Random versus Fixed Coefficient Quantal Choice Models

Gregory W. Fischer and Daniel Nagin

6.1 Introduction

A large class of decision problems is most appropriately characterized as a
choice dilemma in which an individual selects one element from a discrete
set of decision alternatives. Examples of such dilemmas are almost
limitless, ranging from the relatively profound (selection of a job or a
spouse) to the relatively mundane (selection of a brand of toothpaste or
shaving cream). Quantal choice theory attempts to explain and predict the
behavior of individuals confronted by such decision dilemmas.! To date,
quantal choice models have been most widely employed in transportation
demand studies. Here the models have been used to examine such issues as
the selection of transportation modes for home-to-work trips (e.g., Ben-
Akiva and Haus 1973, Charles Rivers Associates 1972) and automobile
ownership decisions (Lerman and Ben-Akiva 1975). A key motivation for
all of these studies has been the development of models that predict the
impact of changes in certain factors which can be manipulated by policy
makers (e.g., gasoline prices, travel time). In view of the potential
significance of these applications of quantal choice models, it is essential
that the statistical procedures used in developing these models lead to
accurate inferences and predictions.

6.2 Quantal Choice Theory and Variation in Tastes

Notationally let R = (X!, . . . ,X") be a mutually exclusive and exhaustive
set of r choice alternatives, where each alternative is characterized by a
vector of m value relevant attributes. That is, X' =(x, . . ., x;,). For
example, if the alternatives are transportation modes, the attribute vector

might include such factors as time per trip, cost per trip, and so forth.
Further let Y/ = (34, . . . , »)) be a vector of attributes characterizing the
jth individual choosing from choice set R. These might include the
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1. For general historical reviews of quantal choice theory see Bock and Jones (1968) and
Luce and Suppes (1965). For more recent developments in quantal choice theory see
Hausman and Wise (1978), McFadden (1973), Manski (1973), and Tversky (1972).
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individual’s age, sex, income, and so forth. Then for any such choice set R,
and for any individual described by the set of attributes Y/, quantal choice
models generate a vector of choice probabilities (PY, . . . , P7). Here PY is
the probability that a person characterized by Y’ will choose alternative X*
from choice set R. Thus 7., PY =1.

The models considered here assume that each individual is a utility
maximizer. Thus P¥ = Pr(U" > U*, for all k # i), where U is the
subjective utility of alternative X' to the jth individual. Statistically the
_models considered here assume that U¥ is a linear function of the attributes
of alternative X’ and the individual’s attributes, Y’/. More precisely let
ZY =(Z4% ..., zY) be a vector of arithmetic combinations of X’ and Y.
This Z-vector might include simple attributes (say, income or price per
trip), transformations of attributes (say, the log of income or price), or
explicit interactions of the attributes of the alternatives and the individual
(e.g., price/income).

The first statistical specification we consider here is the linear in
parameters, independent and identically distributed (LPIID) disturbances
model

Uil = ZHB + &, (6.1)

Here UY is the unobservable utility of the ith alternative to the jth
individual. This utility is assumed to be linear in the elements of Z¥. Thus
the coefficient vector B reflects the tastes of the individuals in the
population. Random variation in the UV is introduced through the additive
disturbance term & which is assumed to be independently and identically
distributed across individuals and alternatives. Manski (1973) provides an
insightful analysis of the possible sources of apparent random variation in
behavior. For our purposes two relatively straightforward interpretations
seem adequate. First the ¢/ may arise due to choice relevant but unobserved
attributes of alternatives or individuals. Such factors are necessarily
excluded from the attribute vector Z¥ and are, with the LPIID
specification, assumed to be independent of the elements of Z*. A second
(and not incompatible) possibility is that the &V reflect true random
-variation in choice behavior, an interpretation that is commonly invoked
by psychologists (see Coombs, Dawes, and Tversky 1970).

Although the UY are unobservable, the coefficients of equation (6.1) are
estimable. Consider a binary choice situation in which an individual
described by the vector Y/ is choosing between two alternatives described
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by the vectors X! and X2. Then Z' and Z% are the vectors of the
appropriate arithmetic combinations of the attributes of the alternatives
and of the individual choosing between them. According to equation (6.1)
the probability that the individual will choose alternative X' is given by

Pr(UY > U%) = Pr[Zp + ¢ = Z*If + ¢*]
= Pri(ZY - Z*)p z £* — £},

Thus if the ¢ are assumed to be normally distributed, and if a sample of
binary choices has been observed,  can be estimated using IID probit
estimation procedures (Albright, Lerman, and Manski 1977, Hausman
and Wise 1978); if the £ are assumed to be extreme value distributed, then B
can be estimated using IID logit estimation methods (McFadden 1972).
Here we consider only the probit specification of the LPIID model.

Note that the LPIID model assumes that all individuals’ tastes are
identical with respect to the observed attributes embodied in the Z9
vectors. Consequently the LPIID formulation implies that all individuals
ofidentical observed characteristics have identical tastes with respect to the
observed attributes of alternatives (except for random additive distur-
bances). Empirically, this need not be the case. For example, two
individuals of identical observed characteristics may attach different
disutilities to price per trip and time per trip when making transportation
mode choices. If this is the case, the specification in equation (6.1) is
incorrect, for apparently random variation in behavior is due not only to an
additive disturbance effect but also to variation in tastes, that is, to
variation in the elements of f.

Recognizing this difficulty, Hausman and Wise (1978), and Albright,
Lerman and Manski (1977) have developed the random coefficients,
covarying disturbances (RCCD) model, a quantal choice model that
explicitly incorporates variation in the tastes of individuals with identical
observed characteristics. The RCCD model is given by

U*i = 2% + 29§ + Y, (6.2)

where B* is the mean coefficient vector for the population of interest, disa
coefficient vector describing the deviations of the jth individual’s tastes
from the tastes embodied in the mean coefficient vector, and ¥ is an
additive disturbance term assumed to be independently and identically
distributed across individuals but possibly correlated across alternatives.
In general RCCD models assume that the 6 and ¥/ = (*/, . . ., y"/) are
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multivariate normally distributed with 8/~MVN(0, X) and ' ~MVN
(0, £,). The parameters p*, X, and X, are not jointly identified. The
necessary identification restrictions are generally imposed on the com-
ponents of X, and the remaining parameters are estimated up to these
restrictions. Referring again to the binary choice example used earlier, the
probability that an individual described by the attribute vector Y/ will
prefer alternative X* to X? is

Pr(U*Y = U*¥) = Pr[ZY (B* + &) + " = Z¥ (B* + &) + y¥]
= Pr((Z' — 2%) (B* + &) = v* — V).

If the distribution assumptions are satisfied, then g* and X, the covariance
matrix for the &, can be estimated using maximum likelihood random
coefficients probit estimation procedures (Hausman and Wise 1978).

With the RCCD formulation the total disturbance term for the ith
alternative and jth individual is given by

¥l =ZU§ + Y.
Note that, because & is constant for all alternatives evaluated by the jth

individual, the total disturbances for all alternatives evaluated by the jth

individual will covary.
This study uses the results of a choice experiment to address the

following questions:

1. To what extent do taste parameters vary across individuals?

2. 1s RCCD probit more immune to specification errors than LPIID
probit?

3. Does the RCCD estimator provide a better fit to choice data?

4. Does the RCCD estimator lead to more accurate predictions concerning
the impact of marginal changes in attributes on choice probabilities?

5. How precise are the RCCD estimates of the mean tastes coefficient
vector? Of the variation in tastes?

6. Do the RCCD and LPIID estimators yield similar estimates of the
elements of the mean tastes vector?

Question 1 addresses the fundamental premise motivating the develop-
ment of the RCCD estimator. Taste variations undoubtedly exist, but to
our knowledge no empirical studies have assessed the magnitude of such
taste variations. Nor, to our knowledge, has any empirical study examined
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the shape of taste distributions (e.g., normal, exponential). It is apparent
that the extent to which the RCCD estimator yields improved predictive
accuracy will be directly related to the magnitude of the variation in taste
parameters, and also to their distribution.

This speculation suggests a corollary speculation addressed in question
2. The degree to which RCCD estimation procedures are superior to LPIID
procedures should be inversely related to the extent to which we are able to
explicitly model the sources of variation in tastes. To illustrate this
argument, suppose that attribute x, is a quality measure, attribute x, a
price measure, and y is a measure of income.
Consider the following RCCD specifications:

Ui = (B¥xi + BExL) + (8] xi + 84xh) + Y,

. . x! . [ xE .
U3 = |:ac;"x‘1 + a% (y—f)] + |:9{x‘1 + 64 (y—f)] + 7.

On a priori grounds we would expect much of the variation in the disutility
of price to be explained by income. Consequently we expect Var (6,) < Var
(6,). Also the covariance of the total disturbance term across alternatives
should be smaller for the second specification, since one important source
of this covariation (namely, income) is now explicitly incorporated in the
utility model. The parallel LPIID models are

Ui = Byxi + By xs + ¢,
UY = a; x3 +a2(7) + €5.

Both are misspecified if these RCCD models hold. Nevertheless it would
appear that the problems associated with incorrectly using an LPIID
estimator should be greater in the first case. For here there is greater
variation in tastes and greater covariation of the /. Thus the relative
superiority of an RCCD estimator should be greater in the first case (where
we do not model the source of taste variation) than in the second (where in
part we do).

This observation has important practical implications for the potential
usefulness of RCCD estimators. Whether through ignorance or lack of
data, an analyst will frequently be unable to model explicitly the major
sources of taste variation. Under such circumstances RCCD estimators
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may prove a useful tool for reducing the resulting losses in explanatory
power and predictive accuracy. We hasten to add that we are not
advocating the use of RCCD estimators as a remedy to excuse sloppy or ill-
considered analyses. It must be recognized, however, that our understand-
ing of the sources of taste variation is extremely limited. Consequently our
ability to model explicitly the sources of taste variation is also extremely
limited. Even in the most careful analyses numerous specification errors are
almost certain to arise. Even though each of these errors may be small in its
impact, the total effect may still be large. Because RCCD estimators may
reduce the costs of such unavoidable specification errors, they are deserving
of careful scrutiny.

Questions 3 and 4 address closely related, but not identical, issues. The
LPIID model is a special case of the RCCD model that arises when
z = o21 and T is a zero matrix. Thus it is apparent that the RCCD model
will provide a better fit to a set of data than will the corresponding LPIID
model. In principle one should not go wrong by obtaining maximum
likelihood (ML) estimates of the RCCD model parameters. For when there
is in fact random variation in tastes, ML estimators of the RCCD
parameters are consistent.? If there is no variation in tastes, the ML
estimators will still be consistent and will asymptotically reveal the true
LPIID structure. By contrast ML estimators of the LPIID model
parameters are consistent only in the absence of variation in tastes. The
degree to which RCCD estimators are superior is clearly an empirical
matter, depending both on the criterion one uses and on the amount of
taste variation present in the empirical context studied. And if the
speculation embodied in question 2 is correct, the superiority of the RCCD
model should be inversely related to the extent to which we are able to
explicitly model the source of variation in tastes. With regard to predicting
the effect of changes in choice relevant attribiites (question 4), it is not
obvious to what extent RCCD estimators will be superior, or even that they
will be superior at all. Because RCCD models have more coefficients than
the corresponding LPIID models, the standard errors of the RCCD model
coefficients are likely to be larger. Predictions of the effects of changes in

-2 Provided of course that variations in the taste parameters are multivariate normally
distributed as assumed in the RCCD specification.
3. In general we explicitly model variation in tastes by including terms in the utility
function constructed from explicit interactions of the attributes of alternatives and the
attributes of individuals, for example, price/income.
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choice relevant attributes that are based on imprecisely measured
coefficients may be correspondingly imprecise. Also actual estimation of
the parameters of either LPIID or RCCD models depends on ML search
procedures that provide no assurance of attaining the global maximum.
The fallibility of these search procedures, in conjunction with the greater
complexity of RCCD models, may in practice more than offset the
theoretical advantages of RCCD estimators.*

Questions 5 and 6 address related issues. Note that the first part of
question 5 does not involve a comparison of the RCCD and LPIID
estimators. We state it in this form because we are confident (even absent a
formal proof) that the LPIID estimator of § is not a consistent estimator of
B*, the population tastes vector. If the true total disturbance terms are of

the form
e =ZY +yY,

then these £*/ are not independently distributed as assumed by the LPIID
model. Under these conditions we conjecture that application of LPIID
estimation procedures to choice data generated by an RCCD process will
result in inconsistent estimates of g*, the true mean tastes coefficient vector.
In particular we speculate that the probability limit of elements of the
LPPID estimator § will be too small in absolute value terms (relative to the
true mean tastes vector f*).° The reasoning behind this speculation is
briefly outlined here and developed more fully in section 6.9. The unit of the
utility measure (and consequently ) in quantal choice models is arbitrary.
In statistical applications the standard procedure has been to normalize
coefficients with respect to the variance of the independent additive
disturbance term. In the LPIID model this disturbance is ¢/. In the RCCD
model it is y¥. Note that, when tastes do in fact vary, Var (¢¥) = Var
(e*) > Var (y¥), for under these circumstances, Var (¢9) = Var (Z¥§/
+ y¥). Consequently the elements of the LPIID estimator B should be too
small in absolute value (relative to B*). The reasoning behind this
speculation leads to a related speculation addressed in question 6. The unit
of measure cancels out when we look at the ratios of coefficients. Thus we

4. Also, RCCD estimation procedures are much more costly. These costs must also be
weighed in any decision to use RCCD methods.

5. This argument, and the one which immediately follows, were suggested to us by
Charles Manski.
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suspect that on the average the ratios of the LPIID estimated coefficients
should be close to the ratios of the RCCD coefficients, that is,

] 3%
%ﬁ; %‘; for all s, 1.
1 t

6.3 An Empirical Comparison of the LPIID and RCCD Models

The experiment described in this section was designed to provide a data
base appropriate for addressing the six questions. The general design
follows. To answer these questions we asked a group of respondents to
choose between pairs of alternatives, with each alternative defined by two
attributes. Each respondent made a relatively large number of hypothetical
choices between pairs of alternatives, thus permitting us to estimate (for
each respondent) the coefficients of the LPIID model:

U, x3) = Byxi + Boxh + €.

That is, we assumed that apart from an additive disturbance term each
respondent’s tastes were fixed (for the duration of the experiment) and
linear in the attributes x, and x,. The coefficients obtained from these
individual choice models were used first to assess the degree of variation in
tastes and second as a benchmark for evaluating the LPIID and RCCD
models when they were applied to the group data.

We are of course aware that the data used in this study involve
hypothetical choices. But given our objective of precisely modeling each
individual’s choice process, we need to observe many choices by each
individual. It is extremely difficult to do this in a real choice setting. The
hypothetical choices made by the individuals studied here are systematic
and sensible. Thus we believe that they provide an appropriate basis for
evaluating the statistical properties of the two estimation procedures.

6.4 Details of the Experiment

In implementing the experimental strategy outlined in section 6.3, we
“sought a choice task that was realistic, interesting, and yet involved
alternatives described by only two major attributes. At the time we
conducted the study, Duke University was embroiled in a debate over
procedures for allocating parking permits. Some participants in that debate
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suggested that a pricing mechanism be used, with higher prices being levied
for parking spots closer to the center of the campus. We exploited this
situation by recruiting twenty respondents from the faculty, adminis-
tration, and secretarial staff of Duke University’s Institute of Policy
Sciences and Public Affairs. Each respondent was asked to consider 60
pairs of parking lot alternatives, with each alternative being characterized
by the attributes price per year and walking distance (in minutes) from the
parking lot to the building where the respondent worked. The respondents
were asked to choose one option from each pair. In constructing
alternatives we used ﬁve price levels ($20, $40, $60, $90, and $120) and four
walking distances (1.5,2.5,4 to 5,and 9 to 10 minutes).® From the 20 basic
alternatives we created 60 pairs of alternatives in which, for every pair, the
less expensive lot always involved the greater walking distance. The order
of alternatives within pairs was randomly determined, with the low price-
long distance option being presented first in half the pairs, and second in the
other half. After the respondent had worked through all 60 pairs of
alternatives, he or she was asked to complete a short questionnaire which
elicited background information on age, position, income, and some
details concerning where the respondent typically parked.

6.5 Results

The analysis proceeds in two stages. In the first stage a linear stochastic
utility function is estimated for each respondent. In the second the
observations for all respondents are pooled and stochastic utility functions
for the entire sample are estimated. The alternative model specifications
estimated in the second stage include both LPIID and RCCD models.”

The results of the first stage analyses will serve several functions. First,
they will provide some empirical evidence on the magnitude of taste
variations in the respondent population and on shape of the distributions

6. Since three of the four lots in question were real, we gave ranges for the more distant
lots to avoid an aura of phony precision.

7. The first-stage models were estimated using a well-tested LPIID probit program
developed by Richard McKelvey of Camnegie-Mellon University. The second-stage
models (both LPIID and RCCD) were estimated using a program developed by
Cambridge Systematics, Inc., Cambridge, Mass. In fact we could also have used the
latter program to obtain the first-stage estimates. The decision to estimate the first-stage
models with the McKelvey program was purely pragmatic. We had that program first
and used it to complete the first stage analyses before receiving the Cambridge
Systematics program.
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of taste coefficients (question 1). Additionally, summary statistics charac-
terizing the taste distribution estimated in the first stage analysis provide a
useful basis for evaluating the parameter estimates from the second stage
analysis. For example, are the second stage RCCD parameter estimates of
B* close to some measure of the central tendency of the estimated
distribution of tastes (question 5)? How well does the estimation method
allowing for taste variation capture the estimated distribution in tastes
from the first stage analysis (question 5)? Finally, the models estimated in
the first stage can be used as the basis for an analysis of the predictive

accuracy of the models estimated in the second stage (question 4).

6.6 Analysis of Individual Respondents

A linear stochastic utility function (eq. 6.3) for each respondent was
estimated under the assumption that the disturbance term in the utility
function was normally distributed :®

U(D,F)=B,D + B,F +¢, 6.3)
where

D = distance,
F = fee,
e~ N(0, °).

The results are summarized in table 6.1. No coefficient estimates are
given for three respondents. The reasons for §, and §, being unestimable
for these respondents are discussed in detail in section 6.9. In brief model
(6.3) is unestimable for these respondents because their choice behavior is
perfectly explained by a model of the form:

U(D,F)=B,D + BF. (6.4)

Model (6.4) is a special case of model (6.3) where the disturbance has zero
variance (there is no stochastic component, ¢, in the utility function). When

8. A log-linear utility model was also estimated for each respondent. The explanatory
power (the log likelihood) of model (6.3) was almost always greater than the log-linear
model.
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Table 6.1
The model estimates for the individual respondents

Percentage of choices

Respondent B i correctly predicted
1 -4.57 —0.635 98
(1.07) (1.05)
2 -0.623 —0.0509 85
(3.89) (3.89)
3 —0.858 —0.0675 90
(3.66) (3.66)
4 —0.230 —-0.0751 92
(1.92) (3.01)
5 —0.543 —0.0340 87
(4.37) (3.85)
6 —0.266 -0.101 93
(1.71) (2.59)
7 — — 100
8 —0.0614 —0.0730 97
(0.42) (2.22)
9 —1.75 —0.0924 95
(2.80) (2.89)
10 —-1.70 —0.0730 87
2.83) (2.74)
11 —0.569 —0.0366 83
(4.04) (3.75)
12 —0.218 —0.0892 93
(1.55) (2.65)
13 —0.628 —0.146 93
(2.71) (2.92)
14 -0.476 —0.0381 83
(4.24) “4.17)
15 —0.905 —0.0620 90
(3.61) (3.45)
16 —0.382 —0.0133 82
(3.82) (2.30)
17 —0.452 ~0.0283 80
(4.24) (3.75)
18 —_ —_— 100
19 -1.73 —0.0887 93
(2.83) (2.83)
20 — — 100

Note: Ratio of parameter estimate to its standard error in parenthesis.
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¢? =0, only the ratio f,/B, is potentially identifiable; B, and B, cannot be

individually estimated.®
For the respondents with estimable models, the ratios of the parameter

estimates to their standard errors are generally greater than two which

suggests that the estimates are reasonably precise. The explanatory power -
of the models is also excellent. The percentage of choices predicted
correctly ranges from 80 to 100 percent. For 70 percent of the individuals
the percentage of correct predictions is 90 percent or better.

The results are examined from a different perspective in table 6.2. In this
table the estimates of B;, B, and B,/B, (the value of time) are rank ordered
from smallest to largest. (The basis for including the respondents with
unestimable models in the ranking is discussed in section 6.9.)

These rankings can be interpreted as estimates of the distribution of
tastes in the respondent population. The results suggest that the taste
variations in the respondent population are large. The interquartile range
(the difference between 25th and 75th percentile values) for each distri-
bution is greater than the distribution’s median value. (Because some
respondent’s models are not estimable, we cannot calculate sample means
for the taste coefficients. But for reasons discussed in section 6.9 we are able
to confidently estimate the sample medians.) While the results in table 6.2
may exaggerate the magnitude of the actual taste variations due to
statistical variations in the parameter estimates for each respondent, the
estimated distributions are sufficiently dispersed to leave little question that
the actual taste variations are large. The results thus imply that in principle
the idea of developing estimation methods that account for taste variations
is well founded and that, if these methods can successfully capture the
actual variation, they would be of considerable value.

Under an assumption of the number of trips made per year, the
estimated values of 8,/B, can be transformed into estimates of the value of
time (in a restricted sense) on a scale of dollars per hour. Assuming 500 trips
to and from a lot per year, the median value of time is $1.53; the 25th to
75th percentile range is $.50 to $2.27.

Information on the demographic and economic characteristics of each
respondent was collected to assess which individual characteristics, if any,
are systematically related to taste variation. The results of this analysis
were used as a basis for properly specifying the population models

9. The parameters B;, B,, and ¢ are not jointly identifiable. B, and B, are only estimable
up to some assumed value of 1/o.
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Table 6.2
By, B2, and B,/B, rank ordered from smallest to largest
B; B2 B./B,
’ (7. 18) (8. 20) sz 8
3 —4.57 6)) —0.635 D 244 (12)
4 -1.75 ()] —0.146 (13) 264 (6)
5 —1.73* (19) —0.101* )] 306 4
3.68*
6 —-1.70 (10) —0.0924 9 429 (13)
7 —0.905 (15) —-0.0892 (12) 4.50 (18)
8 —0.858 3) —0.0887 (19) 720 (1)
9 —0.628 13 —0.0751 &) 12.3 )
10 —0.623* 2 —0.0730% (10) 125 (14
12.6*
11 —0.569 (11) —0.0730 8) 12.7 3)
12 —0.544 &) —0.0675 3 146 (15)
13 —0.476 (14) —0.0620 (15) 156 (11)
14 —0452 a7 —0.0509 2 16.0 (17
15 —0.382* (16) —0.0381* (14) 160 (5
17.5*
16 —0.266 6 -0.0366 (17 18.9 &)
17 ~0.230 @) —0.0340 ®) 195 (19)
18 —0.218 (12) —0.0283 a7 232 (10)
19 —0.0614 8) —-0.0133  (16) 28.6 (16)
20 ' 950 (7

Note: Respondent number in parentheses. Asterisks indicate 25th, 50th, and 75th
percentile values.
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estimated in the second stage analysis. Regressions of f,/f, on respondent
characteristics suggested that the only significant determinant of §,/f, is
income.1? The income effect is positive as expected. The distributions of §,

and B, (income adjusted) are shown in figures 6.1 and 6.2. (The method

(0
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(3)
3)
== T T T ]
-20 -15 -10 -5 -2-1 0
By

Figare 6.1

Relative frequency distribution for B, (the distance coefficient). Ths histogram is drawn
so that areas are proportional to relative frequencies. At point (3) one respondent has an
estimable coefficient value of 4.57. Two respondents have unestimable coefficients.
Arbitrarily -- 20 is used as the lower bound for the interval.

(6)
(4)
©17
(3) 7
3 /%4
| I 1 1 i 1 ]
-~20 -15 -10 ~5 -4 -2 -1 0
Bz
Figure 6.2

Relative frequency distribution for §; (the income adjusted fee coefficient). The
histogram is drawn so that areas are proportional to relative frequency. At (3) one
respondent has an estimable coefficient value of 15.88. Two others have unestimable
coefficients. Arbitrarily—20 is used as the lower bound for the interval.

10. Regressions of §;, and B, individually on respondent characteristics were not
estimated because estimates of B, and f, are not available for the three respondents with
unestimable models. Regressions involving only the f’s of respondents with estimable
models would yield inconsistent parameter estimates because, in effect, we would be
sampling on the basis of the value of the dependent variable. Regressions involving the
ratio of B,/B, were feasible because an estimate was available for 19 of 20 respondents
(see section 6.9). For the remaining respondent (number 20) B,/B, could safely be

approximated as zero.
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used to make the income adjustment is described in section 6.7.) Note that
even with the income adjustment there is still appreciable variation in both
B, and B,. This result suggests that attempts to model explicitly the sources
of variation in tastes will meet with limited success at best. The potential
usefulness of RCCD probit is enhanced accordingly.

6.7 A Comparison of LPIID Probit and RCCD Probit Estimation

To examine the merits of RCCD probit estimation relative to LPIID probit
extimation, the responses for the entire respondent population were
pooled, and several model specifications were estimated on the pooled data
set using both estimation methods.!*

Using the simulated cross section, we estimate model (6.3) using LPIID
probit and a generalized version of model (6.3) that allows for taste
variation using RCCD probit. The generalized model is of the form

UD,F) =B, +6)D + (B, +6,) F +, (6.5)
where

8,0, ~N(0, X),
y ~ N(0, 6?).

In view of our finding that g,/B, is significantly associated with the
respondent’s income, neither models (6.3) nor (6.5) are actually appro-
priate specifications for analyzing the pooled data set. Nevertheless we
estimate the coefficients of models (6.3) and (6.5) in order to empirically
evaluate the speculation that RCCD probit may offer valuable protection
against the ill effects of specification error.

11. In estimating the various models with the pooled data, all responses were treated as
independent. The responses are of course not independent since the 1,200 observations in
the data set were not the responses of 1,200 different respondents but of 20 respondents
making 60 choices. The LPIID and RCCD probit estimation algorithms are not designed
to allow for the possibility that successive observations might be nonindependent, and we
therefore made no attempt to account for the probable absence of independence among
observations. While we have not analytically examined the impact of the
nonindependence of the observations, standard results for least squares regression
provide some insights into the probable impact. The estimated standard errors of the
parameters are almost certainly incorrect because they are computed under the
assumption that the observations are independent. It is unclear whether the parameter
estimates themselves are inconsistent due to failure of the independence assumption.
Standard regression results concerning the effect of correlation among the disturbances
are probably not transferable because knowledge of the distribution of the disturbances is
generally not necessary to make consistent estimates of the structural parameters.
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To model the income effect we interact 8, with income (/) as follows:

Without taste variations: U(D, F;I) = ;D + EI%F +7y (6.6)

F
=B1D + .327'*'7,

With taste variations: U(D, F;I) =(B, + 6;) D + (@)F +9

6.7)

F
=By +0)D + (B, + 52)"['+ Y-

The parameter estimates for the four models are shown in table 6.3. Also
included in the table are the median values of B;, B,, B./1, Bi/B,, and
B./(B,/I) from the first stage analysis of the individual respondents.

For the distance-fee specification the explanatory power of the RCCD
probit model estimate is substantially greater than that for the LPIID
probit model estimate. The log likelihood of the former is nearly twice as
large as for the latter. While the RCCD probit model estimate has
appreciably greater explanatory power than the LPIID probit model
estimate, the estimated values of §, and g, from the LPIID probit model
are much closer to the sample median estimates of §; and B,. For the
reasons discussed in the introduction, and elaborated upon in section 6.10,
we believe the seemingly greater precision of the LPIID estimates is merely
coincidental. In section 6.10 we argue that the LPIID estimates of B, and §,
are probably not comparable to the estimated population medians because
the LPIID estimates are made under an incorrect assumption about the
variance of the disturbance.

While we suspect that the LPIID estimates of §, and f, are not
comparable to the population medians, we do believe that their ratio,
B,/B., is comparable to the estimated population median ratio. The results
in table 6.3 reveal that the LPIID ratio is moderately closer to the sample
median ratio than the RCCD ratio. But the RCCD and LPIID estimates of
B,/B- are very similar, and both provide reasonably precise estimates of the
median ratio in the sample.
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Turning to the more appropriate income interaction specification the
difference in the explanatory power of the LPIID and RCCD probit
estimation is greatly diminished ; the log likelihood of the RCCD probit
model estimate is only 109 greater than that for the LPIID probit model

LEIRSULL UORRRRGLT 25 Vs y ol ail tilde 101 LIIC L 2 AL

estimate. The improvement in explanatory power resulting from the
introduction of the income interaction displays an interesting pattern. For
the models estimated with LPIID probit the log likelihood increases by a
factor of two with the introduction of the income interaction. In contrast
for the models estimated with RCCD probit the introduction of the income
interaction improves the log likelihood by less than 20%. This result is
consistent with our speculation that RCCD probit estimation may be more
immune to specification error than estimation methods that do not allow
for taste variations.

While there is only a moderate difference in the explanatory power of
LPIID and RCCD probit estimation for the income interaction model, the
resulting parameter estimates differ appreciably. The RCCD probit
estimates of B, and f3, (income adjusted) are quite close to the correspond-
ing median values of the individual taste coefficients from the first stage
analysis. By contrast, the LPIID estimates of 8, and f, are only slightly
more than half as large (in absolute magnitude) as the corresponding
RCCD estimates. This latter finding may be due to the fact that even when
the income effect is explicitly modeled, substantial taste variation remains
to be accounted for (see figure 6.1).

We next examine the ability of RCCD probit estimation to capture the
taste variation in the population. Table 6.4 gives the RCCD probit
estimates of X, the variance-covariance matrix of tastes, for both RCCD
model specifications. As can be seen in table 6.4, the estimate of X for the
fee-distance model is very imprecise; the ratios of the estimated parameters
to their standard errors are never greater than one. The estimate of the
population variance of B, is particularly poor ; the ratio of the estimate to
its standard error is nearly zero. Albright, Lerman, and Manski (1977) and
Hausman and Wise (1978) experienced similar difficulties in estimating the
variances of taste parameters.

The estimates of £ for the income-adjusted model appear to be
moderately precise. Nevertheless the more important question is how well
do the point estimates of the population variance of §, and 8, for the
income-adjusted model capture the variation measured in the first-stage
analysis. Since RCCD probit estimation assumes that tastes are normally
distributed, the 25th to 75th percentile range, the interquartile range, of the
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estimated taste distributions from the first-stage analyses should be
approximately equal to

pi*t =B, — 0.6670;,

’[}_75!h — ’8 2 NA6T 1

i l T \I-UVIUi’
where

p25th B75t™ — respectively, the 25th and 75th percentile estimates of f;,
B; = RCCD probit estimate of the mean (or median) B;,
o; = RCCD probit estimate of the standard deviation ofthe taste
distribution.

In table 6.5 the interquartile range of g, and f, (income adjusted)
estimated from the first-stage analysis is compared with the estimate of that

Table 6.4
Estimates of £ for RCCD models

Fee distance Income adjusted
Population 0.518 0.277
variance f3, (0.73) (1.20)
Population 0.00358 0.247
variance S, (0.01) (1.18)
Population ~0.0574 0.0689
covariance (—-0.75) 0.47)

B, and B,

Note: Ratio of estimate to its standard error in parentheses.

Table 6.5
The 25th to 75th percentile range of taste parameters
By B, (income adjusted)
25th 75th 25th 75th
From first-
stage analysis —-1.72 —0.38 -3.11 —0.58

From RCCD probit
parameter estimates -1 —-0.41 —142 —-0.76
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range generated from the RCCD probit parameter estimates of the income-
adjusted model.

As can be seen in table 6.5, the RCCD probit estimate of the 75th
percentile value of f§; corresponds quite closely with the estimate from the
first stage analysis. There is also a reasonably close correspondence
between the two estimates of the 75th percentile value of B, (income
adjusted). In contrast the RCCD probit estimates of the 25th percentile
values of g, and B, differ markedly from the first-stage estimates. The
reason for the lack of correspondence between the RCCD probit and first-
stage estimates of the 25th percentile values of B, and B, is due to the
marked leftward skew in the distribution of each in the respondent
population. Histograms of the distribution of g, and f, (income adjusted)
from the first-stage analysis are shown in figures 6.1 and 6.2. Since RCCD
probit estimation assumes tastes to be symmetrically distributed, it is not
surprising that the RCCD probit and first-stage estimates of the 25th
percentile values of f; and f, (income adjusted) differ markedly.

The leftward skew of the distributions in figure 6.1 suggests that the
assumption that tastes are normally distributed may not be a good
approximation for taste parameters which for theoretical reasons are
thought to be bounded. A more appropriate distributional approximation
for B, and B, might be the negative of either a log-normal or exponential
distribution. Both of these distributions are bounded from above by zero.
Theoretically these two distributions are also more appealing. While it is
conceivable that a small proportion of the population might value walking
time positively (8, > 0), it is not plausible that even a minority of the
population would positively value paying more for parking privileges
(B2 > 0).

We close this section with the results of an experiment comparing the
predictive accuracy of the two estimation methods. Using log likelihood as
a measure of explanatory power, the results suggest that, if the specification
of explanatory variables is approximately correct, then LPIID and RCCD
probit estimation are about equivalently powerful. However, if the
explanatory variables are misspecified, then RCCD probit estimation is
.appreciably more powerful than LPIID probit estimation. Nevertheless,
even if the explanatory variables are correctly specified, it is not clear that
the predictive accuracy of the RCCD and LPIID models will be equal. The
predictions of the two models may potentially be quite different. In view of
the current and potential applications of RCCD and LPIID estimation,
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their relative predictive accuracy is a crucial test of their relative overall
merits. The following experiment is intended to provide such a test.

For any given value of the fee and distance differential between two lots,
A and B, the expected change in the proportion of the population choosing
A because of a one unit increase in AF can be approximated by

EAF(APA;AF,AD)=% ) IP4(AF,AD) (6.8)

=1 AF) ’
where

E(AP,; AF, AD) = expected change in the proportion of the pop-
ulation choosing lot 4, resulting from a one unit
increase in AF for given values of AF and AD,

Pi (AF, AD) = probability of individual i choosing lot A for given
values of AF and AD,
n = number of individuals in the population.

Similarly the expected change in the proportion choosing A4 resulting
from a one unit increase in AD can be approximated by

" 3P\ (AF,AD) ©9)

)

1
nis 8(AD)

E, (AP AF,AD)=

For selected values of A Fand A D we computed equations (6.8) and (6.9),
using as our population the 20 respondents in the sample. The partial
derivatives of P\, w.r.t. AD and A F for each respondent with an estimable
model were computed on the basis of the estimated values of B, and f, for
that respondent. For the respondents with unestimable models the partial
derivatives of P!, could be assumed to be zero for the values of AFand AD
used in the experiment.

Estimation of E, , for the models estimated in the second-stage analysis
can be computed as follows (we show only equations for E,p; the
corresponding equations for E,, are the same except that the partial
derivatives are computed with respect to0 AF):

Fee-distance model: LPIID probit

£ _OPLAFAD)
AD — a(AD) s
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RCCD probit

E - OPX(AF,AD)
AD T a(AD) s
Income-adjusted model: LPIID probit

i PL(AF,AD;Y,)
Esp= 2 ™ AB(AD) =

i=1

RCCD probit

k 8PE(AF,AD;Y,)
Evp= Y m — 3(AD) =

i=1

where PL(AF,AD),P§(AF,AD) = predicted proportion of the pop-
ulation choosing lot 4 for given AF
and A D for, respectively, the LPIID
and RCCD probit estimates of the
fee-distance model,
PL(AF,AD;Y,),PE(AF,AD;Y}) = predicted proportion of the pop-
ulation choosing lot 4 for given A F,
AD and Y, for, respectively, the
LPIID and RCCD probit estimates
of the income-adjusted model,
Y, =income of respondents in income
class k,
, = proportion of respondents in in-
come class k.

In the experiment we treat the estimates of E,p and E,p from the first-
stage model estimates (eqs. (6.8) and (6.9)) as the actual changes in P, that
would occur from one unit increases in AD and AF, respectively. We then
compare these estimates of E,, and E,p with those generated from the
second-stage model estimates. Estimates of E,p, and E,; are computed for
nine different values of (AF, AD) and three different’values of (AF/AD).!?
The results are shown in tables 6.6 and 6.7.

12. One value of — (A F/AD) used in the experiment is 12 which is about equal to the
median estimate of B,/f, in the population. The remaining two values of — (AF/AD) are
8 and 16. The population estimate of the 75th percentile value of §,/8, is 16, but due to
the leftward skew of the distributions of §, and B, the 25th percentile estimate of §,/8, is
nearly 3.5. For the purpose of the experiment we chose not to use a value of — (AF/AD)
that was so far from the population median.
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For the fee-distance model the LPIID model consistently overpredicts
the magnitude of the change, whereas the RCCD model underpredicts the
change in all but one trial. In terms of the absolute magnitude of the
prediction errors, the predictions from the RCCD model are appreciably
more precise than those of the LPIID model. The RCCD estimate of E 5 is
closer to the actual value of E,; in 8 of 9 trials. Moreover the sum of the
absolute deviations of the RCCD estimate of £, from the actual value of
E, across the nine trials is about 40 percent of that sum for the LPIID
estimates of E, . For E, , the RCCD estimates are more accurate in only 5
of 9 trials. But using the sum of absolute deviations as a measure of
predictive accuracy, the RCCD sum is roughly half that of the LPIID sum.

For the income-adjusted model the patterns in the direction of prediction
errors is markedly different from that pattern for the fee-distance model.
The LPIID estimates of E,; and E,, are smaller than the actual in 8 of 9
trials. In contrast the patterns in the sign of the prediction errors for the
RCCD model are less distinct. A pattern of overprediction of E,, and
underprediction of E, , does appear to be present, however. In terms of the
absolute magnitudes of the prediction errors, RCCD probit again appears
to be distinctly more accurate than LPIID probit estimation. The RCCD
probit estimates of E, , are more accurate than the LPIID probit estimates
in 7 of 9 trials, and the sum of absolute deviations for the RCCD probit
estimates is less than half that sum for the LPIID probit estimates. For E,
the improvement in predictive accuracy offered by RCCD probit esti-
mation is more moderate. The RCCD estimates are more accurate than the
LPIID estimates in only 5 of 9 trials, but the sum of absolute deviations for
the RCCD estimates is moderately smaller than the sum for the LPIID
estimates.

Overall, the results of this experiment suggest that models allowing for
taste variation have appreciably better predictive power than models that
do not account for such variations.

6.8 Conclusions

The results discussed in section 6.7 prompt several observations. The first-
stage analysis clearly indicates that the magnitude of taste variation is
appreciable. Regressions of §,/§, on various respondent characteristics
revealed only one significant correlate—income. Yet figures 6.1 and 6.2
reveal that, even when the effects of income are explicitly modeled,
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substantial taste variation remains unexplained. This observation suggests
that attempts to model explicitly the sources of taste variation using an
LPIID formulation are unlikely to succeed. Thus the motivation underly-
ing the development of RCCD estimation methods appears well founded.

The results of the second-stage analysis suggest that RCCD estimators
are more robust than LPIID estimators against errors involving in-
appropriate specification of explanatory variables. Here our results are at
odds with those of Albright, Lerman, and Manski (1977) and Hausman
and Wise (1978). They found that the explanatory power of RCCD probit
was not appreciably greater than that of LPIID logit. Thus it would be
premature to conclude that RCCD probit is more robust to specification
errors than the LPIID formulation (either probit or logit).

To account for the conflict between our results and those obtained in the
two studies cited, we speculate that the difference may be attributable to the
relative contributions of Z4§ (error due to taste variation) and ¢ (additive
error) to the total disturbance term. On the basis of our first-stage analyses
we are confident that the bulk of the disturbance in our second-stage model
specifications is attributable to taste variation.!® This may well be due to
the fact that in the problem studied we knew what the relevant attributes of
the alternatives were. We knew because we specified them as part of our
experimental design. By contrast the Albright, Lerman, and Manski (1977)
and Hausman and Wise (1978) analyses used nonexperimental data
concerning transportation mode selection for work commuting trips. In
such nonexperimental contexts there may well be many excluded but choice
relevant attributes of alternatives. These omitted variables are reflected in ¢,
the additive disturbance term. When important attributes of alternatives
are omitted (as they are likely to be), ¢ will make a large contribution to the
total disturbance term ; and Z4 (error dueto variation in tastes for observed
attributes) may be a relatively minor contributor to the total disturbance
term. This speculation suggests that RCCD probit will become an
increasingly valuable tool as our ability to recognize and measure choice

relevant attributes increases.

13. Recall the excellent explanatory power of the first-stage models of individual
respondents.
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6.9 Appendix: The Unestimable Models

For three respondents a model of the form

D+ B, F+e (6.10)

was not estimable. To motivate a discussion of the reasons model (6.10) is
not estimable for these respondents, it is useful to consider the implications
for estimating taste parameters when choice behavior is perfectly explained
by a model of the form

U(D,F) = B,D + B,F. (6.11)

Model (6.11) is a special case of model (6.10) where the disturbance has
zero variance (there is no stochastic component, ¢, in the utility function).
When o2 = 0, only the ratio B,/8, is identifiable. It can be shown that,
when o2 = 0, the prefered alternative in a binary choice set (4, B) can
always be predicted by the following rule: A will be chosen if
ﬁ>—ﬂlﬂifm—m<q

B2 D, — Dg (6.12)

B _E=h oy D,—Dy>0.

Bz DA - DB

Otherwise B will be chosen. Thus in instances where 62 = 0, only the ratio
B./B, is identifiable from actual choice behavior.

Table 6.8 shows how choice behavior predicted perfectly by (6.11) would
closely identify B,/8,.

The choice behavior of the three respondents with unestimable models is
consistent with the predictions of model (6.10). The choice behavior of
respondent 18 is fully consistent with that predicted by model (6.11), and
accordingly B,/B, could confidently be estimated at 4.15.

Respondent 7 picked the most convenient lot in all except one trial. In
that trial the choice of the most convenient lot required the individual to
pay an additional $105 annually to reduce walking time by about 1 minute
per trip; this trial involved the largest (AF /AD) in the experiment.
Although respondent 7 demonstrated a willingness to sacrifice convenience
for a savings in the parking fee in only one instance, his behavior is fully
consistent with model (6.10), and we estimate B, /B, for this respondent to
be about 95.
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Table 6.8
Estimating f,/8, when model (6.11) is the applicable utility function

(ranked from F,—Fy

largest to D,-Dy;, <0 D,-D;>0
smallest) Dy — Dy (chosen alternative) (chosen alternative)
K, B A

K, B A

K, B A

K, B A

B (Ket Ky

B. 2

K A B

Ky A B

K, A B

Respondent 20 displayed lexicographic type behavior; the individual
always picked the most inexpensive lot. If this respondent actually used a
lexicographic choice rule, then neither models (6.10) nor (6.11) would be an
appropriate specification. However, his behavior is not inconsistent with
model (6.11). It is possible that the reason we observed no trade-offs
between D and Fis that the individual’s value of time was sufficiently small
that it was not detected by the experiment. Indeed this interpretation seems
more plausible than the lexicographic interpretation, since the lexicog-
raphic interpretation implies that the individual would be unwilling to pay
a trivial sum (e.g., 1 cent/annum) in return for any savings in walking time
(e.g., 30 minutes/trip). We thus assume that a value of B,/B, exists for this
individual and ranked this respondent’s B,/B, as the smallest in the sample
without specifying a value (see table 6.2).

While estimates of B, and B, for the three respondents could not be
identified with the data at hand, this does not necessarily imply that a
unique value for each does not exist. Estimates do not exist only if 62 = 0.
The fact that model (6.11) is sufficient for explaining the behavior of these
respondents for this data set does not imply that it would be sufficient for
explaining their behavior in all possible data sets. In fact it seems safe to
assume that o2 # 0 for these individuals. Suppose these individuals were
confronted with successive choice sets where —(F, — Fp)/(D, — Dg) =
B./B.- It is highly unlikely that their choices would be predicted exactly by
(6.12); human cognitive capabilities are simply not sufficiently acute to
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distinguish very small differences. Additionally any excluded determinants
of choice that only marginally effect the utility of each alternative could
become decisive for individuals close to the margin.

The observation that o2 probably does not equal zero for these three
respondents has implications for the rankings of the B,’s and B,’s for these
respondents. In model (6.10) B, and f, are estimable only up to some
assumed value of 1/o,; By, B,. and ¢, are not jointly identified. The
estimated values of B, and B, should actually be interpreted as §,/o, and
B,/a,, respectively, where the value of g, is arbitrarily assigned.

Suppose two respondents, X and Y, both have identical B, and j, but
oX < ¢¥. Wewould thus predict that the estimates of B, and B, for X would
be larger in absolute magnitude than those for Y, since

|E(BX)| = 18¥ /e [0,/ X1l > | E(BN)| =1[B] /o] o./a}1l, (6.13)

i=1, 2, where
3X Y = estimated value of B; for X and Y, respectively,
o, = assumed value of ¢¥ and o7

This result provides a basis for making some reasonable assumptions
about the appropriate rankings of f, and B, for respondents with
unestimable models. The results suggest that the value of ¢? for these
respondents is probably small relative to its value for the remainder of the
respondents.

In the case of respondent 18, whose B,/8, is very precisely bracketed by
the experiment, we are quite confident that this individual has a relatively
small ¢2. The result in equation (6.13) thus suggests that this individual’s f;
and B, are best assumed to be among the largest in the sample (see table
6.2). Also included among the largest values of §; and 8, in the population
are respondent 7’s B, and 20’s B,, respectively.

We have made no assumptions about the ranking of respondent 7’s §,
and 20’s B;. Recall that respondent 7 had a very high value of time and
respondent 20 a very low value of time. Loosely speaking, this implies 7’s f,
and 20’s B, are small, since the value of time is estimated by B1/B,- Thus for
respondent 7’s B, and 20’s B, to be ranked among the largest in their
respective distributions, o2 for 7 and 20 would have to be extremely small
relative to the remainder of the respondents. This seemed to us to be an
overly strong assumption, and we thus have chosen to exclude them from
the rankings. This is an admittedly tenuous assumption but in any event the
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alternative of ranking each among the largest in their respective distri-
butions does not alter any of our conclusions.

Taste Estimates in the LPIID and RCCD

Among the issues we had initially intended to explore in this analysis was
the correspondence between the LPIID probit estimates of f and some
measure of the central tendency of the taste distribution estimated in the
first-stage analysis. In the course of the analysis the question arose of
whether the LPIID estimates of f are theoretically comparable to the first-
stage estimates of the central tendency of the taste distribution. Stated
differently, is there any theoretical reason for suspecting that the LPIID
estimates of B will be biased estimates of the mean (or median) of the
population’s taste distribution? Although we have not addressed this
question in a fully rigorous fashion, we suspect that LPIID estimate of S is
not comparable to the mean (or median) of the population taste
distribution.

The generalized forms of the stochastic utility functions considered in
this chapter are

Without taste variations (LPIID): U(Z) =Z§ + ¢, (6.14)
With taste variations (RCCD): U(Z) =Z(B+ ) + 7 (6.15)
=7Zp + (Zé + ),

where

Z = (1 x K) vector of individual and alternative characteristics,

B = (K x 1) vector of parameters,

& = (K x 1) disturbance vector assumed to. be distributed N (0, X),
y, ¢ = random variables assumed to be distributed N (0, ¢?).

In both models (6.14) and (6.15) all the parameters are not jointly
identified : g and ¢? in (6.14) and B, £, and o2 in (6.15). For both models a
necessary condition for identification is that the value of one parameter be
- assumed ; the remaining parameters are identified up to that assumed value.
For both models identification is typically accomplished by assuming the
value of ¢2. It can be shown that for model (6.14) the expected value of [
equals p/c and that for model (6.15) the expected values of f and £ are g/o

and X/o?, respectively.
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Now suppose model (6.14) is estimated when the true model is (6.15).
The actual disturbance is thus not ¢ but « =& + ZJ, and therefore the
actual variance of the disturbance is not ¢? but o2 + ZEZ’, where ¢*
+ ZXZ' > ¢>. We thus speculate that, when model (6.14) is estimated
where (6.15) is the true model, the following result will hold:

Ld B (6.16)

E(B) = @ +2ZZ) o

Furthermore we would predict that the absolute magnitude of each
element of the LPIID estimate of § would be less than the corresponding
element of the RCCD estimate of B. The basis for this prediction is that in
RCCD estimation, the presence of Z§ in the disturbance is explicitly taken
into account in estimating .

While we have not formally proven these results, the empirical results in
table 6.3 are consistent with our speculation. For both the fee-distance and
income-adjusted models the absolute magnitude of RCCD estimates of §,
and §, are greater than the corresponding LPIID estimates. An inspection
of the alternative estimates of the ratio §,/8, also supports our speculation.
If we are correct in supposing the source of the bias in the LPIID estimate of
Bis the presence of the term ZEZ' in the denominator of eq. (6.16), then the
ratio of the LPIID estimates of B, and f, should be comparable to both the
ratio of the RCCD estimates of B, and B, and to the median estimate of
B,/B, from the first-stage analysis. An examination of table 6.3 reveals all
three estimates of the true mean value of §,/8, in the population are about
equal.

For these reasons we do not believe the LPIID estimates of §, and 8, can
be meaningfully compared with the estimates of the median values of g,
and B, in the respondent population. Thus we suspect that it is only
coincidental that the LPIID estimates of 8, and f, in the fee-distance model
are closer to the first-stage medians than the RCCD estimates. We attribute
the large divergence of the RCCD estimates of §, and B, in the fee-distance
model from first-stage estimates of the population medians to the absence
of an income adjustment in the fee-distance model.
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