7 On the Use of Simulated Frequencies to Approximate Choice
Probabilities

Steven R. Lerman and Charles F. Manski
7.1 Introduction

A mundane but common problem in probabilistic analysis concerns the
calculation of the event probabilities generated by a random process.
To be precise, let a be a real random M-vector whose distribution G has
support A c RM™. LetA(j),j=1,...,J be a finite Lebesgue measureable
partition of A such that a € A()) if and only if observable event j occurs.
Then for any j = 1, . . ., J, the probability that event j occurs is simply

P(j) = Prob[a e A(J)] =fMj)dG. (7.1)

The generation of event probabilities from an underlying random
process in this manner is ubiquitous in probabilistic analysis. Unfor-
tunately unless the distribution G and the subset A(j) are particularly
benign, the integral {,;, dG will not have a closed form. A common
problem then is to find a computationally practical method to adequately
approximate the event probability.

A simple general solution to problem (7.1) exists. In its most basic form
the procedure is to draw a set of pseudorandom realizations of a, observe
on each draw whether the realization of a lies within A(j), and use the
frequency of such occurrences over the set of draws as an estimate of the
event probability P(j).

This simulated frequency Monte Carlo approach to probability calcu-
lation is well known by workers in the area of computer simulation. In
particular see Hammersley and Handscomb (1964) and Fishman (1973) for
discussions. The potential value of the approach in econometric appli-
cations, however, appears not to have been widely recognized.

In this chapter a version of the simulated frequency procedure is applied
to solve a specific problem in discrete choice analysis. Let the eventsj =1,
..., J now be alternatives from which a decision maker must choose one.
Assume that behavior is consistent with a random utility model, and let

The work reported here was performed at Cambridge Systematics, Inc., under a Federal
Highway Administration contract. We would like to thank Carlos Daganzo, William
Eddy, and Daniel McFadden for useful discussions. Responsibility for the contents of
this chapter is the authors’ alone.
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a = [a(1),. . . ,a(J)] betherandom utility vector with distribution G. Then
as long as G is such that ties have zero probability, the probability that
alternative j is chosen is given by

P(j)=Probla(j) = atk), k=1,...,J] = fm)dG, (7.2)

where A(j) = [a:a(j) = a(k), k=1,..., J].

A long-standing problem of some importance has been to develop
practical methods to evaluate the choice probability (7.2) under alternative
distributions G. In particular many researchers have been interested in
evaluating (7.2) under the assumption that G is multivariate normal, when
the choice probabilities have the multinomial probit form. Clearly the
simulated frequency procedure offers a solution to the general problem and
to that of calculating multinomial probit probabilities specifically.

7.2 The Simulated Frequency Method

This section describes the classical simulated frequency procedure for
estimation of a single probability. Section 7.3 sets outa Bayesian version of
the procedure. Section 7.4 discusses issues that arise when a collection of
probabilities must be calculated and ultimately some function of this
collection evaluated.

Let N realizations of « be drawn at random, and let N () be the number
of such realizations lying in A(j). Then F(j, N) = N(j)/N is binomially
distributed with mean P () and variance P(j) (1 — P(J))/N. Observe that
the distribution of F(j, N) depends only on P(j) and N and not directly on
the random process, characterized by G and A()), generating event j.

As an estimate of P(j), F(j, N) has well-known statistical properties. It
is strongly consistent, minimum variance unbiased, and is the maximum
likelihood estimate. Computationally the cost of calculating F(j, N) may
reasonably be assumed linear in N. The marginal cost per trial has two
additive components. First, there is the cost of drawing a pseudorandom
realization of «, and second, the cost of determining whether this
realization lies in A(j). The size of these two marginal cost components are
problem specific, the former depending on the nature of the distribution G
and the latter on the structure of the set A(J).
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A comment should be made regarding the drawing of pseudorandom
realizations of a. If a is univariate, and G is strictly increasing, realizations
may be relatively easily drawn by first taking a random variable  ~ U[0, 1]
and then calculating @ = G~* (). See Shreider (1966) for a discussion of
methods for drawing the needed uniform random numbers.

On the other hand, if « is multivariate, such a simple general method
seems not to be available. A very useful approach is to find M independent
random variables y = [yy, . . - , 73] and a function H: R* — R such that
H(y) is distributed G. Then a-realizations may be generated by drawing
values fory,,. . . , 7, and computing H(y). For example, if « ~ N(, X), let
Yo ~N@O,1),m=1,..., M, and let @ be an M x M triangular matrix
such that ¥ = Q'Q. Then (g + Q'y) ~ N(u, X) as desired.

It has been speculated that for any multivariate distribution G, there
exists some y and H such that H(y) ~ G; so the method can be applied
generally. However, no proof of this proposition is known to us.

7.3 Bayesian Approach

The classical simulated frequency method appears naive in at least two
respects : the procedure provides no means for one to incorporate prior
information regarding the value of P(j) into the estimation process ; use of
the method requires one to fix ahead of time the number of simulation trials

N to be performed.
The literature on simulation suggests various sophisticated but ad hoc

variants on the basic classical method, including ones utilizing informative
stopping rules. See Fishman (1973) for details. A more satisfactory
approach is offered by Bayesian statistical decision theory. See DeGroot
(1970) for a comprehensive textbook presentation.

The Bayesian approach becomes particularly convenient if it is assumed
that a priori, P(j) ~ B(a, b), where B designates the beta distribution. Asis
well known, the distribution of P(j) after N simulation trials is then
B(@a+ N(j),b+ N —N(@)))-

7.4 Estimation of a Function of a Collection of Probabilities
In many applications the concern is not merely to calculate a single

probability but to compute a function of a collection of probabilities. In
exploring the properties of simulated estimates of such functions, we will be
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concerned with two types of asymptotic behavior. First, we may be
interested in the properties of the estimates when the number of pro-
babilities in the collection becomes arbitrarily large, while the simulations
per probability is held constant. Second, both the number of draws per
probability and the number of probabilities in the collection can become
arbitrarily large. This turns out to be a significant distinction in two
problems of particular interest that follow.

In the first situation we would like to estimate the share of a population
that will choose an alternative. One common approach is to calculate the
expected fraction of a random sample of decision makers who will select a
given alternative j from some population. Lett =1,. .., Tbethesample
of decision makers, and let P,(j) be the probability that decision maker ¢
selects alternative j. Then our concern is to calculate o)) =
/T £{., P{j)- Observe that gljlg 0:(j) = Q(J) = E[P(J)], the pop-
ulation average probability of selecting j. This fact provides the basis for

use of Q,(j) as an estimate for Q(/) in what has come to be termed the
“random sample enumeration” forecasting method.

It is easy to see that the simulated frequency approach is well suited to the
task of approximating Q () and, more important, of estimating Q (). The
classical simulation estimate is Rp(j, N,, t=1, ..., T) =1YTZL,
N(j)/N,, where N, > is the number of trials performed for decision maker
¢. Conditional on T, this estimate has mean E( R;) = Q(j) and variance
Ve(Ry)=YT*E, [P,(j) (1 — PN, Letting 7 — o0, and recalling
that decision makers are drawn at random, one finds that glim R.(j, N,,

t=1,...,T)=Q(j)for any positive values of N, t=1, ... 0.t

This simple result is quite powerful, as it states that the simulated
frequency method consistently (as T — o) estimates Q(j) without any
requirement for consistent estimation of each P,(j). That is, we do not
require that each N, — co. In the extreme, one simulation trial per decision
maker would suffice.

The second application is not nearly so benign. Consider now the
problem of calculating a sample log likelihood Ly = 1/T L. InP(j),
where j, is the alternative actually selected by the sampled decision maker /.
1. This can be readily demonstrated by noting that plim E(Ry) =Q(/) and plim

T—=w

T
V4{R;) = 0. Chebychev’s theorem implies directly that Ry is a consistent estimate for
QU)as T— .
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In this case the classical simulation estimate is S; (N, t=1,...,T) =
YT 2L, In [N()/N]-

Observe first that, as long as P(j) < 1, there is nonzero probability that
alternative j will never have the greatest utility in a finite number of draws.
This implies that phrn S, = —co. On the other hand, it is the

case that, if we let N - oo then In N(j,)/N, is a consistent estimate for

InP,(j,). It follows that for any 7" the simulation estimate for S, converges
(as N, —» oo for each ¢t = 1, ..., T) to the true sample likelthood L.
Finally, if both N, - co for all z and T — co, the simulation estimate
converges to E(L). Thus the classical simulated frequency method
consistently estimates E( L) only if the number of trials per decision maker
and the number of decision makers sampled both go to infinity.

The rather extreme result that for fixed N, values plim Sy = — oo can be

T—ow
avoided if each classical simulation estimate is replaced by one of the form

(a, + N(i)/a, + b, + N) for a,, b, > 0. This estimate is interpretable in
Bayesian terms as the posterior mean for P(j,) under the assumption that
the prior distribution of P,(j,) is beta with parameters g, and b,. As before,
consistency requires that 7 — co and that foreachr =1,...,T, N, - oo.

The foregoing discussion is of some potential consequence for the use of
simulation estimates in maximum likelihood estimation. Let 8 be a real
parameter vector, and for each ¢ let P(j,|0) be a family of probabilities
indexed by 0. Define N,(j, | 8), a(8), b,(0), L1(8), and S;(8) in the natural
way. If we use posterior means as simulation estimates, then for fixed N,,
t=1, , oo the difference phrn S(8) — E(L(8)) will in general be a

function of 0. Consistency (as T -» o0) of the ideal maximum likelihood
estimator max L,(0) therefore does not ensure consistency of the approx-
]
imate estimator max S;(0). The latter property is guaranteed only as
@

N,—+oo,t=1,...,TandT—+oo.

7.5 Application to the Calculation of Multinomial Probit Choice
Probabilities

The multinomial probit probabilistic choice model presumes a population
of decision makers T each member ¢ of which must select an alternative
from a choice set C consisting of J alternatives. With each 7€ T there is
associated a utility vector (U,;,j€ C) distributed as multivariate normal.
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The probability that ¢ selects some i€ C is then the normal tail probability
Pr(U;—U,; <0,alljeC)

A quite flexible parametric specification for the utilities (U,;,je C,te T)
is the random coefficients form U,; = Z,;-0F. Here Z,; is a vector of
observed attributes characterizing the decision maker and alternative, and
0} is an unobserved realization of a random vector 0* ~N@®O*, X). Itis
assumed that for any ¢, £ €T, t # ¢, that 0F and 0 are independent
realizations of 0*.

Until recently the multinomial probit model remained a theoretically
attractive but empirically unused specification for discrete choice analysis.
In particular the random coefficients form of the model drew attention for
its great flexibility relative to the widely used conditional logit model. See
for example McFadden (1976) for a discussion. The difficulty in applying
the model derived from the fact that mathematically a multinomial probit
choice probability is a multidimensional integral which has no closed form
and in which the domain of integration is unbounded from below. As is
well known, classical methods for numerical integration become quite
burdensome in multiple integral contexts, with computation times
for given accuracy generally increasing with the power of the integral’s
dimensionality.

The first advances in resolving the computational impasse were due to
Dutt (1976) and Hausman and Wise (1978) who investigated series
approximations to the multinomial probit choice probability. Dutt’s work
has never been implemented in any probit estimation program, but
Hausman and Wise did succeed in developing a program capable of
handling choice sets with three and four alternatives. In personal com-
munications the latter authors have indicated a belief that the series
approximation approach may be practical for choice sets of up to but not
beyond five alternatives. This judgment, combined with the fact that series
evaluation of choice probabilities requires a separate routine for each size
choice set, persuaded us that the series approach was too limited in
practical scope and too rigid in implementation for use in a general purpose
program. Instead our attention turned to the simulated frequency method.

In the abstract the simulation approach appeared attractive for a variety
of reasons. First, it is easily programmed and applied to choice sets of any
size. Second, the method not only gives the user a measure of the accuracy
of the probability calculations after any number of trials but allows him to
control this accuracy through his ability to set the number of trials to be
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performed. Third, CPU time in the simulation approach goes up relatively
slowly with choice set size. In particular for a given number of trials CPU
time increases linearly with choice set size.

We have applied the simulated frequency method to the problem of
calculating random coefficients—multinomial probit choice probabilities
for use in a routine performing maximum likelihood estimation of the
parameters (B*, L)%. Section 7.6 describes the version of the method
programmed. While in the midst of this effort we learned of an intriguing
alternative probability calculation approach originated by Clark (1961)
and unearthed by Daganzo, Bouthelier, and Sheffi (1977). A routine for
producing Clark probabilities was subsequently added to our estimation
program. Section 7.7 describes the Clark algorithm, and section 7.8
presents numerical tests comparing simulation and Clark probability
calculation results. A detailed description of our probit estimation package
is not given here. The interested reader should see Albright, Lerman, and
Manski (1977a and 1977b).

7.6 The Simulation Routine

A certain amount of informed pragmatism has guided our design of a
simulated frequency routine for use in the probit estimation package. The
routine programmed has the following features:

1. The quantity (N,(j,) + 1)/(N, + J) is used as the estimate for P,(j,)-
This quantity is interpretable as the posterior mean under the beta prior
having mean 1/J and variance (J — 1)/] J*(J + 1)]. The assumption of
prior mean 1/J is natural as the choice set contains J alternatives. The
variance assumption imposed has no particular justification.

2. For every realization 8, drawn, another one 0, =0+ (6 —9,)is used
on the following simulation trial. Here 0 is the mean of the 0 distribution
from which draws are made. This use of antithetic variates makes the
realizations of pairs of simulation trials negatively correlated, thereby
increasing the precision of the simulation estimate relative to that in which
independent trials are used. The use of antithetics also halves the number of
times the random number generator must be invoked.

3. An informative stopping rule for determining the number of trials N,
is used. Specifically let N, and K be positive integers, 4 be a positive real,

2. We have recently learned that a similar application has been made by Charles River
Associates (1976).
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and F(j, kN,) be the value of the simulation estimate for P,(j,) after
kN, trials, k=1, ..., K. Now set k=1, run N, trials and stop if
(1 = F(j,kNy))/[F(j,kNo)kN,y] < Aorif k = K. Otherwise setk =k + 1,
run N, additional trials, and apply the stopping rule again. Use of this
stopping rule was motivated by a concern to estimate In P with equal
precision regardless of the value of P. A more detailed but still heuristic
explanation is given in Albright, Lerman, and Manski (1977a).

It should be noted that with these modifications to the classical
simulation procedure, the classical variance formula P(H(1 = P(j))/Nno
longer is valid. We have nevertheless continued to use this formula to
provide a measure of the precision with which F() estimates P(j). More
precisely, since P () is not known, the quantity F(j) (1 — F(J))/ N is used.
An alternative, and perhaps more justifiable measure of precision is the
Bayesian posterior variance F(j)(1 — F(MAN +J +1) obtained under
the beta prior introduced above.’

7.7 The Clark Method

Clark (1961) suggested an approximation to the distribution of the
maximum of M jointly normal random variables. The approximation rests
on the fact that if x,, x,, and x; are jointly normal, the statistics E(max(x;,,
x,)), VAR(max(x;, x,)), and COV(max(x,, x,), x3) can be calculated
exactly in a straightforward manner. Clark then suggests the approxi-
mation that max (x,, x,) is itself normally distributed. Given this
demonstrably false assumption, the first two moments of max(x,, x,,
x3) = max(max(x,, x,), x3) can be calculated. Repeated application of the
approximation allows one to approximate the distribution of the max-
imum of M jointly normal random variables. As evidence of the success of
his approximation, Clark shows that it gives a very close estimate of
E(max(x,, . . . , X)) for M as large as 10. He also suggests error bounds.
Clark does not provide evidence as to the suitability of the approximation
in estimating higher moments of max(x;, . . . , X)), or for approximating
normal tail probabilities.

Daganzo, Bouthelier, and Sheffi (1977) discovered the Clark paper and
applied its method to the estimation of probit choice probabilities. IfC is a

3. It should be noted that all stopping rules in which the stopping criterion is monotonic
decreasing in F(j) lead to upward biased estimates of P(J). Our rule has this property.
However, the bias goes to zero as 1 — 0 and KN, — o. See Albright, Lerman, and
Manski (1977a).
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choice set with utilities (U}, j € C) distributed multivariate normal, and if i
is the chosen alternative, then the utility differences (U; — U, je C, j # i)
are multivariate normal, and the probability that i is chosen is
Prob[(max(U; — U)), je C, j # i) <(]. Daganzo et al. used the Clark
approximation to the distribution of (max(U; — Uy, je C,j#1i) to
estimate this probability.

A priori the Clark method’s attractiveness to us lay in its speed. The
method requires the evaluation of only univariate normal tail probabilities,
a task quite quickly accomplished by series approximation.* Moreover it is
easy to show that CPU times for the Clark probabilities go up no faster
than the square of choice set size.

In contrast to the simulation and series approaches where the user may
control the accuracy of his approximated choice probabilities, the Clark
method offers only a fixed accuracy level. The crucial question in
determining the method’s practical usefulness therefore was whether this
accuracy was sufficient for probit estimation purposes. In particular it was
important to determine whether the deviations of Clark approximation
from true choice probabilities systematically vary with choice set size, true
probability magnitude, disturbance covariance structure, and so on.* Since
no analytical approach to determining the Clark properties could be found,
we conducted a series of numerical tests.®

7.8 Numerical Test Objectives and Design

We have computed high accuracy (large number of trials) simulation
probabilities for a broad range of choice problems and the corresponding
probabilities approximated by the Clark algorithm. These tests serve two
purposes. First, the Clark probabilities may be compared with the accurate

4. For this purpose we have used subroutine NDTR of the IBM scientific subroutine
package.

5. Since the Clark method works recursively, the order in which alternatives are treated
can also in principle affect the choice probabilities obtained. Daganzo et al. have,
however, found that this order effect is quite small and our own tests confirm this. Hence
we have not concerned ourselves with alternate orders in our programming.

6. About the only known analytical property of the Clark approach is that it uses a
symmetric distribution to approximate one skewed to the right. This fact has led to the
unconfirmed belief that the Clark method will overestimate truc probabilities at the lower
tail. Moreover, since the skewness of the true distribution increases with choice set size, it
has been speculated that the accuracy of Clark probabilities decreases with choice set
size. Finally, it has been asserted by some that the Clark method is most accurate when
the normal covariance matrix contains only positive elements. Again no proof exists.
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simulation ones to determine how the Clark accuracy depends on choice set
size, the magnitude of the true choice probability and the variance-
covariance structure of the utility function. Second, the tests allow us to
assess the accuracy obtainable through the simulation approach when the
number of trials is set so as to use the same CPU time as does the Clark
method. In particular if x, is the per trial CPU time consumed in the
simulation method, and x, is the CPU time for the Clark aigorithm, then
N, = x,/x, is the number of simulation trials that can be performed in the
time taken by the Clark method.” The accuracy of the simulation
probabilities obtainable in N, trials can then be measured through the
percent variance formula (1 — P(;))/(P(j)-N,) and compared with the
Clark method’s accuracy as previously determined.

The tests reported here assume choice sets containing three or five
alternatives.® The utility function is assumed to have the form U,; = 6, - Z,;
+ ¢,;, where &, is a random coefficient and (g,;, j € C) is a set of alternative
specific disturbances (random coefficients for alternative specific con-
stants). It is assumed that 8, ~ N(1,62), (¢, j€ C) ~ N(0,L,) and that  is
independent of the ¢ vector.

Within given choice sets, the attribute differences (Z; — Z;) fori,j e Clie
in the range [—4, 4]. Across the set of tests the variances ¢ 2 of the scalar
random taste varidble & lies in the interval [0, 2]. The variance-covariance
matrix I, of the ¢ disturbances is in some tests scalar, sometimes diagonal,
and sometimes general. The ¢ variances (diagonal elements of L) range
over the interval [1/4, 4]. The choice probabilities (as estimated by a large
number of simulation drawings) resulting from the various test
specifications range over the interval [0.002, 0.718].

For each test specification we calculate simulation and Clark choice
probabilities for all alternatives in the relevant choice set.> In the
simulation runs the stopping rule parameters aresetat N, = 1,000, K = 10,
and A = 0.0005, so as to guarantee relatively high accuracy. In general it

7. These calculations are choice set size specific but should not depend on any other
aspect of the choice problem.

8. These are a represeritative selection from our full series of tests, which are documented
in Albright, Lerman, and Manski (1977a).

9. The simulation probability for each alternative is calculated independently. Hence over
the choice set these probabilities do not in general sum exactly to one. Clark probabilities
also do not usually sum to one.
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can be expected that the simulation probability estimate F(j) satisfies the
conditions | (F(j) — P())/P(j)] <0.044 and | F(j) — P()) | < 0.030.1°

79 Test Results and Analysis

Table 7.1 presents simulation and Clark choice probabilities for a set of
choice problems, each choice set containing three alternatives. Table 7.2
presents similar results for choice sets containing five alternatives.

The most striking feature of the test results is the relatively high accuracy
of the Clark probabilities. Not only are the simulation estimates and Clark
approximations generally quite close to one another, but perhaps surpris-
ingly, the accuracy of the Clark probabilities does not appear to
systematically vary along the dimensions of concern to us. In particular the
size of the choice set, magnitude of the true probability, and covariance
structure of the random coefficients & and & have no noticeable effects.'’ We
do not really understand why Clark’s approximation works as well as it
does. All we know is that within the domain tested it does work.!?

The CPU times x, required for each Clark calculation are quite
reasonable, as expected. The reported average values (denoted as X,) of
0.007 and 0.009 seconds for three and five alternative choice sets allow the
calculation of 8,000 and 6,000 probabilities per minute, a rate sufficiently
high for economical probit estimation. The reported values of 14 and 11 for
N, = X/X, are quite small, implying that only crude simulation prob-
abilities can be obtained in the time used by the Clark method. In fact
comparison of the Clark root mean square error estimates and the
simulation standard errors reported in tables 7.1 and 7.2 indicate that the

10. Assuming a classical (unmodified) simulation procedure, the standard error of F(j)
after N trials is (P(7)(1 — P(j))/N)"?, and the standard error of F(j)/ P(j) is (1 -
P(/))/NP()"2. In our modified procedure a minimum of No = 1,000 trials is
performed, so it seems safe to assume that the standard error of F()) is always less than
((1/2 - 1/2)/1,000) = 0.015. Moreover setting 1 = 0.0005 implies that ((1 —

F(j)/NF(H)M?* < (0.0005)"'? = 0.022, giving an upper bound on the standard error of
F(j)/P(j). Using a conservative two-standard-error criterion, we conclude that generally
the fractional error {( F(j) — P(/))/P(j) | will be less than 0.044 and the absolute error

| F(j) — P(j) ] less than 0.030. ‘

11. Note, however, that none of the tests performed have negative elements in the matrix
.

12. Since our simulation probabilities still contain some error even with the large number
of trials performed, the Clark method’s accuracy may be even better than tables 7.1 and
7.2 indicate. There is a slight tendency for the simulation probabilities to be higher than
the Clark ones. This may be a consequence of the simulation stopping rule we used.
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Clark probabilities are ten to twenty times more accurate than the
simulation ones achievable for the same CPU time. Conversely, since
simulation accuracy increases as the square root of the number of trials, the
simulation method can be seen to require more than one hundred times the
Clark CPU time to achieve the same accuracy.

7.10 Conclusions

The above numerical results plus independent corroborating evidence in
Daganzo et al. (1977) suggest that the Clark method should provide the
preferred means for likelihood evaluation in multinomial probit esti-
mation. While the Clark approximation seems to dominate the simulation
approach in this application, our work with the latter method has still been
quite valuable. First, without the ability to estimate true choice prob-
abilities using high accuracy simulations, it would have been impossible to
assess the accuracy of the Clark probabilities. Second, if some problem
with the Clark method should be uncovered, the simulation approach, as
programmed in our probit estimation program, will still be available. Thus
the simulation approach provides some security to the empirical researcher
wishing to estimate a multinomial probit choice model.

More generally the emergence of the Clark method as a successful
approach for the calculation of multinomial probit probabilities may be
regarded as somewhat fortuitous. Since such a powerful approximation
may not exist under other distributions than the normal, it is useful toknow
that a generally applicable method, the simulation method, is available.

Finally, recall the findings of section 7.4 that in a forecasting situation,
the simulation method works well even if the number of trials per
observation is quite small. This result suggests that even when the
simulation method is dominated by another in an estimation context, the
method may still prove cost effective when the estimated model is used in
forecasting.
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