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CHAPTER 3. A REVIEW OF PROBABILITY THEORY
3.1. SAMPLE SPACE

The starting point for probability theory is the conceptsiéte of Nature, which is a description
of everything that has happened and will happen in the universe. In particular, this description
includes the outcomes of all probability and sampling experiments. The set of all possible states of
Nature is called theample space. Letsdenote a state of Nature, 88the sample space. These are
abstract objects that play a conceptual rather than a practical role in the development of probability
theory. Consequently, there can be considerable flexibility in thinking about what goes into the
description of a state of Nature and into the specification of the sample space; the only critical
restriction is that there be enough states of Nature so that distinct observations are always associated
with distinct states of Nature. In elementary probability theory, it is often convenient to think of the
states of Nature as corresponding to the outcomes of a particular experiment, such as flipping coins
or tossing dice, and to suppress the description of everything else in the universe. Sections 3.2-3.4
in this Chapter contain a few crucial definitions, for events, probabilities, conditional probabilities,
and statistical independence. They also contain a treatment of measurability, the theory of
integration, and probability on product spaces that is needed mostly for more advanced topics in
econometrics. Therefore, readers who do not have a good background in mathematical analysis may
find it useful to concentrate on the definitions and examples in these sections, and postpone study
of the more mathematical material until it is needed.

3.2. EVENT FIELDSAND INFORMATION

3.2.1. Aneventis a set of states of Nature with the property that one can in principle determine
whether the event occurs or not. If states of Nature describe all happenings, including the outcome
of a particular coin toss, then one event might be the set of states of Nature in which this coin toss
comes up heads. The family of potentially observable events is denofed Dlgis family is
assumed to have the following properties:

() The "anything can happen” evedis in F.

(i) If eventA is in F, then the event "n&t", denotedA®, is in F.

(i) If A andB are events iifr, then the event "both andB", denotedAnB, is in F.

(iv) If A,,A,,... is afinite or countable sequence of evenfs then the event "one or more of

A,orA,or.." denotedU ; A,isinF.

A family F with these properties is called-dield (or Boolean o-algebra) of subsets 0. The pair
(S,F) consisting of an abstract &and as-field F of subsets dbis called aneasurable space, and
the sets irF are called theneasurable subsets 08. Implications of the definition of a-field are
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(v) If AL A,.... is afinite or countable sequence of evenfs then ", A. s also irF.

(vi) If AL,A,,... is a countable sequence of events that ismonotoneincreasing (A; c A, c
...) ormonotone decreasing (A; 2 A, > ...), thenA, = lim A, is also inF.
(vii) The empty eveng is in F.

We will use a few concrete examples of sample spaces-aeldls:

Example 1. [Two coin tosses] A coin is tossed twice, and for each toss a head or tail appears.
Let HT denote the state of Nature in which the first toss yields a head and the second toss yields a
tail. ThenS={HH,HT,TH,TT}. Let F be the class of all possible subsetS;df has 2 members.

Example 2. [Coin toss until a tail] A coin is tossed until a tail appears. The sample sf@ace is
={T, HT, HHT, HHHT,...}. In this example, the sample space is infinite, but countablé bet
theo-field generated by the finite subsetsSof Thisc-field contains events such as “At most ten
heads”, and also, using the monotone closure property (vi) above, events such as "Ten or more tosses
without a tail”, and "an even number of heads before a tail". A set that is Roetilhhave the
property that both the set and its complement are infinite. It is difficult to describe such a set,
primarily because the language that we normally use to construct sets tends to correspond to
elements in the-field. However, mathematical analysis shows that such sets must exist, because
the cardinality of the class of all possible subseSSisfgreater than the cardinality Bf.

Example 3. [Daily change in S&P stock index] The stock index change is a number in the real
line R, soS = R. Take thes-field of events to be thBorel o-field B, which is defined as the
smallest family of subsets of the real line that contains all the open intervals and satisfies the
properties (i)-(iv) of a-field. The subsets @& that are imB are said to beneasurable, and those
not in B are said to be non-measurable.

Example4. [Changes in S&P stock index on successive days] The set of states of Nature is the
Cartesian product of the set of changes on day one and the set of changes &rd&¥R (also
denotedR?). Take thes-field of events to be the product of the one-dimensierfalds, F =
B,®B,, where &" denotes an operation that forms the smatid&tld containing all sets of the form
AxC with A € B, andC € B,. In this exampleB; andB, are identical copies of the Bokeffield
on the real line. Examples of eventgiare "an increase on day one", "increases on both days", and
"a larger change the second day than the first day". The operatisdifferent than the cartesian
product "x", whereéB,xB, is the family of all rectangle®sxC formed fromA € B, andC € B,. This
family is not itself as-field, but theo-field that it generates B8,#B,. For example, the event "a
larger change the second day than the first day" is not a rectangle, but is obtained as a monotone limit
of rectangles.
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In the first example, the-field consisted of alpossible subsets of the sample space. This was
not the case in the last two examples, because the &bedtl does not contain all subsets of the
real line. There are two reasons to introduce the complication of dealing-figlds that do not
contain all the subsets of the sample space, one substantive and one technical. The substantive
reason is that the-field can be interpreted as the potential information that is available by
observation. If an observer is incapable of making observations that distinguish two states of Nature,
then thes-field cannot contain sets that include one of these states and excludes the other. Then, the
specification of the-field will depend on what is observable in an application. The technical reason
is that when the sample space contains an infinite number of states, it may be mathematically
impossible to define probabilities with sensible properties on all subsets of the saagae sp
Restricting the definition of probabilities to appropriately chaséelds solves this problem.

3.2.2. ltis possible that more than enfeld of subsets is defined for a particular sample space
S. If Ais an arbitrary collection of subsets)tthen the smallesi-field that contain® is said to
be theo-field generated by A. If F andG are boths-fields, andG < F, thenG is said to be a
sub-field of F, andF is said tacontain more information or refine G. It is possible that neithérc
GnorGc F. However, there is always a smalledield that refines botlk andG, which is simply
theo-field generated by the sets in the unioF@ndG, or put another way, the intersection of all
o-fields that contain bot andG. The intersectionG is ac-field that contains theommon
information in FandG.

Example 1. (continued) Lef denote thes-field of all subsets 06. Anotherc-field is G =
{0,S{HT,HH}{TT,TH}}, containing all the events in which information is available only on the
outcome of the first coin toss. Obviousfycontains more information thaa.

Example 3. (continued) LeF denote the Boret-field. ThenG = {¢,S,(0~),(-~,0]} and D =
{9,S{--,0).[0)} are botho-fields, the first corresponding to the ability to observe whether price
increases, the second corresponding to the ability to tell whether price decreases. Neither contains
the other, both are contained f and the two have a smallest mutual refinement which is
C={¢,5,(0,°),(-,0),[05°),(-,0],{0}};corresponding to the ability to tell whether price is increasing
or decreasing. The intersection®fandD is the “no information's-field {¢,S}.

3.3. PROBABILITY

3.3.1. Given a sample spasandoc-field of subsets, aprobability (or probability measure)
is defined as a function P frof into the real line with the following properties:
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() P(A) > O for allA € F.
(i) P(S) = 1.
(iif) [Countable Additivity] IfA,, A,,... is a finite or countable sequence of evenis that are

mutually exclusive (i.eAnA; = ¢ foralli = j), then P(U; A)= Y, PQA).

With conditions (i)-(iii), P has the following additional intuitive properties of a probability when
andB are events it

(iv) P(A) + PA°) = 1.

(v) PAUB) = PA) + PB) - PANB).

(vi) P(A) > PB) whenB c A.

(vii) If A;in F is monotone decreasingg¢othen PA,) - 0.

(viii) If A, € F, not necessarily disjoint, then R{_, A)< Y., PQA).

The triplet §,F,P) consisting of a measurable spegé) and a probability measure P is called a
probability space.

3.3.2. IfA € F has PRA) =1, therA is said to occualmost surely (a.s.), owith probability one
(w.p.1). IfA € Fhas PQ) =0, thenA is said to occur witlprobability zero (w.p.0). Finite or
countable intersections of events that occur almost surely again occur almost surely, and finite or
countable unions of events that occur with probability zero again occur with probability zero.

Example 1. (continued) If the coin is fair so that heads and tails are equally likely, then each
possible outcome HH,HT, TH, TT occurs with probability 1/4. The probability that the first coin is
heads is the probability of the event {HH,HT}, which by countable additivity is P{HH,HT}) =
P({HH}) + P{HT}) = 1/2.

Example 2. (continued) If the coin is fair, then the probability of k-1 heads followed by a talil
is 1/2. Verify that the probability of “At most 3 heads” is 15/16, of "Ten or more heads"fs 1/2
and the probability of "an even number of heads" is 2/3.

Example 3. (continued) Consider the function P defined on open setks l{g,P((sx)) =
1/(1+€). This function maps into the unit interval, and is increasing as the length of the interval
increases. It is then easy to show that P satisfies properties (i)-(iii) of a probability on the restricted
family of open intervals, and a little work to show that when a probability is determined on this
family of open intervals, then it is uniquely determined orvtfield generated by these intervals.
Each single point, such as {0}, is /1 Taking intervals that shrink to this point, each single point
occurs with probability zero. Then, a countable set of points occurs w.p.0.
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3.3.3. Often a measurable spa8g- will have an associatadeasure v that is a countably
additive function fromF into the nonnegative real line; i.e(, U_;, A)) = Z}"’Zl v(A,) for any

sequence of disjoirk; € F. The measure @ositiveif v(A) > 0 for allA € F;, we will consider only
positive measures. The measuigfiniteif |[v(A)| < M for some constant M and &l € F, and

o-finiteif there exist a countable number of disjoint gts F with v(A;) <+-and U, A, =S

The measure may be a probability, but more commonly it is a measure of "length" or "volume".
For example, it is common when the sample sgaisethe countable set of positive integers to
definev to becounting measure with v(A) equal to the number of pointsAn When the sample
spaceSis the real line, with the Borelfield B, it is common to define to belLebesgue measure,

with v((a,b)) = b - a for any open interval (a,b). Both of these examples are pesitnre
measures. A sétis said to be of-measurezeroif v(A) = 0. A property that holds except on a set
of measure zero is said to hallanost everywhere (a.e.). It will sometimes be useful to talk about

a o-finite measure spac&,F,1) where [ is positive andfinite and may either be a probability
measure or a more general counting or length measure such as Lebesgue measure.

3.3.4. Suppose f is a real-valued function enfmite measure spac&,F, ). This function is
measurableif f(C) ¢ F for each open s€ in the real line. The integral of measurable f on a set

A € F, denoted f f(sj(ds), is defined in the casef)(< + as the limit as r « of sums of the
A

form Y . . (kinyu(C,,), whereC,, is the set of states of NatureArfor which f(s) is contained
in the interval (k/n,(k+1)/n]. A finite limit exists ifZ::m |kApl(C,,) <+, in which case fis said

to beintegrableonA. Let disjointA, € F with p(A;) <+-and U~ ; A, =Sbe the decomposition
guaranteed by thefinite property of u. The function fis integrable on a generahsef ifitis

integrable omAnA, for each i and f f(sh(ds) = lim,.. Y., f |f(s)}u(ds) exists, and
A ACA,

simplyintegrableif it is integrable forA =S. In general, the measure p can have point masses, or
continuous measure, or both, so that the notation for integration with respect to u includes sums and
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mixed cases. The integray f(s)u(ds) will sometimes be den(fted f(s)du, or in the case of
A A

Lebesgue measuref f(s)ds.
A
3.3.5. For a-finite measure spac&,F,u), definel ((S,Fu) for 1< g < +- to be the set of
measurable real-valued functions ®mith the property that ffjs integrable, and defing|, =

[ f 1f(s)|? u(ds)l™ to be thenorm of f. Then,L(S,F,u) is a linear space, since linear

combinations of integrable functions are again integrable. This space has many, but not all, of
familiar properties of finite-dimensional Euclidean space. The set of all linear functions on the space
Lq(S,F,p)_for q >_1 IS th_e spa(te(S,l_:,u), where_ 1_/r =1-1/q. This follows from an application of
Holder’s inequality, which generalizes from finite vector spaces to the condition

fe LySFu)and g L(SFu) with g* + r* = 1 imply f f(sya(s) u(ds)< Iflylgl.
The case q =r = 2 gives the Cauchy-Schwartz inequality in general form. This case arises often in

statistics, with the functions f interpreted as random variables and the|figinmterpreted as a
guadratic mean or variance.

3.3.6. There are three important concepts for the limit of a sequence of funptidRés, F ).
First, there igonvergence in norm, or strong convergence: fis a limit Qfff||f, - f|,~ 0. Second,
there isconvergence in p-measuref isalimit of f, if u({seS| |f.(s) - f(s)| >e}) - O for eacte > 0.

Third, there isveak convergence: fis a limit of f, if f (f(s) - f(s))g(s) p(ds)- O for each g
L (S,Fu) with 1/r=1 - 1/g. The following relationship holds between these modes of convergence:
Strong Convergence= Weak Convergence= Convergence in p-measure

An example shows that convergence in p-measure does not in general imply weak convergence:
ConsiderL ,([0,1],B,i) whereB is the Borelo-field and p is Lebesgue measure. Consider the
sequence,fs) =n-1(s<1/n). Then pu({sS| |f(s)| >¢}) = 1/n, so that fconverges in p-measure to

zero, but for g(s) =¥, one hagg|, = 3> an s)g(s) u(ds) = 3A/2 divergent. Another
but for g(s) =% h M and [ f(s)g(s) u(ds) = 3A/2 di h

example shows that weak convergence does not in general imply strong convergence: Eonsider
={1,2,...} endowed with the-field generated by the family of finite sets and the measure p that
gives weight R? to point k. Consider,fk) =n"*1(k = n). Then|f|,= 1. If g is a function for
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which E‘[;l f(K)g(K)u({k}) = g(n)-n”* does not converge to zero, then §(kik}) is bounded

away from zero infinitely often, implyingg|, = 2:4 g(kf u({k}) = +~. Then, f converges

weakly, but not strongly, to zero. The following theorem, which is of great importance in advanced
econometrics, gives a uniformity condition under which these modes of convergence coincide.

Theorem 3.1. (Lebesgue Dominated Convergence) If g giiorfn =1,2,... are ib (S,F,u) for
1 < g < +~ and ac-finite measure spac&,F,u), and if |f(s)| < g(s) almost everywhere, then f
converges in p-measure to a function f if and only=itf,(S,F,u) and|f, - f|, - O.

One application of this theorem is a result for interchange of the order of integration and
differentiation. Suppose-ff) € L(S,F,u) for tin an open sdt < R". Suppose f iglifferentiable,
meaning that there exists a functif(-,t) € L ,(S,Fu) for te T such that if t+he T and h= 0, then
the remainder function r(s,t,h) = [f(s,t+h) - f(s,,t)-h]/|h|e L (S,F,1u) converges in u-measure

to zero as i 0. Define F(t) = f f(s,)u(ds). If there exists ¢ (S,F,i) which dominates the

remainder function (i.e., [r(s,t,R)P(s) a.e.), then Theorem 3.1 impliesighr(-,t,h)|, = O, and F(t)
is differentiable and satisfi@gF(t) = f Vi(s,t)p(ds).

A finite measure P or§(F) is absolutely continuous with respect to a measweéf A € F and
v(A) =0 imply PA) = 0. If P is a probability measure that is absolutely continuous with respect to
the measure, then an event of measure zero occurs w.p.0, and an event that is true almost
everywhere occurs almost surely. A fundamental result from analysis is the theorem:

Theorem 3.2. (Radon-Nikodym) If a finite measure P on a measurable sBagaq absolutely
continuous with respect to a positivdinite measures on (S,F), then there exists an integrable
real-valued function p 08, unique almost everywhere, such that

f p(s)(ds) = PA) for eachA € F.
A
When P is a probability, the function p given by the theorem is nonnegative, and is called the

probability density. An implication of the Radon-Nikodym theorem is that if a measurable space
(S,F) has a positive-finite measure and a probability measure P that is absolutely continuous with
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respect to, then there exists a density p such that for evety {S,F,P) for some k q < +-, one

has fs f(s)P(ds) = fs f(P(sh(ds).

3.3.7. In applications where the probability space is the real line with thed3edd, with a
probability P such that P;s]) = F(s) is continuously differentiable, the fundamental theorem of

integral calculus states that p(s) €9} satisfies FA) = f p(s)ds. What the Radon-Nikodym
A

theorem does is extend this resulistéinite measure spaces and weaken the assumption from
continuous differentiability to absolute continuity. In basic econometrics, we will often characterize
probabilities both in terms of the probability measure (or distribution) and the density, and will
usually need only the elementary calculus version of the Radon-Nikodym result. However, it is
useful in theoretical discussions to remember that the Radon-Nikodym theorem makes the
connection between probabilities and densities. We give two examples that illustrate practical use
of the calculus version of the Radon-Nikodym theorem.

Example 3. (continued) Given P((s)) = 1/(1+é), one can use the differentiability of the
function in s to argue that it is absolutely continuous with respect to Lebesgue measure on the line.
Then, one can verify by integration that the density implied by the Radon-Nikodym theorem is p(s)
= €/(1+€)2

Example 5. A probability that appears frequently in statistics isnitrenal, which is defined
on (R,B), whereR is the real line andB the Borel o-field, by the densityn(s-ug) =

(2n6?) V2o (SHFI2® 5o that PE) = f (2n6?) M2 (S HFI2°gs | |n this probability, 1 andare
A

parametersthat areinterpreted as determining thelocation and scal e of the probability, respectively.
When p = 0 and = 1, this probability is called theandard normal.

3.3.8. Consider a probability spa&K,P), and a-field G < F. If the evenB € G has PB) >
0, then theconditional probability of A givenB is defined as ®(|B) = PANB)/P(B). Stated
another way, X |B) is a real-valued function dfx G with the property that R(B) = P@A|B)P([B)
forall A € FandB € G. The concept of conditional probability can be extended to cases wBgre P(
= 0 by defining P& |B) as the limit of P& |B,) for sequenceB, € G that satisfy F§;) > 0 andB, -
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B, provided the limit exists. Wheiis a finite set, the conditional probability AfgivenB is the

> ens PAS
> s PASH

Example 6. On a quiz show, a contestant is shown three doors, one of which conceals a prize,
and is asked to select one. Before it is opened, the host opens one of the remaining doors which he
knows does not contain the prize, and asks the contestant whether she wants to keep her original
selection or switch to the other remaining unopened door. Should the contestant switch? Designate
the contestant’s initial selection as door 1. The sample space consists of pairs of numbers ab, where
a=1,2,3is the number of the door containing the prize and b = 2,3 is the number of the door opened
by the host, with b a: S={12,13,23,32}. The probability is 1/3 that the prize is behind each door.
The conditional probability of b = 2, given a = 1, is 1/2, since in this case the host opens door 2 or
door 3 at random. However, the conditional probability of b = 2, given a = 2 is zero and the
conditional probability of b = 2 given a = 3 is one. Hence, P(12) = P(13) (123) and P(23) =
P(32) = 1/3. Let A ={12,13} be the event that door 1 contains the prize and B = {12,32} be the
event that the host opens door 2. Then the conditional probability of A given B is
P(12)/(P(12)+P(32)) = (1/6)/((1/6)+(1/3)) = 1/3. Hence, the probability of receiving the prize is 1/3
if the contestant stays with her original selection, 2/3 if she switches to the other unopened door.

ratio of sums FX|B) =

Example7. Two fast food stores are sited at random points along a street that is ten miles long.
What is the probability that they are less than five miles apart? Given that the first store is located
at the three mile marker, what is the probability that the second store is less than five miles away?
The answers are obvious from the diagram below, in which the sample space is depicted as a
rectangle of dimension 10 by 10, with the horizontal axis giving the location of the first store and
the vertical axis giving the location of the second store. The shaded areas correspond to the event
that the two are more than five miles apart, and the proportion of the rectangle in these areas is 1/4.
Conditioned on the first store being at point 3 on the horizontal axis, the second store is located at
random on a vertical line through this point, and the proportion of this line that lies in the shaded
area is 1/5. Let x be the location of the first store, y the location of the second. The conditional
probability of the event that |x - y| > 5, given x, is [x-5[/10. This could have been derived by forming
the probability of the event |x - y| > 5 and ¢ < x € tor a small positive, taking the ratio of this
probability to the probability of the event ¢ < x <6c® obtain the conditional probability of the
event |X - y| > 5 given ¢ < x < §and taking the limi§ - O.
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Location of Fast Food Stores

10

Second Store

0+ :
0 2 4 6 8 10
First Store

The idea behind conditional probabilities is that one has partial information on what the state of
Nature may be, and one wants to calculate the probability of events using this partial information.
One way to represent partial information is in terms of a subfieldfeigthe field of events which
distinguish outcomes in both the past and the future, and a suBfietathtains events which
distinguish only past outcomes. A conditional probabilith B) defined forB < G can be
interpreted for fixed\ as a function frond into [0,1]. To emphasize this, conditional probabilities
are sometimes written R(G), andG is termed thénformation set, or a family of events with the
property that you know whether or not they happened dirtteeyou are forming theonditional
probability.

Example 1. (continued) IfG = {¢,S,{HT,HH}{TT,TH}}, so that events in G describe the
outcome of the first coin toss, then P(HHH,HT}) = P(HH)/(P(HH)+P(HT)) = %2 is the probability
of heads on the second toss, given heads on the first toss. In this example, the conditional probability
of a head on the second toss equals the unconditional probability of this event. In this case, the
outcome of the first coin toss provides no information on the probabilities of heads from the second
coin, and the two tosses are said to bmtistically independent. If G =
{¢,S{HT, TH},{HH}{TT}{HH} °{TT} }, the family of events that determine the number of heads
that occur in two tosses without regard for order, then theitbomal probability of heads on the
first toss, given at least one head, is P{HT,HT} ©) = (P(HT)+P(HH))/(1-P(TT))= 2/3. Then,
the conditional probability of heads on the first toss given at least one head is not equal to the
unconditional probability of heads on the first toss.

Example 3. (continued) Suppos€ = {¢,S,(0,~),(-=,0]} is the o-field corresponding to the
event that the price change is positive or not. The unconditional probability)P&sl/(1+€)
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e-1

implies P([-1,1]) = 1 P((0,1]) = -1 e-1

, P(@®)) = 1/2, and P([-1,1])0»)) = —= .

en T@ (LAX0=) =
Here, the conditional and unconditional probability coincide, so that knowledge of the sign of the
price change provides no information on the probability that the magnitude of the change does not
exceed one.

For a probability spaceS(F,P), supposéd.,,... A, partition S; i.e.,AnA; =¢ and Uf‘l A =
S. The partition generates a finite figRlc F. From the formula P(B) = P(A|B)P(B) satisfied
by conditional probabilities, one has for an evént F the formula

PC) = PCIA)-PAY).

K
i-1
This is often useful in calculating probabilities in applications where the conditional probabilities
are available.

3.4. STATISTICAL INDEPENDENCE AND REPEATED TRIALS

3.4.1. Consider a probability spa&HK,P). Event® andC in F arestatistically independent
if P(AnC) = PA)-P(C). From the definition of conditional probability AfandC are statistically
independent and R}y > 0, then RC|A) = PANC)/P(A) = PC). Thus, wherA andC are
statistically independent, knowing thatoccurs is unhelpful in calculating the probability t@at
occurs. The idea of statistical independence of events has an exact analogue in a concept of
statistical independence of subfields. Bet {¢,A,A°S} and C ={¢,C,C"S} be the subfields of
F generated byA andC, respectively. Verify as an exercise thafAifand C are statistically
independent, then so are any pair of evAnts A andC’ € C. Then, one can say that the subfields
A and C are statistically independent. One can extend this idea and talk about statistical
independence in a collection of subfields. Metenote an index set, which may be finite, countable,
or non-countable. Le&fF, denote as-subfield of F (F, < F) for each ie N. The subfield$~ are

mutually statistically independence (MSI) if and only if P( N A;) = H P@A) for all finiteK
jeK jeK

cNandA, € F, forje K. Asinthe case of statistical independence between two events (subfields),
the concept of MSI can be stated in terms of conditional probabiliiefr i € N are mutually
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statistically independent (MSI) if, for alkiN, finite K < N\{i} and A, € F, for j € {i} UK, one has

PA| N A)) = P@)), so the conditional and unconditional probabilities are the same.
jekK

Example 1. (continued) LeA = {HH,HT} denote the event of a head for the first caihs
{HH,TH} denote the event of a head for the second dm{HH,TT} denote the event of a match,
G = {HH} the event of two heads. The table below gives the probabilities of various events.

Event | A C D G | AnC | AnD | CnD | AnCnD | AnG
Prob. | % ez Y| 14| 1/4 1/4 1/4 1/4 1/4

The result PANC) = PA)P(C) = 1/4 establishes thAtandC are statistically independent. Verify
thatA andD are statistically independent, and t@aandD are statistically independent, but that
P(AnCnD) # PA)P(C)P(D), so thatA, C, andD are_notMSI. Verify thatA andG are not
statistically independent.

Example4. (continued) Recall th&=R?with F=BeB, theproduct Borelo-field. Define the
subfieldsF, = {AxR |AeB}, F,={RxA|AecB} containing information on price changes on the first
and second day, respectively. Defi@e={¢,S,(0),(-,0),[0°),(-,0],{0}}, the subfield of B
containing information on whether a price change is positive, negative, or zero. Bedre the
o-subfield of BeB generated by sets of the foApxA, with A; € C andA, € B; thenF; contains
guantitative information on the second day change, but only sign information on the first day change.
Suppose P is uniform on [-1,1]x[-1,1]. The#k {F,} are MSI. However, £,,F;} are not
independent.

Example 8. ConsiderS = {0, 1, 2, 3, 4, 5, 6, 7}, withF equal to all subsets & As a
shorthand, let 0123 denote {0,1,2,3}, etc. Define the subfields

F, = {9,0123,4567S}, F, ={0,2345,016%}, F, = {¢,0246,1357},

F, = {9,01,23,4567,0123,234567,01458),
F. = {9,01,23,45,67,0123,0145,0167,2345,2367,4567,012345,012367,01456 7, 334567,
F. = {9,06,17,24,35,0167,0246,0356,1247,1357,2345,123457,023456,013567,81.2467,

The fieldF, is arefinement of the fieldF, (i.e.,F, < F,), and can be said to contain more information
thanF,. The fieldF is amutual refinement of F, andF, (i.e.,F,uF, c F;), and is in fact the smallest
mutual refinement. It contains all the information available in effher F,. Similarly, F is a
mutual refinement of, andF,. The intersection of; andF; is the fieldF,; it is the common
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information available i, andF. If, for examplefF characterized the information available to one
economic agent, anf, characterized the information available to a second agentfFheould
characterize the common information upon which they could base contingent contracts. Suppose
P(i) = 1/8. Then £, F,, F;} are MSI. E.g., P(0122345) = P(0123246) = P(0123345°0246)

= P(0123) = 1/2. HoweverR, F,} are not independent; e.g., 1 = P(01@B) = P(0123) = 1/2.

ForM c N, let F/,, denote the smallestfield containingF for allie M. Then MSI satisfies the
following theorem, which provides a useful criterion for determining whether a collection of
subfields is MSI::

Theorem 3.3. If F, are MSlI for ie N, andM c N\{i}, then { F,F,} are MSI. FurtherF, forieN
are MSI if and only if §,F,,} are MSI for all EN.

Example5. (continued) M = {2,3}, thenF,, = F,, and P(012A) = ¥ for eaclA € F,,.

3.4.2. The idea afepeated trialsis that an experiment, such as a coin toss, is replicated over
and over. lItis convenient to have common probability space in which to describe the outcomes of
larger and larger experiments with more and more replications. The notation for repeated trials will
be similar to that introduced in the definition of mutual statistical independenc®&l desiote a
finite or countable index set of trial§,a sample space for trial i, al ac-field of subsets o§.

Note tha{(S,G,) may be the same for all i. Assume tI&tG,) is the real line with the Borelfield,
or a countable set with the field of all subsets, or a pair with comparable mathematical properties
(i.e.,S is a complete separable metric space@nd its Borel field). Lett = (SS,,...) = ($: ieN)

denote an ordered sequence of outcomes of trial§aneX, , S denote the sample space of these
sequences. Let F, = ®, G, denote the o-field of subsets of S, generated by the finite rectangles

which are sets of theform (xieK Ai)><(><i€N\K S) with K afinite subset of Nand A, € G, fori € K.
The collection F is caled the product o-field of subsets of S.

Example9. N={1,23},S ={0,1}, G, ={0,{0} ,{1},S} isasample spacefor acoin toss, coded
“1" if heads and “0" if tails. The8, = {s;s,;5;|s € S} = {000, 001, 010, 011, 100, 101, 110, 111},
where 000 is shorthand for the event {0}x{0}x{0}, and so forth, is the sample space for three coin
tosses. The field is the family of all subsets &;.

For any subseft of N, defineS, = X, S and G, = ®,«G.. Then, G, isthe product o-field
on S;. Define F, to betheo-field on S generated by setsof theform AxS, for A € G¢. Then G,
and F, contain essentially the same information, but G is afield of subsets of S; and F, isa
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corresponding field of subsets®fwhich contains no information on events outsidé oBuppose
Py is a probability on%,, F,). Therestriction of P, to (S¢,G) is a probability R defined forA e
Gy by B.(A) = B (AxS«). The following result establishes a link between different restrictions:

Theorem 34. If M < K and R,, P are restrictions of p then B, and R satisfy the
compatibility condition that R,(A) = B.(AxSy,y) for al A € F,.

Thereis then afundamental result that establishes that when probabilities are defined on al finite
sequencesof trialsand are compatible, then thereexistsaprobability defined on theinfinite sequence
of trials that yields each of the probabilities for afinite sequence as a restriction.

Theorem 3.5.1f P, on (S¢,Gy) for dl finiteK < N satisfy the compatibility condition, then there
exists aunique P on (Sy,F,) such that each P, isarestriction of P

Thisresult guarantees that it is meaningful to make probability statements about events such as “an
infinite number of heads in repeated coin tosses".

Suppose trials],G,,P) indexed by i in a countable $¢tare mutually statistically independent.
For finiteK < N, let Gx denote the produetfield onS,. Then MSI implies that the probability of

a setX, A € Gy satisfies P(X,« A) = [[ P(A). Then, the compatibility condition in
jeK

Theorem 3.3 is satisfied, and that result implies the existence of aprobability P on (Sy,F,) whose

restrictionsto (S¢,Gy) for finite K < N are the probabilities Py.

3.4.3. The assumption of statistically independent repeated trials is a natural one for many
statistical and econometric applications where the data comes from random samples from the
population, such as surveys of consumers or firms. This assumption has many powerful
implications, and will be used to get most of the results of basic econometrics. However, itisalso
common in econometrics to work with aggregate time series data. In these data, each period of
observation can be interpreted as a new trial. The assumption of statistical independence across
thesetrialsisunlikely in many cases, because in most casesreal random effects do not conveniently
limit themselves to single time periods. The question becomes whether there are weaker
assumptions that time series data are likely to satisfy that are till strong enough to get some of the
basic statistical theorems. It turns out that there are quite general conditions, called mixing
conditions, that are enough to yield many of the key results. Theideabehind these conditionsisthat
usually events that are far apart in time are nearly independent, because intervening shocks
overwhelm the older history in determining the later event. Thisideaisformalized in Chapter 4.



McFadden, Statistical Tools, © 2000 Chapter 3-15, Page 53

5. RANDOM VARIABLES, DISTRIBUTION FUNCTIONS, AND EXPECTATIONS

3.5.1. Arandomvariable X is a measurable real-valued function on a probability SgRed”).
The valueof the function x = X(s) for a state of Nature s that actually occurs is ternealization
of the random variable. One can have many random variables defined on the same probability space;
another measurable function y = Y(s) defines a second random variable. Itis very helpful in working
with random variables to keep in mind that the random variable itself is a futtgiates of
Nature, and that observations are of realizations of the random variable. Thus, when one talks about
convergence of a sequence of random variables, one is actually talking about convergence of a
sequence of functions, and notions of distance and closeness need to be formulated as distance and
closeness of functions.

3.5.2. The ternmeasurablein the definition of a random variable means that for each get
the Borels-field B of subsets of the real line, the inverse imagéAX = {seS|X(s)eA} is in the
o-field F of subsets of the sample sp&e The assumption of measurability is a mathematical
technicality that ensures that probability statements about the random variable are meaningful. We
shall not make any explicit reference to measurability in basincgoetrics, and shall always
assume implicitly that the random variables we are dealing with are measurable.

3.5.3. The probability that a random variable X has a realization irfassétis given by
F(A) = P(XY(A)) = P({scS|X(s)eA}).

The function F is a probability aB; it is defined in particular for half-open intervals of the fagkm

= (=o,X], in Which case F(¢,x]) is abbreviated to F(x) and is called thetribution function (or,
cumulative distribution function, CDF) of X. From the properties of a probability, the distribution
function has the properties

() F(-=) = 0 and F(#) = 1.

(if) F(x) is non-decreasing in x, and continuous from the right.

(i) F(x) has at most a countable number of jJumps, and is continuous except at these jumps.
(Points without jumps are call@dntinuity points.)

Conversely, any function F that satisfies (i) and (ii) determines uniquely a probabilitg.Fldre
support of the distribution F is the smallest closedAet B such that ) = 1.
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Example5. (continued) The standard normal CDB{X) = fx (2n) Y2es72ds | obtained by

integrating the density(s) = (2r) Y2e " . Other examples are the CDF for the standard

exponential distribution, F(x) = 1 *dor x > 0, and the CDF for the logistic distribution, F(x) =
1/(1+€). An example of a CDF that has jumps is F(x) = 1/2e Z‘[jzl 1(k=x)/2%t for x > 0.

3.5.4. If F is absolutely continuous with respect tofanite measurer onR; i.e., F gives
probability zero to any set that hasneasure zero, then (by the Radon-Nikodym theorem) there
exists a real-valued function f d called thedensity (or probability density function, pdf) of X,
such that

FA) = fA f(x)v(dx)

for every Ac B. With the possible exception of a sevaheasure zero, F is differentiable and the
derivative of the distribution gives the density, f(x) £4r. When the measureis Lebesgue
measure, so that the measure of an interval is its length, it is customary to simplify the notation and

write F(A) = f f(x)dx.
A

If F is absolutely continuous with respect to counting measure on a countableGob&etthen
it is called adiscrete distribution, and there is a real-valued function {such that

FA) = ) f(x).

XeA
Recall that the probability is itself a measure. This suggests a notatipn Ff F(dx) that covers
A

both continuous and counting cases. This is callssbesgue-Stieltjes integral.

3.5.5. If R,B,F) is the probability space associated with a random variable X, BndR)is
a measurable function, then Y = g(X) is another random variable. The random variable Y is

integrable with respect to the probability F if fR |g(X)| F(dX) < o
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if it is integrable, then the integralf g(x)F(dx) f gdF exists, is denotell g(X), and is
R R

calledthe expectation of g(X). When necessary, this expectation will also be deritg@X) to
identify the distribution used to form the expectation. When F is absolutely continuous with respect

to Lebesgue measure, so that F has a density f, the expectation is &Erijxh = f g()f(x)dx.
R

Alternately, for counting measure on the integers with densityE(g{X) = o 9K)f(K).

The expectation of X, if it exists, is called tmean of X. The expectation of (X EX)?, if it
exists, is called theariance of X. Definel(X<a) to be an indicator function that is one if X(s)
a, and zero otherwise. Thdh1l(X<a) = F@), and the distribution function can be recovered from
the expectations of the indicator functions.

Example 1. (continued) Define a random variable X by
0 ifs=TT
X(s)= {1 ifs=THor HT
2 ifs=HH

Then, X is the number of heads in two coin tosses. For a fairkedirs 1.

Example 2. (continued) Let X be a random variable defined to equal the number of heads that
appear before a tail occurs. Then, possible values of X are the iftlegdfs1,2,...}. ThernC is
the support of X. For x real, define [X] to be the largest integer k satisfying kA distribution

, , o 1 -2 for 0 < x , ,
function for X, defined on the real line, is F(x) ; the associated density
0 for 0 >x

defined orC is f(k) = 2. The expectation of X, obtained using evaluation of a special series from

2.1.10,iEEX= Y k2¢=1.
k=0
Example 3. (continued) Define a random variable X by X(s+ Then, X is the magnitude
of the daily change in the price index. The inverse image of an interval (a,b) with a < 0 is (-b,b)
F, and the inverse image of an interval (a,b) withQais (-b,-ay(a,b)e F. Then X is measurable.
Other measurable random variables are Y defined by Y(s) = Max {0,s} and Z defined by Z(s) = s
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3.5.6. Consider a random variable Y &)8). The expectatioEY* is the k-thmoment of Y,
andE(Y-EY)¥ is the k-thcentral moment. Sometimes moments fail to exist. However, if g(Y) is
continuous and bounded, thEg(Y) always exists. The expectation m(tE€" is termed the
moment gener ating function (mgf) of Y; it sometimes fails to exist. Call a nmybper if it is finite
for tin an interval around 0. When a proper mgf exists, the random variable has finite moments of
all orders. The expectatiaift) = Ee", wherev is the square root of -1, is termed tharacteristic
function (cf) of Y. The characteristic function always exists.

Exampleb. (continued) A density f(x) that is symmetric about zero, such as the standard normal,

hasEX* = f OXf(x)dx = f O f(-x)dx + f T Xf(x)dx = f 1+ (-1¥]x4(x)dx = O for
. - 0 0
k odd. Integration by parts yields the form&* = 2k f”" X1 [1-F(x)]dx for k even. For the
0
standard normaEX* = 2- f " (2m) V2 x K Lo X 2xdx = (2k-1)EXZ2 for k > 2 using integration
0
by parts, anEX? = 2- f " (2n) Y2 *T2xdx = 20(0) = 1. ThenEX* = 3 andEX®= 15. The
0

moment generating function of the standard normal is m(t)ffw(Zn)’”zetX°e’X2’2dx

Completing the square in the exponent gives m(8'%- f (2n) V2o (< V2gy 2

3.5.7. A measurable function X from the probability sp&;€,P) into R",B") is termed a
random vector. (The notatiorB" meansBeB®...#B n times, wherd is the Boreb-field on the

.....

the B, are identical copies @.) The random vector can also be writter={X,,...,X,) , with each
component Xa random variable. Thastribution function (CDF) of X is

F(x,...,%) = P{=S|X(s) < x, for i = 1,...,n}).

If A e B", define FA) = P({sS|X(s)eA}). If F(A) = 0 for every sef of Lebesque measure
zero, then there existgeobability density function (pdf) f(x,,...,x,) such that
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(1) F(4...%) = f:lfff): f(yy,....y) dy,...dy.

F and f are termed theint or multivariate CDF and pdf, respectively, of X. The random variable
X, has a distribution that satisfies

Fi(x) = P({seS|X(s) < X.}) = F(Xy,e,..., ).

This random variable is measurable with respect to-thabfield G, containing the events whose
occurrence is determined by Xlone; i.e. G, is the family generated by sets of the fgkwR x... xR
with A € B. If F is absolutely continuous with respect to Lebesque measu8é, dimen there are
associated densities f andshtisfying

(2 F(x,) = fyxi,m fi(y.) dy,
D= [ [T (X Yore Y dYs...dy,.
(3) W= [ 7 f T Ve )y, dy

F, and { are termed thearginal CDF and pdf, respectively, of X

3.5.8. Corresponding to the concept of a conditional probability, we can defnéditonal
distribution: SupposeC is an event inG, with P(C) > 0. Then, define K(x,,....x,/C) =
F{yeR"|y,€C,Y,<X,,...,Ya<X})/F1(C) to be the conditional distribution of {X.,X.) given X ¢ C.
When F is absolutely continuous with respect to Lebesgue measuké, dhe conditional
distribution can be written in terms of the joint density,

& fyxn f(Y, Yoo y,) dy,y,..dy.

y,€CJy, =-= =—c0

fylgc fy:,w ft:o f(y1Yor-- ¥, dy,dy,...dy, .

n

F(z)(xzv--’)%‘c) =

Taking the limit a& shrinks to a point X= x;, one obtains the conditional distribution of,(X,X.)
given X = X,

=—c0

& ) fyX" f(Xy, Y- ,) Ay, Y, Ay

yz =
f,(x)

provided {(x,;) > 0. Finally, associated with this conditional distribution is the conditional density
fo)(Xare-e % X =X) = f(X, X, X)/f1(X;).  More generally, one could consider the marginal
distributions of any subset, say,XX,, of the vector X, with X,,...X, integrated out; and the

F(z)(xzv--’)%‘ X1=Xy) =
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conditional distributions of one or more of the variablgs,,X. X, given one or more of the
conditions X = X;,..., X, = X,.

3.5.9. Just as expectations are defined for a single random variable, it is possible to define
expectations for a vector of random variables. For exarfi}e, - EX,)(X,-EX,) is called the
covariance of X, and X, andE€”, where t = (t,,....,t) is a vector of constants, is a (multivariate)
moment generating function for the random vector X. Here are some useful properties of
expectations of vectors:

(a) If g(X) is a function of a random vector, theg(X) is the integral of g with respect to the
distribution of X. When g depends on a subvector of X, BggiX) is the integral of g(y) with
respect to the marginal distribution of this subvector.

(b) If X and Z are random vectors of length n, arathdb are scalars, thelB(aX + bZ) =aEX

+ bEZ.

(c) [Cauchy-Schwartz inequality] If X and Z are random vectors of length n, Bdx)? <
(EX'X)(EZ'2).

(d) [Minkowski Inequality] If X is a random vector of length n and 4 is a scalar, then

(E| Zinzl X[ < Zinzl (E| X[
(e) [Loeve Inequality] If X is a random vector of length n and r > 0, EE}MZL Xi|" <

max(1,n%) Y., E[X|-

() [Jensen Inequality] If X is a random vector and g(x) is a convex function BlggiX) >
g(EX). If g(x) is a concave function, the inequality is reversed.

When expectations exist, they can be used to bound the probability that a random variable takes on
extreme values.

Theorem 3.6. Suppose X is a nx1 random vector ansla positive scalar.

a. [Markov bound] If mak | X;| < 4+, then mayPr(| X;| >¢) < maxg|X;|/e.

b. [Chebyshev bound] EX'X < +e, then Pr(X|, > &) < EX'X/€

c. [Chernoff bound] IE€* exists for all vectors t in some neighborhood of zero, then for some
positive scalare and M, Pr(X|, >¢) < Me®.

Proof: All these inequalities are established by the same technique: If r(y) is a positive non-
decreasing function of y > 0, akal(|X|) < +=, then
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Pr(X|>e)= [

IxI>e

F(dx) < fH . [r(Ix[)/r(e)]F(dx) < Er(IX])/r(e).

Taking r(y) = ¥ gives the result directly for the Chebyshev bound. In the remaining cases, first get
a component-by-component inequality. For the Markov boundXfPr¢ €) < E|X;|/e for each i
gives the result. For the Chernoff bound,

Pr(X[,>€) < Y., [Pr(X >en™?) + Pr(X < &n'?)]

since if the event on the left occurs, one of the events on the right must occur. Then apply the
inequality Pr(X;| >¢) < Er(|X;|)/r(e) with r(y) = n¥%&" to each term in the right-hand-side sum.
The inequality for vectors is built up from a corresponding inequality for each companent.

3.5.10. When the expectation of a random variable is taken with respect to a conditional
distribution, it is called @onditional expectation. If F(x|C) is the conditional distribution of a
random vector X given the eve@t then the conditional expectation of a function g(X) giCeis
defined as

Excg)= [ gOIF(@C)

Another notation for this expectationkgg(X)|C). When the distribution of the random variable
X is absolutely continuous with respect to Lebesgue measure, so that it has a density f(x), the

conditional density can be written d|C) =f(x)-1(xeC)/ f f(s)ds , and the conditional expectation
C

can then be written

fcg(x)-f(x)dx

Exc9(X) = f g fxCyax = ——— .

c f f(x)dx

C
When the distribution of X is discrete, this formula becomes
Y e IR

Exc9(X) =

D e f®

The conditional expectation is actually a functemthec-field C of conditioning events, and is
sometimes writtei, - g(X) or E(g(X)| C) to emphasize this dependence.

Supposé\,,... A, partition the domain of X. Then the distribution satisfies
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FO) = 3 FOR)FEA),
implying
EgX) = [ g0F(@) =Y [ g0FAAYFA) = Y E{QMIA}FA).

This is called théaw of iterated expectations, and is heavily used in econometrics.

Example 2. (continued) Recall that X is the number of heads that appear before a tail in a
sequence of coin tosses, and that the probability of X =K'i$o2 k = 0,1,... . LeC be the event
of an even number of heads. Then,
k- P
Ey X = Zk:0,2,4,... k27t - ijo,l,z,... j-4! - 2/3
k- i !
Zk:0,2,4,... 27t Zj:O,l,Z,... 4712

where the second ratio is obtained by substituting k = 2j, and the value is obtained using the
summation formulas for a geometric series from 2.1.10. A similar calculation for the event A of an
odd number of heads yields,,X = 5/3. The probability of an even number of heads is

Zk:o,z, 4 2%l =2/3. The law of iterated expectations then gives
E X = E{X|C)-P(C) + E{X|A)-P(A) = (2/3)(2/3) + (5/3)(1/3) = 1,
which confirms the direct calculation BfX.

The concept of a conditional expectation is very important in econometrics and in economic
theory, so we will work out its properties in some detail for the case of two variables. Suppose
random variables (U,X) have a joint density f(u,x). The marginal density of X is defined by

9(x) = fmm f(u,x)du,

and the conditional density of U given X = x is defined byX{w f(u,x)/g(x), provided g(x) > O.
The conditional expectation of a function h(U,X) satiskgs(U,X)|X=x) = [h(u,x)f(u|x)du, and
is a function of x. The unconditional expectation of h(U,X) satisfies

Eh(U,X) = ff h(u,x)f(u,x)dudx =f+°°w(f°°w h(u,x)f(ux)du) g)dx  EE,xh(U,X);

another example of the law of iterated expectations. cbhditional mean of U given X=x is
My x(X) = EyxU; by the law of iterated expectations, the conditional and unconditional mean are
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related byE U = EExU = ExMx(X). Theconditional variance of U is defined by (U|x) =
Eux(U - Myx(x))°. Itis related to the unconditional variance by the formula

Ey(U - EyU)? = ExEyx(U - My (X) + My x(X) - EU)?
=ExEyx(U - My x(X))? + ExEyx(My x(X) - EqU)? + 2B, E 5 (U - My (X)) (M y < (X) - EyU)
=ExV(U[X) + Ex(Myx(X) - EgU)* + 2B, (M x(X) - EQU)E (U - My x(X))
=ExV(U|X) + EX(MU\X(X) - E,U)?

Then, the unconditional variance equals the expectation of the conditional variance plus the variance
of the conditional expectation.

Example 10: Suppose (U,X) are bivariate normal with me&hs= p, andeX = p,, and second
momentsE(U-Y,)? = 6,2, E(X-W,)? = 6,2, andE(U-p,)(X-l,) = o, = po,o,. Define

2 2
Q= S| L I ™Y 2:p- UTHy || X
1-p? o, o, o, o,

and observe that
2 2
Oy 1-p Oy Oy
The bivariate normal density is f(u,x) =42,0,(1-p%)¥] ™ exp(-Q/2). The marginal density of X is
normal with mean pand variance,: n(x-i,,c,) = (21,2 exp(-(x-K)*/2s,?) . This can be derived

from the bivariate density by completing the square for u in Q and integrating over u. The
conditional density of U given X then satisfies

f(u[x) = [2r0,0,(1-p) "] exp(-Q/2)/(2n0,7) - exp(-(x-1)20.7).

=] o2

Hence the conditional distribution of U, given X = x, is normal with conditional ra¢dnX=x)
= W, + po,(X - Wlo, = W, + o,(X-W)/c,” and variance/ (U|X=x) = E((U-E(U|X=x))?|X=x) =
o (1% = 6,2 - 6,°lc,>. When U and X are joint normal random vectwoith EU =y, EX = ,,
E(U_I“lu)(u_uu)l :Quu! E(x_px)(x-“x)l:Qxxi andE(U_uu)(x_UX)l :qu' then (u X:X) is normal with
E(U | x:X) = UU + QUXQXX-l(X - U'X) andV(U | x:X) = QUU - QUXQXX-I QXU'

= [2n0,(1-p9)] exp[ -
2:(1-p?)



McFadden, Statistical Tools, © 2000 Chapter 3-24, Page 62

3.5.11. Conditional densities satisfy f(u,x) =|¥)g(x) = f(x| u)h(u), where h(u) is the marginal
density of U, and hence fix) = f(x|u) h(u)/g(x). This is calleBayes Law. When U and X are
independentf(u,x) = h(u)g(x), or f(ux) = h(u) and f(xu) = g(x). For U and X independent, and
r(-) and s{) any functions, one has E(r(X=x) = [r(u)f(u|x)du = [r(u)h(u)du =Er(U), and
E(r(U)s(X)) = [r(u)s(x)f(u,x)dudx = [s(x)g(x)[r(u)f(u/x)du dx = [s(X)g(XEr(U|x)dx =
[ES(X)][Er(U)], or cov(r(U),s(X)) = 0, providedr(U) andEs(X) exist. If r(u) = u EU, then
E(r(U)|X=x) = 0 and cov(U,X) =E(U-EU)X = 0. Conversely, suppose U and X are jointly
distributed. If cov(r(U),s(X)) = 0 for all functions+),(s(¢) such thaEr(U) andEs(X) exist, then X
and U are independent. To see this, choose r(u) = 1far u(u) = 0 otherwise; choose s(x) = 1
for x < X', s(x) = 0 otherwise. Thelr(U) = H(U) andEs(X) = G(X), where H and G are the
marginal cumulative distribution functions, and 0 = cov = K- H(U)-G(X'), where F is the joint
cumulative distribution function. Hence, F(u,x) = H@&(x), and X, U are independent.

Note that cov (U,X) = 0 is not sufficient to imply U,X independent. For example, g(x) = % for
-1 < x < land f(ux) = % for -1< u-x* < 1 is nonindependent with(U | X=x) = x?, but cov(U,X) =
EX®=0. Furthermoreg(U|X=x) = 0 is not sufficient to imply U,X independent. For example, g(x)
=Y for -1< x < 1 and f(ux)= 1/2(1 + %) for -(1+ ¥) < u < (1 + X) is nonindependent with
(U?|x) = (1 + ¥ )* » E U? = 28/15, buE(U|X=x) = 0.

Example 11. Suppose monthly family income (in thousands of dollars) is a random variable Y
with a CDF F(y) = 1 -yfory > 1. Suppose a random variable Z is one for home owners and zero
otherwise, and that the conditional probability of the event Z = 1, given Y, is (Y-1)/Y. The
unconditional expectation of Y is 2. The joint density of Y and Z isg(®ly) = (2¥) (1 - y*) for

z = 1. The unconditional probability of Z =1 is theﬁ +°° Ay2|y)dy = 1/3. Bayes Law gives
-1

+

the conditional density of Y given z = 1, f(y|z) = f6(z|y)/ f °l° f(yyg(zly)dy = (6¥%) (1 - y%), so

that the conditional expectation of Y givenz =1 is E(Y|Zzlfi° y f(y|z)dy = 3.

Example 12. The problem of interpreting the results of medical tests illustrates Bayes Law. A
blood test for prostate cancer is known to yield a “positive” with probability 0.9 if cancer is present,
and a false “positive” with probability of 0.2 if cancer is not present. The prevalence of the cancer
in the population of males is 0.05. Then, the conditional probability of cancer, given a “positive”
test result, equals the joint probability of cancer and a positive test result, (0.05)(0.9), divided by the
probability of a positive test result, (0.05)(0.9)+(0.95)(0.2), or 0.235. Thus, a “positive” test has a
low probability of identifying a case of cancer, and if all “positive” tests were followed by surgery,
about 75 percent of these surgeries would prove unnecessary.
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3.5.12. The discussion of expectations will be concluded with a list of detailed properties of
characteristic functions and moment generating functions:

a. y(t) = Ee" = Ecos(tY) +Esin(tY),

b. Z=a+ bY has the cf%(bt),

c. IfFEY* exists, theny®(t) = dy(t)/dt exists, satisfies the boundy(t)/dt| < E|Y | and is
uniformly continuous, anBY* = (1)®(0). If y®(t) exists, therEY* exists.

d. If Y has finite moments through order k, thgt) has a Taylor's expansion

y©) = Yo HEYN + [y¥) - yRO)]tk!
where). is a scalar with 0 % < 1; the Taylor's expansion satisfies the bounds

v - Y v EYD < [t/E|Y[K

and
) - Yo ¢ EYN < 2/t/E|Y MK

If EY* exists, then the expressigft) = Ln y(t), called thesecond characteristic function or
cumulant generating function, has a Taylor's expansion

(= Y0 wuth+ L) - C9),

where(® = d¢/dt‘, andh is a scalar with 0 X < 1. The expressiomsare called theumulants

of the distribution, and satisfy = EY and«, = Var(Y). The expressioky/x,*? is called the
skewness, and the expressian/x,” - 3 is called théurtosis (i.e., thickness of tails relative to
center), of the distribution.

e. If Y is normally distributed with mean p and varianéethen its characteristic function is
expiut-c’?/2). The normal has cumulants= l,x, = 6% 13 =%, = 0.

f. Random variables X and Y have identical distribution functions if and only if they have
identical characteristic functions.

g. IfY,~,Y (see Chap. 4.1), then the associated characteristic functions ggtisfyy(t) for

eacht. Conversely, if Yhas characteristic functign(t) converging pointwise to a functigit)

that is continuous at t = 0, then there exists Y suchuiftats the characteristic function of Y

and Y, -, Y.

h. The characteristic function of a sum of independent random variables equals the product of
the characteristic functions of these random variables, and the second characteristic function of
a sum of independent random variables is the sum of the second characteristic functions of these
variables; the characteristic function of a mean of nindependently identically distributed random
variables, with characteristic functigit), iswy(t/n)".
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Similar properties hold for proper moment generating functions, with obvious modifications:
Suppose a random variable Y has a proper mgf m(t), finite|ferc, wherer is a positive constant.
Then, the following properties hold:

a. m(t) =Ee" for |t| <z.

b. Z=a + bY has the mgFm(bt).

c. EY*exists for all k > 0, and m d‘m(t)/dt exists and is uniformly continuous fdf <, with
EYk=m,(0).

d. m(t) has a Taylor's expansion (for any kYthn= (EY))t/j! + [m(At) - m(0)]t/k!, where) is

a scalarwith O € < 1.

e. If Y is normally distributed with mean p and variasgehen it has mgf exp(us2t2).

f. Random variables X and Y with proper mgf have identical distribution functions if and only
if their mgf are identical.

g. If Y, -, Y and the associated mgf are finite fr<, then the mgf of Yconverges pointwise

to the MGF of Y. Conversely, if Yhave proper MGF which converges pointwise to a function
m(t) that is finite for|t| <, then there exists Y such that m(t) is the mgf of Y apd Y.

h. The mgf of a sum of independent random variables equals the product of the mgf of these
random variables; the mgf of the mean of n independently identically distributed random
variables, each with proper mgf m(t), is m(t/n)

The definitions of characteristic and moment generating functions can be extended to vectors of
random variables. Suppose Y is a nx1 random vector, ahlddet nx1 vector of constants. Then
y(t) =Ee"Y is the characteristic function andt)y€ E€Y is the moment generating function. The
properties of cf and mgf listed above also hold in their multivariate versions, with obvious
modifications. For characteristic functions, two of the important properties translate to

(b’) Z=a+BY, wherea is a mx1 vector anB is a mxn matrix, has cf'éy(Bt).

(e’) if Y is multivariate normal with meap and covariance matrix X, then its characteristic

function isexp(iu't - t'2t/2).
A useful implication of (b’) and (€’) is that a linear transformation of a multivariate normal vector
Is again multivariate normal. Conditions (c) and (d) relating Taylor's expansions and moments for
univariate cf have multivariate versions where the expansions are in terms of partial derivatives of
various orders. Conditions (f) through (h) are unchanged in the multivariate version.

The properties of characteristic functions and moment generating functions are discussed and
established in C. R. Rao_Line&tatistical Inference 2b.4, and W. Feller_Arntroductionto
ProbabilityTheory Il, Chap. 13 and 15.
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6. TRANSFORMATIONS OF RANDOM VARIABLES

6.1. Suppose X is a measurable random variablR,&) (ith a distribution F(x) that is absolutely
continuous with respect to Lebesgue measure, so that X has a density f(x). Consider an increasing
transformation Y = H(X); then Y is another random variable. Let h denote the inverse function of
H;i.e., y = H(x) implies x = h(y). The distribution function of Y is given by

G(y) = Pr(Y<y) = Pr(H(X) < y) = Pr(X< h(y)) = F(h(y)).

When h(y) is differentiable, with a derivativé(y) = dh(y)/dy, the density of Y is obtained by
differentiating, and satisfies g(y) = f(h(y){). Since y= H(h(y)), one obtains by differentiation
the formula 1= H'(h(y))h'(y), or h(y) = 1/H'(h(y)). Substituting this formula gives g(y) =

f(h()H' (h(y)).

Example 13. Suppose X has the distribution function F(x) =*Ifa x > 0, with F(x) = 0 for
x < 0; then X is said to have an exponential distribution. Suppose Y =HI@¢ X, so that X =
h(Y) = €". Then, G(y) = 1-exp(¥pand G(y) = exp(-@e’ = exp(y-€) for - <y < +-. This is called
an extreme value distribution. A third example is X with some distribution function F and density
f, and Y = F(X), so that for any value of X, the corresponding value of Y is the proportion of all X
that are below this value. Lefaenote the solution to F(x) = p. The distribution function of Y is
G(y) = F(x) =y. Hence, Y has the uniform density on the unit interval.

The rule for an increasing transformation of a random variable X can be extended in several
ways. If the transformation Y = H(X) is decreasmther than increasing, then

G(y) = Pr(Y<y) = Pr(H(X) < y) = Pr(X> h(y)) = 1-F(h(y)),
where h is the inverse function of H. Differentiating,

g(y) = f(h(y)(-H(y)).

Then, combining cases, one has the resultfthany one-to-one transformation Y = H(X) with
inverse X = h(Y), thedensity of Y is

g(y) = fh)h'(y)| = b))/ [H'(h(y)|.

An example of a decreasing transformation is X with the exponential deh$ity>e> 0, and Y =
1/X. Show as an exercise that G(y)® and g(y) = &"/y%
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Consider a transformation Y = H(X) that is mote-to-one. The intervak{;y) is the image of
a set A of x values that may have a complicated structure. One can write

G(y) = Pr(Y<y) = Pr(H(X)< y) = Pr(Xe A) = F(A).
If this expression is differentiable, then its derivative gives the density.

Example 14. If X has a distribution F and density f, and Y&/, then A = [-y,y], implying
G(y) = F(y) - F(-y) and f(y) = f(y) + f(-y).

Example15. If Y = X?, then A = [-y*?y*?], G(y) = F(y"?) - F(-y"?. Differentiating for y+ 0,
a(y) = (f(y"? + f(-y¥3))/2y*2. Applying this to the standard normal with F(xd#), the density of
Y is g(y) =p(y*?)Iy"? = (2ry)™e¥?, called the chi-square with one degree of freedom.

3.6.2. Next consider transformations of random vectors. These transformations will permit us
to analyze sums or other functions of random variables. Suppose X is a nx1 random vector.
Consider first the transformation Y = AX, where A is a nonsingular nxn matrix. The following
result from multivariate calculus relates the densities of X and Y:

Theorem 3.8. If X has density f(x), and Y AX, with A nonsingular, then the density of Y is

g(y) = f(A"y)/|det) | .

Proof: We will prove the result in two dimensions, leaving the general case to the reader. First,
Yl all 0 Xl

consider the cas
ay||X,

Differentiating with respect toyand y, g(y.,Y,) = f(y./a,,.y./a,)/a,,a,. This establishes the result

Yl all 0 Xl

for diagonal transformations. Second, consi
A p||%;

Y,

with,& 0 and & > 0. One has G(y,) = F(y,/a,;,Y,/a,).

2

witkr & and g > 0. Then

G(Y,Y,) = fxyl’a: fx a2l gy, x,)dx,dx,. Differentiating with respect to,yand y yields

=— ==

1=

G (Y1,Y2)/0Y10Y5 = 9(¥1,Y2) = (B185) F(Ya/By1, (Yo Yr80r/8y1)/Bs0).
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This establishes the result for triangular transformations. Finally, consider the general

. Yl all a‘12 xl . )
transformation = with a> 0 and ga,,-a,,a, > 0. Apply the result for triangular
2 aZl a22 X2
Z,| |1 a,/a;||X Yil |y 0 z
transformations first to |- %12 %)™ , and second ol | : . This
2 1 2| &1 a22_a12a21/ a; Zz
a, a,l | 0 1 /
gives the general transformation, %sl o= %12 . The density of
& x| |8y azz_a12a21/ a,||0 1

Z is h(z,z) = f(z;-z,a,/a,,2), and of Y is g(yy,) = h(¥/au, (VY1) (a-ande/a,)).
Substituting for h in the last expression and simplifying gives

a(Vu.Y2) = f((anyi-a.y,)/D, (&1Y,-2:,Y,)/D)/D,

where D = g8a,,-a,,8, IS the determinant of the transformation.

We leave as an exercise the proof of the theorem for the density of Y = AX in the general case
with A nxn and nonsingular. First, recall that A can be factored so that A = @) DWhere P and
Q are permutation matrices, L and U are lower triangular with ones down the diagonal, and D is a
nonsingular diagonal matrix. Write Y = PLDURQ Then consider the series of intermediate
transformations obtained by applying each matrix in turn, constructing the densities as was done
previously. [

3.6.3. The extension from linear transformations to one-to-one nonlinear transformations of
vectors is straightforward. Consider Y = H(X), with an inverse transformation X = h(Y). At a point
y° and X = h(y’), a first-order Taylor's expansion gives

y-Y=AX-X)+o(x-Xx),
whereA is theJacobean matrix
OH 1 (x°)/ox, ... dHY(x°)/ox,
A= | |
OH"(x)/ox, ... dH"(x°)/ox,

and the notation(z) means an expression that is small relative to z. Alternately, one has
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oh*(y%/oy, ... oh'(y°)/ay,
B=A"= | |
S (x*)/dy, ... Sh"(y°)dy.

The probability of Y in the little rectangle’[y°+Ay] is approximately equal to the probability of X

in the little rectangle x°+A™Ay]. This is the same situation as in the linear case, except there the
equality was exact. Then, the formulas for the linear case carry over directly, with the Jacobean
matrix of the transformation replacing the linear transformation matrix A. If f(x) is the density of
X, then g(y) = f(h(y))|det®)| = f(h(y))/|det@)| is the density of Y.

Example 16. Suppose a random vector (X,Z) has a density f(x,z) for x,z > 0, and consider the
nonlinear transformation W =-X and Y = X/Z, which has the inverse transformation X = (WY)

. w2y V2 w2y 122
and Z = (W/Y¥2. The Jacobean matrix is B , and Bt 1/2y.
-1/2n/ -1/2 1/2\s -3/2
w2y 122 w2y =322

Hence, the density of (w,y) is f(W{)(w/y)¥?)/2y.

In principle, it is possible to analyze n-dimensional nonlinear transformations that are not
one-to-one in the same manner as the one-dimensional case, by working with the one-to-many
inverse transformation. There are no general formulas, and each case needs to be treated separately.

Often in applications, one is interested in a transformation from a nx1 vector of random variables
X to a lower dimension. For example, one may be interested in the scalar random variable S = X
+... + X, If one "fills out" the transformation in a one-to-one way, so that the random variables of
interest are components of the complete transformation, then Theorem 3.6 can be applied. In the
case of S, the transformation ¥ S filled out by Y = X; for i = 2,...,n is one-to-one, with

Yilf1 11 ... 1%
Y, [0 1 0 ..0%
Y,=[0 0 1 .. g|x,
R |
Y, 0 0O lxn
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Example 17. Consider a random vector (X,Z) with a density f(x,z), and the transformation S =

S 1||X
X+ZandT=2Z, or T = Az The Jacobean of this transformation is one, and its inverse is
X |1 -1}|S . . . . .
5 = o 1l so the density of (S,T) is g(s,t) = f(s-t,t). The marginal density of S is f{&n g

= f“” f(s-t,t)dt. If X and Z are statistically independent, so that their density is f(x(Z) $,{z),

+oo

then this becomes @) = f f.(s-tyf,(t)dt. This is termed eonvolution formula.

=—oco

7. SPECIAL DISTRIBUTIONS

3.7.1. A number of special probability distributions appear frequently in statistics and
econometrics, because they are convenient for applications or illustrations, because they are useful
for approximations, or because they crop up in limiting arguments. The tables at the end of this
Chapter list many of these distributions.

3.7.2. Table 3.1 lists discrete distributions. The binomial and geometric distributions are
particularly simple, and are associated with statistical experiments such as coin tosses. The Poisson
distribution is often used to model the occurrence of rare events. The hypergeometric distribution
Is associated with classical probability experiments of drawing red and white balls from urns, and
Is also used to approximate many other distributions.

3.7.3. Table 3.2 lista number of continuous distributions, including some basic distributions such
as the gamma and beta from which other distributions are constructed. The extreme value and
logistic distributions are used in the economic theory of discrete choice, and are also of statistical
interest because they have simple closed form CDF's.

3.7.4. The normal distribution and its related distributions play a central role in econometrics,
both because they provide the foundation for finite-sample distribution results for regression models
with normally distributed disturbances, and because they appear as limiting approximations in large
samples even when the finite sample distributions are unknown or intractable. Table 3.3 lists the
normal distribution, and a number of other distributions that are related to it. The t and F
distributions appear in the theory of hypothesis testing, and the chi-square distribution appears in
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large-sample approximations. The non-central versions of these distributions appear in calculations
of the power of hypothesis tests.

It is a standard exercise in mathematical statistics to establish the relationships between normal,
chi-square, F, and t distributions. For completeness, we state the most important result:

Theorem 3.9. Normal and chi-square random variables have the following properties:
() fS=Y2+ .. + Y2 where the Yare independent normal random variables with means p
and unit variances, then S has a non-central chi-square distribution with degrees of freedom
parameter k and non-centrality paraméterp,® + ... + 42, denoted;'%(k,5). If & = 0, this is
a (central) chi-square distribution with degrees of freedom parameter k, dgitkted
(i) If Y and S are independent, Y is normal with méamnd unit variance, and S is chi-square
with k degrees of freedom, then T = Y/(S7k¥ non-central t-distributed with degrees of
freedom parameter k and non-centrality parameter A, denoted t’(k,A). If A =0, thisisa(central)
t-distribution with degrees of freedom parameter k, denoted t(k).
(i) If R and Sareindependent, R isnon-central chi-square with degrees of freedom parameter
k and non-centrality parameter 5, and Siscentral chi-squarewith degrees of freedom parameter
n, then F = nR/kS is non-central F-distributed with degrees of freedom parameters (k,n) and
non-centrality parameter §, denoted F'(k,n,d). If 6 =0, this distribution is F-distributed with
degrees of freedom parameters (k,n), and is denoted F(k,n).
(iv) T is non-central t-distributed with degrees of freedom parameter k and non-centrality
parameter 2 if and only if F = T2 is non-central F-distributed with degrees of freedom
parameters (1,k) and non-centrality parameter § = A%

Proof: These results can be found in most classical textsin mathematical statistics, see particularly
Rao (1973), pp. 166-167, 170-172, 181-182, Johnson & Kotz (1970), Chap. 26-31, and Grayhill
(1961), Chap. 4..

In applied statistics, it isimportant to be ableto cal culate values x = G*(p), where G isthe CDF
of the central chi-square, F, or t, distribution, and values p = G(x) where G is the CDF of the non-
central chi-square, F, or t distribution. Selected points of these distributions are tabled in many
books of mathematical and statistical tables, but it ismore convenient and accurateto cal cul ate these
valueswithin astatistical or econometrics software package. Most current packages, including TSP,
STATA, and SST, can provide these values.

3.7.5. One of themost heavily used distributionsin econometricsisthe multivariatenormal. We
describe this distribution and summarize some of its properties. A nx1 random Weagr
multivariate normal with a vector of megnsnd a positive definite covariance matrix X if it has
the density
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n(y - 1,Z) = (2m)™ det(Z) ™ exp(-((y - W) Z*(y - W)/2).

Thisdensity is also sometimes denoted n(y;u,2), and the CDF denoted N(y;,2). Itscharacteristic
function isexp(iu't - t'Xt/2), and it has the momentsE'Y = p and E (Y-p)(Y-pn)' = X. From the
characteristic function and therulefor linear transformations, one hasimmediately the property that
alinear transformations of amultivariate normal vector isagain multivariate normal. Specificaly,
iIf Y isdistributed N(y;1,%), then the linear transformation Z = a+ BY, which has mean a + Bu and
covariancematrix B’ ZB, isdistributed N(z;a + Bp,B’ £B). Thedimension of Z need not bethe same
asthedimension of Y, nor does B have to be of maximum rank; if B'XB islessthan full rank, then
the distribution of Z is concentrated on an affine linear subspace of dimension n through the point
a+ Bu. Let o, = ()" denote the standard deviation of Y, and let p,; = %, /5, o; denote the
correlation of Y, and Y;. Then the covariance matrix X can be written

o, 0 .. 0][1 @, - opf[o; O .. O

0 o, ... Oflo 1 .. 0.0 90 .. 0
5= 2 21 2n 2 - DRD.

_O 0 ..o O O - 1 _O 0O ..o

n nj

where D = diag(o,,...,5,) and R isthe array of correlation coefficients.

Theorem 3.10. Suppose Y ispartitioned Y' = (Y," Y,'), whereY ,is mx1, and left’ = (1, 1,")
Z:11 Z:12
pX

and be commensurate partitions of g and . Then the margina density of Y, is

21 22

multivariate normal with mean i, and covariance matrix X,;. The conditional density of Y, given
Y, =y,, ismultivariate normal with mean p, + Z,,*2.,(y; - 1,) and covariance matrix X., - 2,; Z,;
¥,,. Then, the conditional mean of a multivariate normal islinear in the conditioning variables.

Proof: The easiest way to demonstrate the theorem is to recall from Chapter 2 that the positive
definite matrix X has a Cholesky factorization X = LL ', where L islower triangular, and that L has

an inverse K that is again lower triangular. If Z is a nx1 vector of independent standard normal
random variables (e.g., eathhas mean zero and variance 1), tenu + LZ isnormal with mean

p and covariance matrix . Conversely, if Y hasdensity n(y - 1,X), then Z = K(Y - W) isavector

of i.i.d. standard normal random variables. These statement use the important property of normal
random vectors that a linear transformation is again normal. This can be shown directly by using

the formulas in Section 3.6 for densities of linear transformations, or by observing that the
(multivariate) characteristic function of Y with density n(y - p,2) isexp(it'p - t'%t/2), and theform

of this characteristic function is unchanged by linear transformations.
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The Cholesky constructiovi = u + LZ provides an easy demonstration for the densities of
marginal or conditional subvectorsof Y. Partition L and Z commensurately with (Y,’ Y,’), so that

L, O
L

1
andZ' =(Z,Z,’). ThenXy =Lyl ', Zp =Ly Ly’ Bp=Lyply +Lyly’, and

21 22

hence X, 2, =L 4L, implying Lo,L ' =2, - 2,2, 2 ,. Then, Y, =y, + L;;Z,hasamargina
multivariate normal density with mean p, and covariancematrix L ;,L,," =%;,. Also,Y,=p,+L,,Z,
+ L ,,Z,, implying Y, =, + LyL,, (Y, - W) + L,Z,. ConditionedonY, =y, thisimpliesY, =,
+ 3, 8,,74y, - W) + L,,Z, ismultivariate normal with mean , - 2,,2,, 14, and covariance matrix
2]22 - 2]21211_1212' O

The next theorem gives some additional useful properties of the multivariate normal and of
quadratic formsin normal vectors.

Theorem 3.11. Let Y be a nx1 random vector. Then,
() If Y =(Y,"Y,') is multivariate normal, thevi, andY , are independent if and only if they
are uncorrelated. Howevef, andY, can be uncorrelated and each have a marginal normal
distribution without necessarily being independent.
(i) If every linear combinatio’Y is normal, then Y is multivariate normal.
(i) If Y is i.i.d. standard normal andl is an idempotent nxn matrix of rank k, thefAY is
distributedy?(k).
(iv) If Y is distributedN(p,I) and A is an idempotent nxn matrix of rank k, themAY is
distributedy'?(k,3) with & = u’ApL.
(v) If Y isi.i.d. standard normal and A and B are positive semidefinite nxn matrices, then
Y'AY and Y'BY are independent if and onlyAB = 0.
(vi) If Y is distributedN(u,1), and A, is an idempotent nxn matrix of rankiér | = 1,...K, then
the Y'A, Y are mutually independent and distribugetk,,5)) with §, = w’A,u if and only if
either (@) A/A; =0for | #jor (b) A, +... + A isidempotent.
(vii) If Y isdistributed N(i,1), A is a positive semidefinite nxn matrB&,is a kxn matrix, and
BA =0, thenBY and Y'AY are independent.
(viii) If Y is distributed N(u,l) and A is a positive semidefinite nxn matrix, then EAY =
M AR +tr(A).

Proof: Results (i) and (ii) are proved in Anderson (1958), Thm. 2.4.2 and 2.6.2. For (iii) and (iv),
write A = UU’, where thisis its singular value decomposition with U a nxk column orthogonal
matrix. TherJ"Y is distributed\N(U'p,l,), and the result follows from Theorem 3.8. For (v), let k
be the rank of A and m the rank of B. There exists a nxk matrld of rank k and a nxm matrix
of rank m such thad = UU’ andB =VV'. The vectordJ'Y andV'Y are uncorrelated, hence
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independent, if and onlyd'V =0. ButAB =U(U'V)V'is zero if and only il’V =0 sinceU and
V' are of maximum rank. For (vi), use the SVD decomposition as in (iv). For (vii),AvetgU’
with U of maximum rank as in (v). Th&A = (BU)U’ =0impliesBU =0, so thaBY andU'Y are
independent by (i). For (vii), EPAY = p'Ap + E (Y-p)'A(Y-p) = LA+ tr(E (Y-p)'A(Y-p)) =
LA +r(A). O

NOTES AND COMMENTS

The purpose of this chapter has been to collect the key results from probability theory that are
used in econometrics. While the chapter isreasonably self-contained, it is expected that the reader
will already be familiar with most of the concepts, and can if necessary refer to one of the excellent
textsin basic probability theory and mathematical statistics, such asP. Billingsley, Probability and
Measure, Wiley, 1986; or Y. Chow and H. Teicher, Probability Theory, 1997. A classic that
provides an accessible treatment of fields of subsets, measure, and statistical independence is J.
Neveu, Mathematical Foundations of the Calculus of Probability, Holden-Day, 1965. Another
classic that contains many resultsfrom mathematical statisticsisC. R. Rao (1973) Linear Statistical
Inference and Its Applications, Wiley. A comprehensive classical text with treatment of many
topics, including characteristic functions, is W. Feller, An Introduction to Probability Theory and
Its Applications, Vol. 1&2, Wiley, 1957. For special distributions, properties of distributions, and
computation, a four-volume compendium by N. Johnson and S. Kotz, Distributions in Statistics,
Houghton-Mifflin, 1970, is agood source. For the multivariate normal distribution, T. Anderson
(1958) An Introduction to Multivariate Satistical Analysis, Wiley, and F. Graybill (1961) An
Introduction to Linear Statistical Models, McGraw-Hill, are good sources. Readerswho find some
sections of thischapter unfamiliar or too dense may find it useful to first review an introductory text
at theundergraduate level, such asK. Chung, A Coursein Probability Theory, Academic Press, New
York, or R. Larsen and M. Marx, Probability Theory, Prentice-Hall.
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TABLE 3.1. SPECIAL DISCRETE DISTRIBUTIONS

NAME & DOMAIN | DENSITY MOMENTS CHAR. FN
1. Binomial o M =np (1-p+pB8"
k 1- n-k
( k) p(1-p)
k=0,1,..,n O<p<l1 c° = np(1-p) Note 1
2. H i = + N 2
ypergeometric ; w)  [rew K = nr/(r+w) ote
Kk n-k| n
k an integer rw>n . rw FW-n
max{0,n-w} < k r,w,n positive integers 0" = 5 Wl
& k < min{r,n} (r+w) r+w
3. Geometric p(1-p) U = (1-p)/p Note 3
k=0,1,2,... 0<p<1 o’ = (1-p)lp
4. Poisson B! H=>X exppe™-1)]
k=0,1,2,... A >0 o? =\? Note 4
5. Negative Binomial kel oy H =r(1-p)/p
K pl-p
k=0,1,2,... rinteger,r>0&0<p < Lc®=r(1-p)g Note 5
NOTES

1. 4= EX (the mean), and® = E(X-UY (the variance). The density is often denoted b(k;n,p). The moment
generating function is (1-p+p.

2. The characteristic and moment generating functions are complicated.

3. The characteristic function is p/(1-(1-f))and the moment generating function is p/(1-(%)pdefined for t <
-In(1-p).

4. The moment generating function is éxXpt1)), defined for all t.

5. The characteristic function i¥(4-(1-p)¢)’, and the moment generating function'i§¢lp(1-p)e)’, defined for

t <-In(1-p).



M cFadden, Statistical Tools, © 2000

Chapter 3-37, Page 75

TABLE 3.2. SPECIAL CONTINUOUSDISTRIBUTIONS

NAME & DOMAIN DENSITY MOMENTS CHAR. FN
1. Uniform 1/(b-a) K = (atb)/2 bt ot
a<x<b o’ = (b-af/12 € "€
1t(b-a)
Note 1
2. Triangular (2-|x|/a)/a pH=0 ) 1-cosat
x| <a o’ = &16 a%t?
3. Cauchy af(e + (x-pY) none &l
o < X < oo
4. Exponential e/ =2 1/(14t)
X >0 o =)\? Note 2
5. Pareto x>t i = ab/(b-1) Note 3
X>a o? = b&l(b-1}(b-2)
6. Gamma a-1xb p=ab (1-bt)*
x>0 x ¢ o’ = alf Note 4
I'(a)b?
7. Beta F@+h) a1s o H = al/(a+b) Note 5
O0<x<1 ——— X*(1-x)
r@r(b) o= ab
(a+b)’(a+b+1)
8. Extreme Value H=a+0.5772b Note 6
1 oo | X228 _ a-tcam
P e
b b
—o0 € X < Hoo o? = (nb)%/12
9. Logistic 1 exp(@-x)/b) H=a Note 7
b (1exp(@-x)/h))?
-0 < X < teo o’ = (mb)/6
NOTES

No asrwdhpE

The moment generating function is (€™ - €*)/(b-a)t, defined for all t.
The moment generating function is 1/(1 - t), defined for t < 1/x.

The moment generating function does not exist. The mean existsfor b > 1, the variance existsfor b > 2.
Fora>0,1(a) = [, x *'e*dx isthe gammafunction. If aisaninteger, I'(a) = (a-1)!.
For the characteristic function, see C. R. Rao, Linear Statistical Inference, Wiley, 1973, p. 151.

. The moment generating function ise*I"(1 - tb) fort < 1/b .
The moment generating function is e*rbt/sin(zbt) for |t|< 1/2b.
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TABLE 3.3. THE NORMAL DISTRIBUTION AND ITSRELATIVES

NAME & DOMAIN DENSITY MOMENTS CHAR. FN.
1. Normal 2 1 = mean expltp-c’t4/2)
n(X-W o) (2nc?) ™ exp( (LS ) o? = variance Note 1
“0 <X <40, 5>0 26°
2. Standard Normal | ¢(X) = (2r)™exp(-x4/2) u=0 exp(-t/2)
—00 < X < oo o°=1
3. Chi-Square (K2)-1 112 u=K (Lat/2)*2
0 <X < o Pk = 2 o? = 2k Note 2
I(k/2)2 k=12,..
4. F-distribution F(x;k,n) H=ifn>2 Note 3
0 <X <o k,n positive integers " 2n2(k+n-2)
k(n-2)3(n-4)
ifn>4
5. t-distribution kel pn=0ifk>1 Note 4
o0 < X < oo I( 5 )(L+x2/K) kD2 o? = kl(k-2) if k > 2
1,..,1+2k
k I'(=)I
vk (2) ( 5 )
1. Noncentral v(x;k,3) i =k Note 5
Chi-Squared k pos. integer o? = 2(k+D)
x>0 0>0
2. Noncentral F(x;k, 1) if n>2, u =n(kd)/k(n-2) Note 6
F-distribution k,n positive integers ifn>4,06°=
x>0 020 2(N/K)(k+6)2+ (k+28)(n-2)
(n-2)(n-4)
3. Noncentral t(x;k,A) T((k-1)/2 Note 7
t-distribution k pos. integer = % ifk>1

o? = (1H)k/(k-2) - 2
ifk>2
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NOTESTO TABLE 3.3

1. The density is often denoted n(x-p1,6%), and the cumulative distribution referred td\N§g-u1,6%), or simplyN(u,62).

The moment generating function is exp(@ft¥2), defined for all t. The standamdrmaldensity is often denoteg(x),

and the_standardormal CDF is denotedb(x). The general normal and standard normal formulas are related by
n(x-u,6%) = @((x-p)fo)/e andN(x-p 62 = O((X-W)/o).

2. The moment generating function is (1-¥2for t < 2. The Chi-Square distribution with parameter k¢grees of

freedom) is the distribution of the sum of squares of k independent standard normal random variables. The Chi-Square
density is the same as the gamma density with b = 2 and a = k/2.

3. The F-distribution is the distribution of the expression nU/kV, where U is a random variable with a Chi-square
distribution with parameter k, and V is an independent random variable with a Chi-square distribution with parameter

k+n
F(T) . kW2 2y ki2-1

n. The density is . Forn2, the mean does not exist, and far 4, the variance does not

(k=n)/2

rre) 0

exist. The characteristic and moment generating functions are complicated.
4. If Y is standard normal and Z is independently Chi-squared distributed with parameter k, t{i&f Y/ has a

T-Distribution with parameter k=(degrees of freedom). The characteristic function is complicated; the moment
generating function does not exist.

5. The Noncentral Chi-square is the distribution of the sum of squares of k independent normal random variables, each
with variance one, and with means whose squares sbimitbe Noncentral Chi-Square density is a Poisson mixture

of (central) Chi-square densitieszjf’iO RS2/ %2 (x;k+2)).

6. The Non-central F-distribution has a density that is a Poisson mixture of rescaled (central) F-distributed densities,

Yoo [e52)] kTKZJ K % k+2j,n). It is the distribution of the expression WY, where U is a

Noncentral Chi-Squared random variable with parameters 6,aadd V is an independent central Chi-Squared
distribution with parameter n.

7. If Y is standard normal and Z is independently Chi-squared distributed with parameter k, t)en(#k) has

a Noncentral T-Distribution with parameters k andThe density is a Poisson mixture of scaled Beta distributed
densities,

kg _k_k1:2

o 77\2/2 2 -
. e VI2)lj! =
Do | M < 5r B a2

).

The square of a Noncentral T-Distributed random variable has a Noncentral F-Distribution with parameters 1, k, and
=22
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