(0.013)

0.09
0.47)

1.21
(0.38)

3.48
(0.66)

2.60
(0.42)

1.35
(0.46)

—491.1

Source: From Cosslett (1978).
aFor definitions of variables and modes, see table 5.2.
*The log likelihood with dummies only is —567.60.
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stantial rise in log likelihood relative to sequential estimation, again with
substantial changes in parameters. For this model the coefficients of the left
and right inclusive prices are significantly different, and the left coefficient is
significantly greater than one. This may indicate a failure of the AIRUM
specification, or may be a consequence of shortcomings in the variable
specification in the model or measurement problems associated with the
carpool alternative.**

Model 6 fitted by the FIML method yields the highest log likelihood
among the models investigated. “¢ This may indicate a failure of the
AIRUM specification; however, more extensive FIML estimation of
alternative preference trees with a more realistic variable specification
would be required before a conclusion in either direction could be drawn
with confidence.

The econometric models of probabilistic choice developed in this paper
permit much more general patterns of similarities between alternatives
than does the commonly used MNL model, while remaining reasonably
practical for estimation and forecasting. The application above suggests
that these models can provide significantly better fits than the MNL
models. Sequential estimation of the NMNL model is practical even for
relatively large and complex trees, while the FIML method is practical for

problems of moderate size. The relatively large differences in coefficient
estimates obtained by the two methods suggests a need for further research
on the numerical and statistical properties of these methods. Finally, the
numerical example in section 5.16 suggests that the MNP, HEBA, and
TEYV functional forms, when restricted to the same numbers of parameters,
permit closely comparable fits to data generated by various patterns of
similarities.
45, See McFadden, Talvitie, et al. (1977). It should be noted that, while a negative
coefficient of inclusive value leads to a local failure of the GEV conditions, a coefficient
of an inclusive value exceeding one will fail to satisfy GEV only for some values of the
variables. Thus it is possible that an empirical fit yielding a coefficient greater than one
will be consistent with GEV over the range of the data and can be combined with a
second function outside the range of the data to yield a system that satisfies GEV

globally. However, this chapter has not attempted to develop a test for local consistency
with GEV at the observations, or for consistency with some function that satisfies GEV

globally.
46. FIML estimates have not been calculated for models 3, 4, 5, 7, or 8, and no estimates
have been calculated for the twelve possible three-level preference trees.
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520 Appendix: Normalization jn MNL and MNP Models

Consider the MNL model
eﬂ‘li
P(i|25,B)=— (5.69)
Z eb %
jeB
and the MNP model
P(i|zg, B, A) = Prob[a'z; = a'z; for je B] (5.70)

with @ ~ N(B, AA’). The parameters of these models are usually fitted by
iterative maximum likelihood algorithms. A practical problem in com-
putation is that the domain of the parameters is unbounded, making it
difficult to detect unbounded maxima or avoid false solutions. This
problem can be avoided by a normalization which compactifies the
parameter space.

Consider first the MNL model. Let g denote the vector obtained at
iteration (k), and define

16 = [1 + p(k) . ﬁ(k)]—lﬂ -0 and B'(k) = },(k)ﬂ("). (571)

Then (A%, B¥) lies in the unit sphere and has a limit point (A*, g*). If
A* > 0, then the likelihood attains a maximum at f = p*/3*.1f1* = 0,then
the likelihood has no finite maximum, and choice can be explained by
nonstochastic maximization of B* - z,, with g* - p* = 1. Termination of the
jterative algorithm for sufficiently small changes in (AW, %) yields a
reliable convergence criterion.

Consider the MNP modet, and let (8%, A®) denote the parameter values
at iteration k. Suppose that as a result of normalization p* - g%
+ tifAPA®] = 1, and suppose that the diagonal elements of A¥ are
positive. Fix the element A%) (and other normalizations as necessary for
nonsingularity), and iterate to new values g%+ Y and A**V, constraining
the algorithm to keep the diagonal of A%*D positive. Define

(p(k+1)’ A(k+1))
= (ﬁ(k+1), AkTD). [ﬁ(k+1) . ﬁ‘(k+1) +tr A(k+1)§(k+1):]—1/2. (5.72)

Then the parameter values at iteration k + 1again lie in the unit sphere and
have the diagonal of A**? positive. The sequence (8%, A®) has a (possibly



250 D. McFadden

nonunique) limit point (8*, A*) at which the likelihood function has a local
maximum. Note that A* may be degenerate, in which case the likelihood is
defined on the linear subspace spanned by A*. This poses no difficulty in the
algorithm or in the interpretation of (8*, A*). Termination of the iterative
algorithm for sufficiently small changes in (B%, A®) should identify (local)
maxima.

5.21 Appendix: Computational Formulas for a Simple Model
Consider the preference tree of figure 5.3, with choice probabilities

satisfying the trinary condition (5.53), and the HEBA, TEV, or MNP
models. The HEBA model specification (5.54) can be inverted to

ry3 — 7 rys — T3
v, = s Uy =TT,
1 - r21 rlz - 1
Foz — Fyal
vy = 1, ’ Uy, = 23 13 21’ (5‘73)
1—ry

where r;; = p,;/p;;. The multinomial probabilities are then determined from
the binary probabilities using the last equations in (5.54).
The TEV model with the generating function (5.55) has

o
SREHEST

Y1
Dz = 8
13 Y2+ 3

Y2

= . 5.74

Pz3 Ya+y3 ( )
Inverting

Yi=ri3 Y2 =T33, V3= 1,

o= D2/ (5.75)

Inr,,

The trinary condition requires that r,>1 (y, >y,;) imply
Fia > rysfTes > 1, or (¥1/¥2)"® > y1/y, > 1. This holds if and only if
0 < 8 < 1. From (5.55) the multinomial choice probabilities satisfy
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Py=[1+1*+y¥1,

P, =p;5(1 = P3),

P, = py(l — P3). (5.76)
Consider the MNP model with a random utility vector (v, u,,

u3) ~ N((ts p2, 0), Q), where

0y O12 0
Q= On 022 0
0 0 G133

The condition y; =0 is a normalization; the independence of u; and
(%4, 45), and ¢, > 0, is assumed in correspondence with the tree structure
in figure 5.3. The binary choice probabilities then satisfy

pi3= _—‘—‘/—-L—:|,

p23 = q) __ﬁ__],

/022 + O33

P, =0 o S J (5.77)
-\/;u + 645 — 20,

The trinary condition requires that ry; > 1 (u > u2) imply

r
EERN

( 2! - K2 )
733 V011 + Ga3 G, + 033

and hence ¢,; = 05,. Then by standardizing the variance of utility
differences, one can show that there is no loss of generality in imposing as
normalizing restrictions oy, =0, =033 = 1/2 and &,, = p/2, with
0 < p < 1. Hence

Pis = O(), P23 =O(s), Prz= w[ \“/—1;—“—} (5.78)
-p

After some manipulation the muitinomial choice probabilities can be

written
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[ 2 1- ‘
P, = ¢(t)<l>[ PR bt ]dt, (5.79)
J V3i+p 3+p
(a2 =p)J1-p
[ 2, l—p}
P, = NP —=— +1t [— |dt
2 ] é(1) [ e, T,

(p1—m2)/y1—p

The Clark approximation to these probabilities is

P. & (I)[ = Pisia — $(2) :|
! (1 —ppys + H3P13P3 + a2®(p) — ¢(ﬂ1)2 - 2#2P13¢(#2)]1/2

My — Pasthy — (1) :l
[1 — ppas + 4ipr3psz + i d(p2) — ¢ (1:)* — 2y p230 (w2 |

P, ~ (D[
(5.80)

5.22 Appendix: Computational Formulas for the Nested
Multinomial Logit Model

This section first describes a method for calculating asymptotic covariance
matrices for sequential or full-information maximum likelihood estimates
of an NMNL model. Second, formulae are given for the required
derivatives. Finally, there is some discussion of algorithms for implement-
ing the computation. ‘

The log likelihood function for NMNL can be written in the general
schematic form

Lo(xlv""xmld’l""9¢m)EL1(x1|x2,"'9xm’¢1)
+ L2 (% [ X5, - 2 X W1, ¥03)
+ o F+ LM Yy, W), (5.8])

where each y, is a parameter vector, X; is a data vector, and L' is the
conditional log likelihood associated with transitions at one level of the

decision tree.
Full information maximum likelihood (FIML) estimators satisfy

LY(Xys o ooy Xl Wys - - ¥m) =0, (5.82)
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where ¥ = (Y5, . . ., ¥,,) and L;’, =3L%6y. A Taylor's expansion of
(5.82) about the true parameter vector Y* yields

1 - 1
[NL&J\/N(:// - y*) = —ﬁLf},, (5.83)

where N is the sample size, Ly, is evaluated at ¥*, and the rows of Ly, are
evaluated at points between ¥ and y*. Using the conventional asymptotic
development for maximum likelihood estimation, one has under standard
regularity conditions that y is consistent for y*, by the law of large
numbers that plim (1/N)Lg, = lim E(1/N)L$, = By, and by a central
limit theorem that (1 /\/]V )L,‘,’, is asymptotically normal with mean 0 and
covariance matrix lim E(1/N )LSL,‘;’ = A,. Further, differentiation ofthe
identity Ee!° = 1 yields A, = —By. Then \/YV_ @ — ¢*) is asymptotically
normal with zero mean and covariance matrix £, = Bg 1AB; 1 =Bg .
The sequential estimation procedure first determines ¥, , satisfying

Ly, (% (X5 - s X %1) =0, (5.84)
and then recursively determines ¥;, satisfying

Li*i (xi I Xit15+ - s xm)'/;'l) ] 'i;i—b',;i) = 0, (5.85)
given the previously estimated values of Vi oo Wi—g,fori=2,....m

The development of the asymptotic properties of the sequential estimator
parallels that of the FIML estimator. A series of Taylor’s expansions of

(5.84) and (5.85) yield

Lyw 0 - 0 SN -] L3,

1 ~ 1

& | Lo Luwwa 0 SN2 = ¥3) -7 L (5.86)
| Lo Lot L] [/N G = ¥13) Vo

or in matrix notation

N 1
By /N @ — ¥*) = —ﬁlw- (5.87)
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Analogously to the FIML case By converges in probability to a lower block
triangular matrix B, = lim EBy and, (1/\/17 )Ay converges in distribution
to an asymptotically normal random variable with zero mean and
covariance matrix A, = lim E(1/N)iy4y. Then\/JV (¥ — ¥*) is asymptoti-
cally normal with zero mean and covariance matrix B, *A,B.*. Com-
putation of this covariance matrix is facilitated by noting first that at ¥*

limE%L:’h_m = — limE%L" oL (5.88)
and second that the block triangular matrix B, * can be calculated using a
recursion formula which requires inverting only matrices of the order of the
blocks L, ..

The following paragraphs give formulae for the derivatives of the log
likelihood function of the NMNL model. From (5.64) definei = i, 0 = g,,,
and

lnq(ll O') = an[l| ahaz{‘amﬁah]
h

e P b
- xla’ea + ed yl.a
h )
—In Y exp(ﬁf’i+g’5yj,>. (5.89)
jeBg oa' ea
Then
: h~r _ h-r
alnq'fila)=(x,~, X; ") (5.90)
oy’ 0,
forr=0,...,h— 1, where
xtr= Y LY gl O)XE e (5.91)
and
glpy iy 10) = qlp—r L -y sa By 0)...q(,] 0). (5.92)
Further
dlng(i| o) N sk
6(1/06) —(xia_xa)y +yio'9ia-

=2 9(/10)y;46;, (5.93)
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and
éing(ilo)
0(1/6;,_, - ine)

=[6,,; — g Gyl N alty—, .. 1y0] (5.94)
with §;; = 1if i =j and
W(ip—y - is0) = q Uip—r - Iy-1 | 40)

ﬂh_-_m xh-r-1 h—r=1
6 ih-,---iha'y

g

+ Z q(Jjl oy iha)yjih_,---iha Bjih_,mi,.a
i

—yih—r"'ihaeih—r"‘ihd'}' (595)

Consider the conditional log likelihood function for transition from
node o, which from (5.66) satisfies
L,=Y Y mgng(ilo,1), (5.96)

t ieBy

with m,,, the number of choices of ic at case t and g(i | o, t) the transition

probability for case z.
Then

h—r.t __ h—r,t
6L Z [Z mimxio matxa ]
[

a-yh"r = icBos 5 ; (5.97)
aLa / ht .0 t
ey =L & (e mag(ite DXy Yis0i;  (5:98)
aL, ‘ . '
-_ = mi,‘ﬂ - mo‘tq |0 oiy_, " g0, 1)- )
A11/6;,_,. - ina) z;' [ (in | on)]a( i,6,1) (5.99)

The distribution of m,,,, conditioned on m,, is multinomial, statistically
independent of transitions at nodes other than ¢ and by assumption
independent across ¢. The gradients (5.97) through (5.99) have zero means,
when evaluated at the true parameter vector, and covariances
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oL, [ oL, I
[l - & st e o

h—s,t _ h—sty
S ezx" g (5.100)
oL T {
E g o (l|0' t (xfl; h+ 10-9152
[811/9,,1] LMy & 9GO+ Yo Ouc)
2
[Z q(ilo, t)(Xf‘Lv”+y,,,9m)] }; (5.101)
ieBg
L, L,

a[l/em re iho‘]all/elh s° ii.c]=; quQ(lh[a, t)[aihii-—q(lh|07 t)]

: a(l‘h_" "t ihd, t)a(i'/'__s vt i;o’, t);
(5.102)

aL L h—r,t ht_ h—r,t R h
Earranyg ~ 2 {[Z g(ile, Oxi X |

+3 alilo, 0¥, 0, < "'—x{."’")/oa};

(5.103)
oL, oL, _ ‘ '
E v aie, . o]~ o e (el 0 Dl D
[xlrt = x4
‘ (5.104)
6.
oL, oL,

B0 8176, o]~ 5 Al 03 Chns b )

{[" B XMy B

-2 qlilo, t)yﬁaf),-a} (5.105)
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The covariance matrices for FIML or sequential maximum likelihood
estimators are constructed from (5.100) through (5.105), using the
asymptotic methods given at the beginning of this section and the
definitions (5.66) through (5.68) of the conditional and unconditional log
likelihood functions. The FIML log likelihood is the sum over the nodes o
in the decision tree of the terms L,. The gradients of L, and L, have zero
covariance for ¢ # ¢’; hence the information matrix for FIML has
elements equal to the sum over ¢ of terms like (5.100) or (5.105). This
matrix is readily estimated by substituting the FIML estimates of the
parameters in (5.100) through (5.105), and its inverse yields an estimate of
the asymptotic covariance matrix of the maximum likelihood estimator.

The structure of sequential estimation is simplified substantially if either
the dissimilarity parameters 6,, at level ~1n the tree are constrained a priori
to be equal or the proportionality constraints on parameters across nodes
at the same level of the tree are ignored. In the first case estimation can be
carried out sequentially over the levels of the tree. At each level the
parameters are estimated by applying a multinomial logit maximum
likelihood procedure to the choice data for all the transitions at this level.
For this procedure it is convenient to use the parameterization (5.62) with a
common dissimilarity parameter 8, at level h, writing

’ Oh-1
B = (B, %) = (z,— —g—w) (5.106)
z?ha';. = [X ?;.crm yi;.o'h]
0Ly oy o 1= —22EE ST
Y explzi,,B']

ieBg,
Then the log likelihood function satisfies
=YY ¥ myglng(ilo,1); (5.107)

on i€Bgy,

aLh h h=r,t h=r,t
= Z z A" Z Zigy Mg —Z,, My | (5.108)

h—r
aﬁ t On iéBah

with A% =1 and A" = g4~ "1 -+ g% for r > 0; and
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el o]

=S Y ititm, [ Y qliloy, Nzl ial, >
1 op

ieBsy,

Ch Oh

_zh-—r.tzh—s,t-:|_ (5.109)

The parameters 7" and 6, can be obtained from the p’s using the
transformations

= g ... pH (5.110)
'}’h = ﬁ;l 6,

Consider the case where the dissimilarity parameters are not constrained
to be equal across nodes at the same level of the tree and the proportionality
restrictions across these nodes on the coefficients of variables other than
inclusive values are ignored. Note that failure to impose these conditions
entails some loss of information, except in the case where all variables are
defined by interactions with alternative or branch-specific dummies. In this
case the estimation procedure using (5.107) through (5.109) can be applied
to each branch separately; the formulae are modified solely by dropping
the summation over gy

The general case of sequential estimation, where dissimilarity para-
meters at each level of the tree are not constrained to be equal, and
parameter restrictions across nodes are imposed, can be treated in the same
framework as the FIML analysis. However, the estimation problem at each
level no longer has a simple multinomial logit structure, and there appears
to be little reason, except possibly the scale of the problem, to use a
sequential rather than FIML estimation.

Consider algorithms for implementing the computation of sequential or
FIML estimators of the NMNL model, and estimators of the covariance
matrix of the estimates. Letting L(y) denote the log likelihood function for
FIML or for one step of sequential estimation, a practical and relatively
efficient search algorithm chooses the direction of search from a trial

parameter vector ¥®, satisfying

PErD — o = lI:E[g_i]l:ai}il_l ‘;i’ (5.111)
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with the right-hand side derivatives evaluated at y* and A a positive step
size. In a neighborhood of the optimum, this algorithm has quadratic
convergence for A = 1. The search direction will always be a line of ascent,
even if the function is not locally concave. These properties are discussed
further in Berndt-Hausman-Hall-Hall (1974). It is often efficient to carry
out an interpolation along the direction of search, choosing 4, so that an
approximate optimum is obtained and the following search direction will
be nearly orthogonal. Using the calculated levels and gradients of the
function at points along the direction of search which straddle the
maximum permits a fairly accurate interpolation.

In the sequential estimation procedure the asymptotic covariance
structure can be utilized to give recursive formulae for the covariance
matrices at each stage. In the case where dissimilarity coefficients within
each level of the tree are constrained to be equal, let

ah aLh 14
M”;_r'h_s_—‘E[a—ﬁf——r:l[é—ﬁ—h:]’ r,s=0,...,h—1. (5112)
R 0]
BN=N M2, M3, - 0 , (5.113)
_Nigl Mgz Mgna
and
1 *Mil 0 e 0 ]
AN:N 0 M%z Tt 0
o o - WM&

Then the asymptotic covariance matrix of

JN(B— B =N B - p* ..., " — ") (5.114)
is By'AyBy!. Let

Cc, 0 0
B);l ECN= C21 C22 et 0 . (5115)

Chy Cy: o Cyy
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Then recursion formulae for the asymptotic covariance matrix are

Chn = (Mp) "5 (5.116)
h=1
Ch,h—r = — Chh Z Mz:i,lcl,h—r fOI‘ r> 0; (5.117)
I=h-r
h—r
Vigr= 2. CaMyCio,y, (5.118)
=1
where
Vi 0 Vg
By 'AyByl = NE (5.119)
Ven - Vg

5.23 Appendix: Proof of Theorem 5.1

i. Supose an AIRUM form is given, with individual indirect utility having
the form u(i) = (y — ¢; + &;)/B(r), and &g distributed in the population with
a cumulative distribution function F(eg) and density f(gg). Define

+

G(qg) = f [F(z+0g) — F(t + qg)ldt. (5.120)

-

First, we will show that G exists and is differentiable. Let F* denote the
marginal cumulative distribution function of ¢;. If 1 = max | ¢; — g/ |, then
ieB

F(i+qg)—F(t+qg+ A S F(t+qg) — F(r + qg)
SF(t+qg)~ F(t+qg— 4), (5.121)

implying | F(t + q5) — F(t +qg) | £ F(t + q5 + 1) — F(t + q5 — A). Since
F is a cumulative distribution function,
Fit+qg+A)—F(t+qg—4)

< Z [Fi(t+q,+4) = F'(t+ g, — A)]. (5.122)

i=1

For any scalar M = 0 and positive integer K,
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M+K2
J [Fi(t+q + A1) — F (1t + g, — A)dt

M
M+kA

K
=Y [Fit+q,+ 24— F(t+q — A)]dt
k=1

M+ (k—1)A

M+(K+1)4 M=+ 2
Fi(t + g)dt — j Fi(t + g, dt
M+(K—1)2 M- i

SU{F(M+ K+ DA+q)— F(M—i+aq)

I

Letting K — + 00, (5.121) through (5.123) imply

JIF(t*“IB)—F(f"FQf;)ldlézi Y (L=F(M—4i+gq))
i1
M

A similar argument yields

-M

J | F(t +qg) — F(t +qg) | dt £ 2/ il F'(—M+i+gq).
Taking q5 =0z and M = O implies

+

J | F(t + qg) — F(r)| dt < 4mmax|q,|.

—

Hence G defined by (5.120) exists.
For 6 > 0,

(i+1)8

261

(5.123)

(5.124)

(5.125)

(5.126)

K—2
G@s) ~Ggp +6) =lim 3 [F(t+qg +60) — F(r + qg)}dt

i=-K
ig
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Ke (1-K)8
=:§l-l-130 { J F(t + gg)dt — j F(t+qB)dt}
(K-1)¢ -Ké
= 0. (5.127)

An analogous argument establishes (5.127) for # < 0. Hence SS 5.3 holds.
Next the differentiability of G is established. For qg =gqg + 04qg and
A =max |{q]|,

M
G(ap +093) — G@s) J Fag+6ag+1)-F@s+1) ,
0 6

<203 [1— F(M=A+q)+F(—M+i+ql. (5.128)
i=1

The right-hand side of this inequality converges to zero as M — + o,
uniformly in 6. For each M the left-hand side converges to

I 4 tqg!dt
91_1:1(1) 9 + l(qB+ )q,d 3

M
G(gg + fq8) — G(@qs) j i F
-M

i=1

since F has a density and is therefore differentiable. This establishes that G
is differentiable, with

+ o
~

Gi(qs) = — Fi(qg + t)at

= — Fi(qg — g; + )t

-
+ o &—4qi+qz L= qitgm

== J j J S (eg) deg
g = = g2= —® Em= T ©

— Prob[g; — g, 2 ¢; — ¢; for je B]

— P(i|B,s), (5-129)
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with the second equality following by a change in the variable of
integration from 7 to ¢ — ¢; and the last inequality following from (5.2).
Then (5.19) holds, and 7~ G;(qg) = — 1. From (5.129) the mixed partial
derivatives of G exist and are nonpositive and independent of order of
differentiation. Thus we have established SS 5.1, S8 5.3, and SS 5.4.
The linear homogeneity of G in (qg, 1) follows from the linear
homogeneity of the functions o; in (5.12) which imply F(leg, 4r, wg, B,
s) = F(gg, 1, Wg, B, s) for 1 > 0. The convexity of G follows by noting that
TM G, =—-1and G; < 0fori # jimply G; = —Z;,,;G; = 0. Hence the
hessian of G has a weakly dominant positive diagonal. Then SS 5.2 holds.
To establish SS 5.5, note from (5.129) that

+ o g—qit4q2 gi—qitqdm
lim Gi (qﬂ) = — lim J~ '[ e J~ f(SB) dsB
gi—™ —®© gi=—©
+ o
- - J fleg)deg = — 1. (5.130)

Finally SS 5.6 follows from RUM 5.1. Hence G is a social surplus function.

It is immediate from the definition (5.18) of 7, and the previously
established condition (5.19), that Vis a social indirect utility function, since
¥ inverts to an expenditure function which is concave in prices.

Note finally that the conditions SS for a social surplus function imply
immediately that the PCS system defined by (5.19) satisfies TPCS.

ii. Suppose G is a social surplus function satisfying SS. Then SS 5.4 and
the condition £7., G; = — 1 implied by SS 5.3 establish that (5.19) defines a
PCS system. It is immediate from SS that this PCS satisfies TPCS.

We next will establish the existence of an AIRUM form such that G

satisfies (5.17). Define

F(eg) = j 700,65 — Ly - - - »&m — DW(D) AL, (5.131)

where  is an arbitrary density. From TPCS 5.4 lim F(gg) = 0. Also,
lim 7,00, 65, -..,8.) =1, timm oo

e~ +
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lim F(eg) = J 7, (0, +00,. . ., +ooW(t)dl = j y()de = 1.

From TPCS 5.5 and TPCS 5.6

Fl...m(sﬂ) =Ty, m(0982 &5 a8y T 81)W(£1) ; 0.

Hence (5.131) defines a cumulative distribution function characterizing an
AIRUM form..
Consider the function

G(qs) = J [F(+0g) — F(z + qg)ldt
=—q - '[ [F(t+qs — q1) — F(t + 0g)lar, (5.132)

-

where the existence of G and the second equality were established in the
proof of part i. Then

+ o0

t
GQe)=—q— J 0.1+, =gy —Tre - st +qm— 41— 7)

N
—

- (0t =1, .. )|y () drdt

+ 0 +

=—q — J‘ j [7‘1(0a‘]2“‘11+t—1'a---aqm_‘h'*'t_"-')

T=—®© t=rt

-0t —1,. .. t— Y () drde

=—q — [n1(0,qz—41+ta---,qm"%’*'t)

s

t

+ o

- 7,(0,2,. .., D]dt j Ylt)dr

T= = /
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e — .8

= —q, - [T (= 1,92 — 15 - - »9m — 91)
=0
- n,(—10,... ,0))dt. (5.133)
Since ©, = -Gy,
G(q8)= -4 + [G(_ 150’- .. ’0) - G(— I, — q15- - - s qm — ql)]gm
= — ¢ +G(0,9,— G1>- - - »9m — 91) = G (@s)- (5.134)

Thus G defined by (5.17) from this AIRUM form equals G.
iiii, Suppose 7;(qg) is a PCS satisfying TPCS. Define F(gg) and G(gg) as in
(5.131) and (5.132). Then F characterizes an AIRUM form, and

t

Fit+ag—q1)= J nl(O,t+qz~ql—r,---,t+qm—ql—r)¢(r)dr

(¢}
= J nl(qlan =Ty - - sqm ™ 1‘-)‘l[/(.t + t)dt' (5135)
Hence
0
F(t+qs—¢1)= f 7ty (@1,G2 — T - - 1Gm — DY + DT, (5.136)

implying from (5.132) that forj>1

+ 0

Gj(‘]s) = - J J g, (G1sq2 = Toe - - 59m — )Wt + t)dudt

=—-x T= -

r

+ o
= — T g + 792 - - 2 Gm) j Y(z + t)didt

= - nj,l(Ql + T"]z,- .- 7qm)dT
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= — m{qp) + 7;(— 0.9z, - - - 1Gm) = — 7;(Gg) (5.137)

and
Gag) = —1- Y Ciag)=—1+ i rGs) = — T @) (5:138)
=2 j=

In (5.137) the third equality is a consequence of TPCS 5.6, and the last
equality is a consequence of TPCS 5.4.

The foregoing argument establishes the existence of an AIRUM
generating the PCS and of a function G, satisfying (5.17) and (5.18). The
argument in part i then establishes that G is a social surplus function
satisfying SS and ¥ defined by (5.18) is a social indirect utility function.
This completes the proof of theorem 5.1.

To establish lemma 5.1, note that the existence of first moments of F
implies

“+ oo
d
Emax (¢, — q;) = J IEF(% + t)dt

ieB

e o)
exists, and hence

-M

d .
0= lim '[ t—F(qg + )dt £ lim [— MF(qg — M) £0.
M- x dt M=x

—

Similarly lim M[1 — F(qg + M)] = 0. Applying integration by parts to
M-
(5.17),

M
G(qg) = lim J [F(0g +1)— F(qg + 1)l dt

M=o
-M
M
= — lim t[F(qg+?) — F(0g + 1)]
M- -M
M
. d
+ lim J t—{F(qg + t) — F(0g + )] dt
M—-w df

-M
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+w +o©

= tdF d tdFo 1) dt
= 7 (qg + 2)dt — a 0 + 1)

-0 -

=E rr_u;x (&, —¢q;)— E rr_la;x & (5.139)
where the third equality follows from the existence of moments and the last
equality from the definition of the expectation of the maximum component
of a random vector. This proves lemma 5.1.

We next prove lemma 5.2. Suppose the first moments of F exist. Then,
using the proof of lemma 5.1, and letting G(gg, T, Wg, B, 8} =
E ma;( (¢; — g4;), one has

Le

+ w0

G(qurv WB,B,S) = G(OBar7vanvs) + J [F(z + 08) - F(t + qB)]dt’

(5.140)

and the proof of theorem 5.1 implies that G satisfies SS.

Alternately suppose nonprice attributes are compensatable in the sense
that, given wg and 6 > 0, there exists § > 0, such that F(eg + 6,1, Wg, B,
s) = F(eg, T, Wg, B.s) 2 F(gg — 0,1, Wg, B,S) for all gg and | wg — Wg | < S.
Let Wy denote a fixed vector of nonprice attributes, and define

+
G(qg,T,Wg, B,8) = j [F(z + Og,¥, wg,B,s) — F(t + qs.T, Wg, B, S)] dt.

- 0

(5.141)

Theorem 5.1 implies that G(qg, I, Wg, B, s) exists and satisfies SS. Given wg
with | wg — wg | < 6. one has

F(I + QB,T,V—VB,B,S) - F(t - 6 + qB,l',\_VB,B,S)
> F(r + Og,1,Wg, B,s) — F(t + qg, 1, W5, B,S)
> F(t + Og, 1, Wg, B,s) — F(f + 6 + qg,1,Wg,B,s). (5.142)

By dominated convergence G(qg, T, wg, B, s) exists, with
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G(q39 I, WB’ B7S) + 0 ; G(qu r’wle B,S)
2 G(qp,T, Wg,B,s) — 0. (5.143)

Then one can write

G (qg, ¥, Wg,B,s) = G(0g, 1, w5, B,s)
+ @

+ -[ [F(Z+OB,T,W’B,B,S)

-

— F(t + qg,¥,wg, B,s)ldr.
(5.144)

Since the integral in (5.144) has the form (5.17), the proof of theorem 5.1
establishes that G satisfies SS.

5.24 Appendix: The Elimination-by-Strategy Model

Tversky (1972b) has given examples showing that not all PCS satisfying
RUM can be written as EBA models. However, one can establish an
equivalence between models satisfying random preference maximization
and a more general family of elimination models called elimination-by-
strategy, EBS, models.

Let H be an abstract space of aspects, and J# a ¢-algebra of subsets ofH.
Let T be a well-ordered set with an order relation<. Let (K, %') be a
measurable space of functions from T intoH. Each k e K is interpreted as a
selection strategy.

Each alternative i e I owns a set of aspects D; € #. Suppose a decision
maker with strategy k and choice set B has remainingatze TasetB, = B of
noneliminated alternatives. Then i, jeB, implies k(z)¢D;AD; =
(D; - D)V (D; - D) for ' <, and ieB, jeB — B, implies k(I')€
D; — D, for some 7' <t and k(") ¢ D,AD; for 1" <Tr'. Since T is well
ordered, B, is well defined and monotonically nonincreasing to a nonempty
limit set. A probability measure v on (K, »") then determines choice
probabilities, provided there 1s probability one of selecting a strategy for
which the limit set of B, is a singleton.

The EBS model is a random preference model: each ke K corresponds
to a lexicographic preference order on H, and v gives the distribution of
preferences. To show that every random preference model can be rewritten
as an EBS model, suppose (J, £, p) is a probability space of preferences on
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I, and suppose that T =1, with < ordering I. Define H=J x I and
# = # ®2'. Define D, = {(=, e x I iz I} to be the set of aspects
owned by i. Define K to be the set of functions k : 1 » H with k(i) =(Z, ),
where > € J is independent of . Let 2, denote the preference relation in J
determined by kecK, and define a measure v on K by v(K,;) =
u({zieJ | keK,}) for each K, e X' Given a choice set B € %, suppose
ke K induces an elimination process that leads to choice of alternative
ieB. Then for each j e B, j # i, there exists /" € I such that k() e D; — D;
and for el I” < I, k(I") ¢ D;AD;. This implies >/ and not j Z,[', so
that i>,j. Let K, ={keK|iz,j for jeB, j#i}. Then v(K,) =
p({zeldlizjforjeB,j# i}) = P(i|B,s), and the EBS model implies
the same PCS as the random preference model.

Tversky’s EBA model is a special case of the EBS model, corresponding
to K = H® and v the product measure induced by independent sampling
from a probability measure # on H.
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