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CHAPTER 4. LIMIT THEOREMSIN STATISTICS

4.1. SEQUENCES OF RANDOM VARIABLES

4.1.1. A great dea of econometrics uses relatively large data sets and methods of statistical
inference that are justified by their desirable properties in large samples. The probabilistic
foundations for these arguments are “laws of large numbers”, sometimes called the “law of
averages”, and “centrahtit theorems”. This chapter presents thesmtlations. It concentrates
on the simplest versions of these results, but goes some way in covering more complicated versions
that are needed for some econometric applications. For basic econometrics, the most critical
materials are the limit concepts and their relationship covered in this section, and for independent
and identically distributed (i.i.d.) random variables the first Weak Law of Large Numbers in Section
4.3 and the first Central Limit Theorem in Section 4.4. The reader may want to postpone other
topics, and return to them as they are needed in later chapters.

4.1.2. Consider a sequence of random variabl@g,Y ,,... . These random variables are all
functions Y,(s) of the_samstate of Nature s, but may depend on different parts of s. There are
several possible concepts for the limjtof a sequence of random variables Bince the Yare
functions of states of nature, these limit concepts will correspond to different ways of defining limits
of functions. Figure 4.1 will be used to discuss limit concepts. Panel (a) graphsl Y, as
functions of the state of Nature. Also graphed are curves dengtactdefined by Y, £ € which
for each state of Nature s delineate-aeighborhood of )(s). The set of states of Nature for which
1Yo(S) - Y,(sS)| > ¢ is denotedW,. Panel (b) graphs the CDF's of &nd Y,. For technical
completeness, note that a random variable Y is a measurable real-valued function on a probability
space (3,P), where- is ac-field of subsets d§, P is a probability o, and “measurable” means
that F contains the inverse image of every set in the Befield of subsets of the real line. The
CDF of a vector of random variables is then a measurable function with the properties given in 3.5.3.

4.1.3. Y, converges in probability to Y, if for eache > 0, lim,... Prob(Y, - Y,| >¢) = 0.
Convergence in probability is denoted-Y Y, or plim,... Y, =Y,. WithW, defined as in Figure
4.1,Y,-, Y, ifflim___ ProbW,) = 0 for eacte > 0.

4.1.4. Y, converges almost surely to Y, denoted Y -, Y, if for eache > O,
lim,... Prob(sup.,|Y.- Y, >¢)=0. ForW, defined in Figure 4.1, the set of states of nature for
which |Y (w) - Y (w)| >& for somem=>nis U__ W ,andY, -, Y, iff Prob( U W)~ 0.

An implication of almost sure convergence is linY . (s) = Y,(s) a.s. (i.e., except for a set of states
of Nature of probability zero); this is nah implication of Y -, Y.
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FIGURE 4.1. CONVERGENCE CONCEPTS FOR RANDOM VARIABLES
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4.1.5. Y, converges in p-mean (aso caled convergence in ||, norm, or convergencein L,
space)to Y, if lim,. E|Y,-Y,|?=0. Forp =2, thisiscalled convergencein quadratic mean. The

normisdefinedas|Y |, =[ f 1Y (s)|"+P(ds)]Y»=[E| Y |*]¥?, and can beinterpreted asaprobability-
S

weighted measure of the distance of Y from zero. The norm of arandom variable is a moment.
There are random variables for which the p-mean will not exist for any p > 0; for example, Y with
CDFF(y) =1-1/(logy) fory > e hasthis property. However, in many applications moments such
as variances exist, and the quadratic mean is a useful measure of distance.

4.1.6. Y, convergesin distributionto Y, denoted Y, -, Y, if the CDF of Y, convergesto the
CDF of Y, at each continuity point of Y. In Figure 4.1(b), this means that F,, converges to the
function F, point by point for each argument on the horizontal axis, except possibly for pointswhere
F, jumps. (Recall that distribution functions are always continuous from the right, and except at
jumps are continuous from the left. Since each jump contains a distinct rational number and the
rational s are countabl e, there are at most a countable number of jumps. Then the set of jump points
has Lebesgue measure zero, and there are continuity points arbitrarily close to any jump point.
Because of right-continuity, distribution functions are uniquely determined by their values at their
continuity points.) If A isanopen set,thenY, -, Y, impliesliminf__F(A) > F,(A); conversely,
A closed implieslimsup,... F,(A) < F,(A) see P. Billingsley (1968), Theorem 2.1. Convergencein
distribution is also called weak convergence in the space of distribution functions.

4.1.7. The relationships between different types of convergence are summarized in Figure 4.2.
In this table, “A4== B” means that A implies B, but not vice versa, and=A=B" means that A
and B are equivalent. Explanations and examples are given in Sections 4.1.8-4.1.18. On first
reading, skim these sections and skip the proofs.

4.1.8.Y, -, Y, implies Prob¢v,) < Prob(U_ W.) - 0, and hence Y-, Y, However,

Prob{,) - 0 does not necessarily imply that the probabilityldf . W, is small, so ¥~,Y,does

notimply Y, - Y,. For example, take the universe of states of nature to be the points on the unit
circle with uniform probability, take thé/,, to be successive arcs of lengttir and take Yto be

1 onW,, 0 otherwise. Then Y-, 0 since Pr(Y # 0) = 1/n, but Y fails to converge almost surely

to zero since the successive arcs wrap around the circle an infinite number of times, and every s in
the circle is in an infinite number o¥ ..

4.1.9. Suppose,¥-,Y,. Itis agood exercise in manipulation of probabilities of events to show
that Y, -, Y,. Givene >0, defind/V ,as before to be the set of states of Nature whe[e) - Y,(s)|
>¢. Giveny, defin@\, B,, andC, to be, respectively, the states of Nature witky, Y, <y -¢,
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andY, <y+e. ThenB,c A juW, (i.e, Y (S) <y-eimplieseither Y (S) <yor |Y,(S)-Y. (9] >¢)
andA,c C,uW, (i.e, Y (s) <yimpliesY(s) <y+eor |Yys)-Y, (9| >¢e). Hence fornlarge
enough so Prob(W ) <e, F,(y-¢) = Prob(B,) < Prab(A,) + Prob(W,) <F(y) +¢,and F.(y) = Prob(A,)
< Prob(C,) + Prob(W,) < F(Y+e) + ¢, implying F(y-g) - € < lim,.. F,(y) < F(y+e) +e. Ifyisa
continuity point of Y, then F (y-¢) and F,(y+e) approach F (y) ase -~ O, implying lim,._ F.(y) =
F.(y). Thisestablishesthat Y, -, Y..

Convergence in distribution of Y, to Y, does not imply that Y, and Y , are close to each other.
For example, if Y and Y, arei.i.d. standard normal, then Y , -, Y, trivialy, but clearly not Y, - Y,
since Y, - Y, isnorma with variance 2, and |Y, - Y| > & with a positive, constant probability.
However, there is a useful representation that is helpful in relating convergencein distribution and
almost sure convergence; see P. Billingsley (1986), p.343.

Theorem 4.1.(Skorokhod) If Y, -~ Y ., then there exist random variables Y, and Y, such that
Y, and Y, havethesameCDF,asdoY,andY_/,and Y, -, Y, .

4.1.10. Convergencein distribution and convergencein probability to aconstant are equivalent.
If Y, ~,cconstant, then Y, -, c asaspecial caseof 4.1.9 above. Conversely, Y, -, constant means
F.(y) - F.(y) at continuity points, where F(y) =0fory<cand F(y) =1fory > c. Hencee >0
impliesProb(|Y ,-c| >¢g) =F (c-e) + 1- F(cte) - 0,0Y, -, C. Thisresultimpliesparticularly that
the statements Y, - Y,~,0and Y, - Y, ~,0 areequivalent. Then, Y, -Y, ~,0impliesY -,Y,, but
the reverse implication does not hold.

4.1.11. The condition that convergence in distribution is equivalent to convergence of
expectations of al bounded continuous functions is a fundamental mathematical result called the
Helly-Bray theorem. Intuitively, the reason the theorem holdsisthat bounded continuous functions
can be approximated closely by sums of continuous “almost-step” functions, and the expectations
of “almost step” functions closely approximate points of CDF’s. A proof by J. Davidson (1994), p.
352, employs the Skorokhod representation theorem 4.1.

4.1.12. A Chebyshev-like inequality is obtained by noting for a random variable Z with density
f(z) thatE|Z|" = f |z|*f(z)dz > f e’f(z)dz = Prob(Z| >¢), or Prob(Z| >¢) < E|Z|"/e".

|| =€
(Whenp = 2, this is the conventional Chebyshev inequality. Wherl, one has Prol%| >¢) <
E|Z|le.) TakingZ=Y,-Y,, one has lim_ Prob(Y,-Y, >¢) <e™lim,._ E|Y,-Y," Hence,
convergence ip-mean (for any > 0) implies convergence in probability. However, convergence
almost surely or in probability does not necessarily imply convergeneenean. Suppose the
sample space is the unit interval with uniform probability, ag{d)¥ & for s< n?, zero otherwise.
Then Y, -, 0 since Prob(¥, # 0 for any m > nk n® butE|Y,|* = €"/n* - + for anyp > 0.
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FIGURE 4.2. RELATIONS BETWEEN STOCHASTIC LIMITS
(Section numbers for details are given in parentheses)

(1.8) (1.9)
1 Yn _'asYo |=$ Yn p Yo |==> Yn ~d Yo
) ) T
(1.4) (1.3) (110
! ! I
2 1Y,-Y,50 = Y,-Y,»,0 &= Y, -Y,~,0
(1.8) (1.10)

3 Y,~qC(aconstant) ==Y, ~,cC (1.10)
4 Y,~qY, == Eqg(Y,) ~ Eg(Y,) for al bounded continuousg  (1.11)
5 IYo-Y,l,~ Oforsomep >0 = Y,-,Y, (112
O L IY,- Yol <M (Al ) & Y, =, Yo = [Y,- Yo, ~ Ofor0<i<p  (113)
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12 Y.~a Yo = a(Y,) ~40(Y,) for al continuousg (1.18)
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4.1.13. Adding a condition of a uniformly bounded p-order mean E|Y,|? < M to convergence
in probability Y, ~, Y, yieldstheresult that E| Y ,|* existsfor 0< < p, and E| Y |* ~ E|Y,|*for O
<X\ <p. Thisresult can berestated as"the moments of the limit equal the limit of the moments" for
moments of order A lessthan p. ReplacingY by Y,-Y_ and Y by O givestheresult in Figure 4.2.

To provetheseresults, wewill find useful the property of momentsthat E|Y |* < (E|Y [?)* for
0<Xi<p. (ThisfollowsfromHolder’'sinequality (2.1.11), which statesE | UV | < (E|U|)"(E|V [9)**
forr,s>0andr!+s'=1, bytakingU = |Y |,V =1, andr =p/r.) Animmediateimplicationis
E|Y,|* < M* . Defineg(y,r,k) =min (]y|* k"), and notethat sinceit is continuous and bounded, the
Healy-Bray theorem implies Eg(Y ,,A,K) -~ EQ(Y ,,A,K). Therefore,

M 2 EJY |2 Bg(Yohk) = [ |y A y)dy +K-Prob(|Y,| > K)

[ yI)dy + KProb(| Y| > K).
Letting k ~ = establishesthat E|Y,|* existsfor 0 <2 < p. Further, for <p,
0< EIY, /- Eg(Yohk) < [ Iy f)dy <k [ |y y)dy < KM,
Pk >k

Choose k sufficiently large so that k"M < e&. The same inequality holds for Y,. Choose n
sufficiently large so that |Eg(Y ,,A.K) ~ Eg(Y,A,K)| <e. Then

[EIYalE[Yo[*[<[E[Y[~Eg(Y ) | +/EQ(Y)-EQ(Y o) [+]EQ(Yo)-E[ Y,|*| < Ze.
Thisprovesthat E|Y,|* - E|Y,|"
An example showsthat E|Z,|* - 0 for A < p does not imply E|Z,|” bounded. Take Z, discrete

with support { O,n} and probability log(n)/nat n. Thenfor A <1, E|Z,|*=log(n)/n**- O, but E|Z,|*
=log(n) - +eo.

4.1.14.1f Y, -, Y,, then Prob(W ) -~ 0. Choose a subsequence n, such that Prob(Wnk) < 2%,

Then Prob( U, W, ) < 3, Prob(W, ) < 3}, 2=2%implying Y, -.Y,
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4.1.15. Conditions for a.s. convergence follow from this basic probability theorem:

Theorem 4.2.(Borel-Cantelli) If A, is any sequence of eventsin a probability space (S,F,P),

Z‘;‘Ll P(A,) < +~ impliesthat almost surely only afinite number of the events A, occur. If A, is

a sequence of independent events, then 2:4 P(A,) =+ implies that ailmost surely an infinite

number of the events A, occur.

Apply the Borel-Cantelli theorem to the events A, = {seS| |Y; - Y| > €} to conclude that

Z::1 P(A;) < +e implies that amost surely only a finite number of the events A; occur, and

hence|Y; - Y | < e for al I sufficiently large. Thus, Y, -Y,~,0,0rY, ~.,Y,.Forthenext result
in the table, use (1.12) to get Prob( U, W) < Y Prob(W,) < €?) _ E[Y,-Y,["

Apply Theorem 4.2 to conclude that if this right-hand expression is finite, then Y, - Y,. The
example at the end of (1.12) shows that almost sure convergence does not imply convergence in
p-mean. Also, the example mentioned in 1.8 which has convergence in probability but not almost
sure convergence can be constructed to have p-mean convergence but not almost sure convergence.

4.1.16. A result which is very useful in applied work isthat if two random variablesY, and Z,
have a difference which convergesin probability to zero, and if Y, convergesin distributionto Y ,
then Z, -, Y, aso. Inthiscase Y, and Z, are termed asymptotically equivalent. The argument
demonstrating this result is similar to that for 4.1.9. Let F, and G, be the CDFs of Y, and Z,
respectively. Lety be a continuity point of F, and define the following events:

An={s|Z(9) <y}, B, ={s|Y(9) < y-£}, C,={s|Y,(§) <y +e}, D, ={s] |Y(3) - Z,(9)| > ¢}.

Then A,c C,uD, and B, c A,uD,, implying F.(y-¢) - Prob(D,) < G,(y) < F,(y+e) + Prob(D,).
Given 6 > 0, one can choose € > 0 such that y-e and y+e are continuity points of F,, and such that
F.(y+e) - F,(y-€) < 8/3. Then one can choose n sufficiently large so that Prob(D,) < 8/3, |F,(y+¢) -
Fo(y+e)| <8/3and |F(y+e) - Fy(y+e)| <8/3. Then [Gy(y) - Fy(y)| <8.
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4.1.17 A useful property of convergence in probability is the following result:

Theorem 4.3.If g(y) isacontinuous function on an open set contai ning the support of Y, then
Y, -, Y, implies g(Y,) -, 9(Y,). The result also holds for vectors of random variables, and
specidizesto therulesthat if Y, -, Yo and Yy, ~, Yoo, then (@) YYo=, Yig Yo (B) Yo, Yy,
=, Y10+ Yy and © If Prob[Y,,| <e) =0 for some >0, then Y /Y,, -, Y,/Y . In these limits,
Y ,, and/or Y,, may be constants.

Proof: Givere > 0, choose M such that|R(,| > M) <e. LetA, be the set of y in the support of Y

that satisfyly| < M. ThenA, is compact. Mathematical analysis can be used to show that there
exists a nested sequence of gefs A, ¢ A, c A; with A; an open neighborhood Af on which

g is continuousA, compact, ané; open. From 4.16, limipf. F(A,) > F,(A,) > 1-e implies there
exists n such that for m >nF_ (A, > 1-2¢. The continuity of g implies that for eacl A, there
existsd, > 0 such thaty’-y| <d,= [g(y’) - 9(y)| <e. These& -neighborhoods covek,. ThenA,

has a finite subcover. Léte the smallest value &fin this finite subcover. Then, g is uniformly
continuous: ¥ A,and|y’-y| <dimply |g(y’) - g(y)| <e. Choose n >rsuch that form>n, PY,,

-Y,| >3) <e/2. Thenform >n, RG(Y,) - 9(Y,)| >¢) < P(Y,-Y,] >8) +P(Y,]>M)+1-
F.(A) < 4e. O

4.1.18 The preceding result has an analog for convergence in distribution. This result establishes,
for example, that if Y-, Y, with Y, standard normal and g(y) % yhen Y, is chi-squared, so that
that Y,? converges in distribution to a chi-squared random variable.

Theorem 4.4. If g(y) is a continuous function on an open set containing the suppqyttbeyi
Y, ~q4Y,implies g(Y) -4 9(Y,). The result also holds for vectors of random variables.

Proof: Construct the sets, c A, ¢ A, c A; as in the proof of Theorem 4.3. A theorem from
mathematical analysis (Urysohn) states that there exists a continuous function r with values between
zero and one that satisfies r(y) = 1 foe YA; and r(y) = O for y¢ A,. Then g*(y) = g(yx(y) is
continuous everywhere. From the Healy-Bray theorem:; Y , == E h(Y,) - E h(Y,) for all
continuous bounded &= E h(g*(Y,)) - E h(g*(Y,)) for all continuous bounded h, since the
composition of continuous bounded functions is continuous and bowagedg*(Y ) -4 g*(Y,).

But P(g*(Y,) = 9(Y,)) < P(Y, ¢ A)) < 2¢ for n sufficiently large, and g*(y = g(Y,). Then, 4.1.16

and g*(Y,) - 9(Y,) -, 0 imply g*(Y,) -4 9*(Y,). O

4.1.19. Convergence properties are sometimes summarized in a notatio®gglladdo,(-)
which is very convenient for manipulation. (Sometimestmovenient; itis easy to get careless and
make mistakes using this calculus.) The definition6j is Y, -, Y, =Y, = Y +0,(1), and more
generally ri(Y - Y,) -, 0= Y- Y,=0,(n"). Thuso,() is a notation for convergence in probability
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to zero of a suitably normalized sequence of random variables. When two sequences of random
variables Y, and Z, are asymptoticaly equivalent, or Y, - Z, = 0,(1), so that they have a common
limiting distribution, thisis sometime denoted Y, ~, Z,..

Thenotation Y, = O,(1) isdefined to meanthat givene >0, thereexistsalarge M (not depending
on n) such that Prob(|Y,| >M) <e for al n. A sequence with this property is called stochastically
bounded. More generally, Y, = O,(n*) means Prob(|Y,,| >M-n®) <e for all n. An abbreviated list
of rulesfor 0, and O, isgivenin Figure 4.3.

A sequencethat isconvergent in distribution is stochastically bounded: If Y, -, Y, then onecan
find M and n, such that £ M are continuity points of YProb(Y,| < M) > 1€/2, |F(M) - F,(M)| <
e/4 and |K(-M) - F(-M)| < &/4 for n > . Then Prob(Y,| > M) <e for n > . This implies Y, =
O,(1). On the other hand, one can haye=Y),(1) without having convergence to any distribution

(e.g., consider y= 0 for n odd and Ystandard normal for n even). The notatigr=0,(n*) means
n*Y, =0,1).

FIGURE 4.3. RULESFOR O,(-) AND o,(*)

Definition: Y, = 0,(n“) == Prob(|n*Y|>¢) - O for each £ > 0.
Definition: Y, = O,(n*) == for each ¢ >0, thereexistsM >0
such that Prob(|n™Y,|>M) <e for all n

Y, =0,(n") ==Y, =0,(n%

Y,=0,(n) & B>a ==Y, =0y (n")
Y,=0,(n) & B >a==Y, =0 ")
Y,=0,(n) & Z, =0, (n’) == YZ, = 0(n*"P)
Y,=0,(n) & Z, =0 (n’) == Y,-Z, = O, (™)
Y,=0,(n) & Z, =0,(n’) == Y, Z, = o,(n*"7)
Y,=0,(n)&Z,=0,(N") & B> 0==Y,+Z =0,
Y,=0,(n) & Z,=0,(n") & B> o ==Y, +Z =0y ")
Y,=0,(n) & Z,=0,(n") & p>a==Y,+Z, =0,
Y,=0(n) & Z, =0 () & p <o== Y, + Z =0y (n%
Y,=0,n") & Z,=0,(n") ==Y, + Z,=0,n"

© 00 N O O~ W N PP

N
= O
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We prove the very useful rule 6 in Figure 4.3: Givene >0, Y, = O,(n*) == 3 M > 0 such that
Prob(|n®Y | > M) <&/2. Next Z, = o,(n") implies 3 n, such that for n > n,, Prob(|n"Z | > &/M) <
/2. Hence Prob(|n*?Y Z, | >¢€) < Prob(|n“Y,| > M) + Prob(|n®Z,| >¢&/M) <e. Demonstration
of the remaining rulesis |eft as an exercise.

4.2. INDEPENDENT AND DEPENDENT RANDOM SEQUENCES

4.2.1. Consider a sequence of random variablesY,,Y,,Y,,... . Thejoint distribution (CDF) of
Nature such that all of theinequalitiesY; < y;;'.'..,Yn <y, hold. Therandom variablesinthe sequence
aremutually statistically independent if for every finite subsequenceY ;...,Y ,, thejoint CDF factors:

Thevariables are independent and identically distributed (i.i.d.) if in addition they have acommon
univariate CDF F,(y). The caseof i.i.d. random variables |eads to the simplest theory of stochastic
limits, and provides the foundation needed for much of basic econometrics. However, there are
many applications, particularly in analysis of economic time series, wherei.i.d. assumptionsare not
plausible, and a limit theory is needed for dependent random variables. We will define two types
of dependence, martingale and mixing, that will cover a variety of econometric time series
applications and require a modest number of tools from probability theory. We have introduced a
few of the needed toolsin Chapter 3, notably theideaof information contained in o-fields of events,
with the evolution of information captured by refinements of these o-fields, and the definitions of
measurabl e functions, product o-fields, and compatability conditions for probabilities defined on
product spaces. There are treatments of more general forms of dependence than martingale or
mixing, but these require amore comprehensive devel opment of the theory of stochastic processes.

4.2.2. Consider a sequence of random variables Y, with k interpreted as an index of (discrete)
time. One can think of k astheinfinite sequencek € K ={1,2,...}, or asadoubly infinite sequence,
extending back intime aswell asforward, k e K ={...,-2,-1,0,1,2,...} . The set of states of Nature

can be defined as the product space S= X, R, or S = R, where R is the real line, and the

“complete information’s-field of subsets db defined as, = ®,_ B, whereB is the Boreb-field

of subsets of the real line; see 3.2. (The same apparatu¥ eftthal to the real line, can be used
to consider continuous time. To avoid a variety of mathematical technicalities, we will not consider
the continuous time case here.) Accumulation of information is described by a nondecreasing

sequence daf-fields ...c G, G,< G, c G,<..., WithG, = (®,_, B)o(®,.{ ¢,S}) capturing the idea
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that at time t the future is unknown. The monotone sequence of o-fields G, i = ...,-1,0,1,2,... is
caled a filtration. The sequence of random variables Y, is adapted to the filtration if Y, is
measurable with respect to G, for each t. Some authors use the notation o(...,Y ,,Y,,Y,) for G, to
emphasizethat it isthe o-field generated by the information contained in Y . for s < t. The sequence
Y 1YY LY. adapted to G, for k € K istermed a stochastic process. One way of thinking of

a stochastic processisto recall that random variables are functions of states of Nature, so that the
processis a function Y:SxK- R. Then Y(s,k) is theealization of the random variable in period k,
Y(s,) a realization otime-path of the stochastic process, and,k)the random variable in period
k. Note that there may be more than one sequeneéiatls in operation for a particular process.
These might correspond, for example, to the information available to different economic agents. We
will need in particular the sequencecsfields H, = o(Y,,Y 1, Y 1s0...) @dapted to the process from
time t forward; this is a nonincreasing sequencefiélds...o H,, > H,> H,,; 2... . Sometimes,

Is termed thenatural upward filtration, andH, thenatural downward filtration.

Each subsequence (Y..Y,.,) of the stochastic process has a multivariate CDF
FomsnYms - Ymen)- It IS said to bestationary if for each n, this CDF is the same for every m. A
stationary process has the obvious property that moments such as means, variances, and covariances
between random variables a fixed number of time periods apart are the same for all times m.
Referring to 4.2.1, a sequence i.i.d. random variables is always stationary.

4.2.3. One circumstance that arises in some economic time series is that while the successive
random variables are not independent, they have the property that their expectation, given history,
iIs zero. Changes in stock market prices, for example, will have this property if the market is
efficient, with arbitragers finding and bidding away any component of change that is predictable
from history. A sequence of random variablesadapted taG, is amartingale if almost surely
E{X|G.) = X.1- If X,is a martingale, then,¥ X, - X, satisfiesE{Y ;| G,;) = 0, and is called a
martingal e difference (m.d.)sequence. Thus, stock price changes in an efficient market form a m.d.
sequence. It is also useful to definsupermartingale (resp.,submartingale) if almost surely
E{X|G.)) < X,; (resp,E{X,| G.;) > X.;). The following result, called th€olmogorov maximal
inequality, is a useful property of martingale difference sequences.

Theorem 4.5. If random variables Yare have the property that E(Y ,.,,,.Y,.;) =0, or more
technically the property that Yadapted te(...,Y,;,Y,) is a martingale difference sequence, and if

EY? =02 then P(Mmax., | Yy Yil>e) < Yy o
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Proof: LetS = Z:‘l Y;. LetZ, bearandomvariablethat isoneif § < e forj <k and §, >, zero

otherwise. Notethat Y., Z <landE( Y, Z)=PMmax,.,| iy Y| >¢). The
variables S, and Z, depend only on Y for i < k. Then E(S, - S,|S,,Z,) =0. Hence
Es’ > ZE:1 ES*Z, = ZE:1 E[S + (S, - SI*Z = ZE:1 ES>Z, > ¢ ZE:1 EZ. U

4.2.4. As apractical matter, many economic time series exhibit correlation between different
time periods, but these correlations dampen away as time differences increase. Bounds on
correlations by themselves are typically not enough to give a satisfactory theory of stochastic limits,
but arelated ideaisto postulate that the degree of statistical dependence between random variables
approaches negligibility as the variables get further apart in time, because the influence of ancient
history is buried in an avalance of new information (shocks). To formalize this, we introduce the
concept of stochastic mixing. For astochastic processY,, consider eventsA € G,and B ¢ H,, then
A draws only on information up through period t and B draws only on information from period t+s
on. Theideais that when s is large, the information in A is too “stale” to be of much use in

determining the probability d8, and these events are nearly independent. Three definitions of
mixing are given in the table below; they differ only in the manner in which they are normalized, but
this changes their strength in terms of how broadly they hold and what their implications are. When

the process is stationary, mixing depends only on time differences, not on time location.

Form of Mixing  Coefficient Definition (for all A € G, andB € H,,, and all t)
Strong a(s)- 0 IPANB) - PA)-PB)| < a(s)
Uniform o(s)- 0 IPANB) - PA)-P®B)| < ¢(s)PA)
Strict y(s)- 0 IPANB) - PA)-PB)| < w(s)PA)-P(B)

There are links between the mixing conditions and bounds on correlations between events that are

remote in time:

(1) Strict mixing== Uniform mixing== Strong mixing.

(2) (Serfling) If the Y are uniform mixing withEY, = 0 andEY? = o7 < +», then
[EY.\Yyu| < 20(S) 0,00

(3) (Ibragimov) If the Yare strong mixing witleY, = 0 andE|Y,|® < += for some d > 2, then
[EY,Y | < 8u(S)?6,01.s
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(4) If there exists a sequence p, with lim_.p, = 0 such that |E(U-EU)(W-EW)| <
p[(E(U-EU))(E(W-EW)?)]Y2 for all bounded continuous functions U = g(Y,...,Y,) and W =
DY trees Y tiner) @0 @l t, N, m, then the Y, are strict mixing.

Anexamplegivesanindication of therestrictionson adependent stochastic processthat produce
strong mixing at aspecified rate. First, suppose astationary stochastic processY, satisfiesY,=pY
+ Z,, with the Z, imdependent standard normal. Then, var(Y,) = 1/(1-p? and cov(Y .., Y,) = p%/(1-p?),
and one can show with alittle analysis that |P(Y . < 8,Y,<b) - P(Y . < @-P(Y,<b)| < p¥xn(1 - p)Y2
Hence, thisprocessis strong mixing with amixing coefficient that declinesat ageometricrate. This
is true more generally of processes that are formed by taking stationary linear transformations of
independent processes. We return to this subject in the chapter on time series analysis.

4.3. LAWS OF LARGE NUMBERS

4.3.1. Consider a sequence of random variables Y,,Y,,... and a corresponding sequence of
averages X, = n’lzi”:1 Y, forn=1,2,.... Laws of large numbers give conditions under which

the averages X, convergeto aconstant, either in probability (weak laws, or WLLN) or amost surely
(strong laws, or SLLN). Laws of large numbers give formal content to the intuition that sample
averages are accurate analogs of population averages when the samples are large, and are essential
to establishing that statistical estimators for many problems have the sensible property that with
sufficient data they are likely to be close to the population values they are trying to estimate. In
econometrics, convergence in probability provided by a WLLN suffices for most purposes.
However, the stronger result of amost sure convergence is occasionally useful, and is often
attainable without additional assumptions.

4.3.2 Figure 4.4 lists a sequence of laws of large numbers. The case of independent identically
distributed (i.i.d.) random variables yields the strongest result (Kolmogorov 1). With additional
conditions it is possible to get a laws of large numbers even for correlated variable provided the
correlations of distant random variables approach zero sufficiently rapidly.

To show why WLLN work, | outline proofs of the first three lawsin Figure 4.4.

Theorem 4.6 (Khinchine) If the Y, arei.i.d., andE Y, = [, then X~ 1

Proof: The argument shows that the characteristic function (c.f,) @dnerges pointwise to the
c.f. for a constant random variable p. €l be the c.f. of Y. Then X has c.fa(t/n)". SinceEY,
exists,y has a Taylos expansiony(t) = 1 +y’(At)t, where 0 <4 < 1 (see 3.5.12). Then(t/n)" =

[1 + (t/n)y'(At/n)]". Buty’(At/n) - y'(0) =u. A result from 2.1.10 states that if a sequence of
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scaars a,, has alimit, then [1+0,/n]" - exp(lim a,). Then yw(t/n)" - e*.. But thisisthe c.f. of a
constant random variable u, implying X; 4, and hence X-, . [J

FIGURE 4.4. LAWSOF LARGE NUMBERSFOR X, = n’lzﬂzl Yy

WEAK LAWS (WLLN)
1 (Khinchine) If the ¥ are i.i.d., an& Y, =y, then X~ 1
2 (Chebyshev) If the Yare uncorrelated witk Y, = p ande(Y, - uf =o,2 satisfying

Y i 0k? <+, then X -,

3 Ifthe Y, haveE Y, = W, E(Y, 1Y = 6,5 and|E(Y -1)(Y,-1)| < PemOkOm With

Yo 64k¥ <+ and lim,_., Z Z P <+, then X, -,

Nk-1 m-1

STRONG LAWS (SLLN)
1 (Kolmogorov ) If the Y are i.i.d., and€E Y, = U, then X-_ 1
2 (Kolmogorov ) If the Y, are independent, wit Y, = 4, ande(Y ,-u)* = 6,2 satisfying

Y1 6K? < 4, then X~ W
3 (Martingale) Y, adapted t(...,Y, ;,Y,) is a martingale difference sequeng¥,? = ¢2
and Y o, 62K? < 4o, then X, -, 0
4  (Serfling) If the Y, haveE Y, = p,E(Y,-p¥ = 6,2 and|E(Y - 1) (Y-H)| < Ppcm©cOms

with Y, (log kKfo/k®<+=and Y pum <+, then X -

Theorem 4.7. (Chebyshev) If the Yare uncorrelated witk Y, = p andg(Y, - uf = 62
satisfying ) ; oK<+, then X - .



M cFadden, Statistical Tools © 2000 Chapter 4-15, Page 93

Proof: One has E(X,-u) = Zﬂl (5ﬁ/n2 . Kronecker's Lemma (see 2.1.9) establishes that
Y i, oi/k? bounded impliesE(X,-u)? - 0. Then Chebyshésinequality implies X, 1. [J

The condition ¥ 5, oi/k? bounded in Theorem 4.7 is obviously satisfieg i uniformly

bounded, but is also satisfiedsif grows modestly with k; e.g., it is sufficient to hay&log K)/k
bounded.

Theorem 4.8. (WLLN 3) If the Y, haveE Y, = i, E(Y,-u)* = 6% and |E(Y )Y -1)| <
PnCOm With Yy 0K < 4o and lim,.. EZEzl Do P < Fo, then X -
n

Proof: Using Chebyshev's inequality, it is sufficient to showH(xt -1 )? converges to zero. The
Cauchy-Schwartz inequality (see 2.1.11) is applied first to establish

(&) < (2542

m=1

and then to establish that

5 1 n n 1 n 1 n
E(Xn_u) = _22 Z chmpkm = _Z Gk _Z Gmpkm
N< k-1 m-1 N k-1 Nm-1
12 2 |2 12 12
1w 2| (1] 1¢ 1 2 I 2| 1 = = 2
o o 05 SR R 5 > 5 oA 99 ot e
N k-1 Ni-1\ Nm-1 N k-1 N m-1 N< k=1 m=1

N< k=1 m=1

The last form and Kronecker’'s lemma (2.1.11) give the re&ult.

The conditions for this result are obviously met if thé are uniformly bounded and the
correlation coefficients decline at a sufficient rate with the distance between observations; examples
are geometric decline witlp,, bounded by a nitiple of A" for some\ < 1 and an arithmetic
decline withp,,, bounded by a multiple of |k-r|
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The Kolmogorov SLLN 1 is a better result than the Kinchine WLLN, yielding a stronger
conclusion from the same assumptions. Similarly, the Kolmogorov SLLN 2 is a better result than
the Chebyshev WLLN. Proofsof thesetheoremscan befoundin C. R. Rao (1973), p. 114-115. The
Serfling SLLN 4 is broadly comparable to WLLN 3, but Serfling gets the stronger almost sure
conclusion with somewhat stronger assumptions on the correlations and somewhat weaker
assumptions on the variances. If variances are uniformly bounded and correlation coefficients
declineat least at arateinversely proportional to the square of thetime difference, thissufficient for
either the WLLN 3 or SLLN 4 assumptions.

TheSLLN 3inthetableappliesto martingal e difference sequences, and showsthat K olmogorov
Il actually holds for m.d. sequences.

Theorem 4.9.If Y, adapted to o(...,Y, ,,Y,) isamartingale difference sequence with EY * = 62
and Y, 0 2K? <+, then X, ~, 0.

Proof: Thetheoremisstated and proved by J. Davidson (1994), p. 314. Togiveanideawhy SLLN

work, | will give a smplified proof when the assumption Y ; , ¢,%k? < + is strengthened

to Y v, 6k¥ <+, Either assumption handles the case of constant variances with room to

spare. Kolmogorov's maximal inequality (Theorem 4.5) with n = (nf+&)de = dm? implies that
P(Ma% et mery? X >8) < PMax., | Yo, Y[ >om) < Y0 o7emt.

The sum over m of the right-hand-side of this inequality satisfies

Z:;]:l Zi(r:nfl)Z Gi2/82m4 — Zil Z:Eiﬂz 0i2/82m4 < 36 Zil GiZ/i3/252.

Then Y - . P(sup|X,| >8) <36 Y, 7% <+e. Theorem 4.2 gives the resuiltl
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4.4, CENTRAL LIMIT THEOREMS

4.4.1. Consider a sequence of random variables Y ,,...,Y , with zero means, and the associated

sequence of scaled averagesZ, = n2 Z,”l Y;. Centra limit theorems(CLT) are concerned with

conditions under which the Z,, or variants with more generalized scaling, converge in distribution
to anormal random variable Z,. | will present several basic CLT, prove the simplest, and discuss
the remainder. These results are summarized in Figure 4.5 near the end of this Section.

The most straighforward CLT is obtained for independent and identically distributed (i.i.d.)
random variables, and requires only that the random variables have afinite variance. Note that the
finite variance assumption isan additional condition needed for the CLT that was not needed for the
SLLN for i.i.d. variables.

Theorem 4.10.(Lindeberg-Levy) If random variables Y, arei.i.d. with mean zero and finite
positive variance o, then Z,, -+, Z, ~ N(0,5).

Proof: The approach isto show that the characteristic function of Z, converges for each argument
to the characteristic function of a normal. The CLT then follows from the limit properties of
characteristic functions (see 3.5.12). Let y(t) bethecf of Y,. Then Z, hascf y(t:n™?)". SinceEY,
=0and EY,*=¢? y(t) hasaTaylor's expansion y(t) = [1 + y"(M)t?/2], where 0 <A < Land y" is
continuous with y"(0) = -6°. Then y(t:n?)"=[1 + y"(t:n¥?)t%2n]". Then the limit result 2.1.10
giveslim, _ [1+ y"(At-n?)t?/2n]" = exp(-0? t¥2). Thus, the cf of Z, converges for each t to the cf
of Z~N(0,6%). O

4.4.2. When the variables are independent but not identically distributed, an additional bound
on the behavior of tails of the distributions of the random variables, called the Lindeberg condition,
isneeded. Thiscondition ensuresthat sourcesof relatively large deviations are spread fairly evenly
through the series, and not concentrated in a limited number of observations. The Lindeberg
condition can be difficult to interpret and check, but there are anumber of sufficient conditions that
are useful in applications. The main result, stated next, allows more general scaling than by n'2,

Theorem 4.11(Lindeberg-Feller) Supposerandom variablesY , areindependent with mean zero
and positive finite variances 6,>. Definec?= Y, , olandU,= Y ., Y.c, Thenc?- =,
lim,.. max,_,.,o/c,=0,and U, ~,U,~N(0,1) if and only if the Y, satisfy the Lindeberg condition
that fore >0, lim,.. Y., EYZL(]Y,]>ec)c?=0.
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FIGURE 5. CENTRAL LIMIT THEOREMS FOR Z , = n"? Y;

n
I
i=1

1  (Lindeberg-Levy) Y,i.i.d., EY, =0, EY,? = ¢ positive and finite = Z, -, Z, ~ N(0,69)
k k

2 (Lindeberg-Feller) If Y, independent, EY, =0, EY,2 =62 € (0,+=),C,2= Y ., o then
G2 +oo, lim,_. maX,_., 6/, =0,and U, = Y ¢, Y, /c,~4U,~N(0,1) if and only if the
Lindeberg condition holds: for each >0, Y ¢, E Y, >1(|Y,|>ec)/c2~ 0

3

If Y, independent, EY, =0, EY,2=062¢€ (0,+x),¢c2= Y v, o2 havec? +~ and

lim,... max,.,., o,/C, = 0, then each of the following conditionsis sufficient for the
Lindeberg condition:

(i) Forsomer>2, Y .. E|Y[lc, - 0.

(i) (Liapunov) For somer > 2, E |Y /o, | is bounded uniformly for al n.
(iii) For somer > 2, E |Y [ is bounded, and ¢ %k is bounded positive, uniformly for all k.

4 Y, amartingale difference sequence adapted to o(...,Y , ;,Y,) with |Y, | <M for al k and
Eyk2 = sz ﬂlsfyl ng n*lZE:l sz - 002 > O = Zn ~d ZO -~ N(O,GOZ)

5 (lbragimov-Linnik) Y, stationary and strong mixingwithE Y, =0, E Y,? = 6 € (0,+),

EY .Y, =0’ and forsomer>2 E|Y, |"<+ecand ) ;. a(k)? <+o=—
k+s ' k s k=1

Yo, Ipd<+wandZ, -4 Z,~NOGA 142 Y01 pJ)




M cFadden, Statistical Tools © 2000 Chapter 4-19, Page 97

A proof of Theorem 4.11 can be found, for example, in P. Billingsley (1986), p. 369-375. It
involves an analysis of the characteristic functions, with detailed analysis of the remainder termsin
their Taylor's expansion. To understand the theorem, it is useful to first specialize it to the case that
thec,” are all the same. Theff & no,? the conditions ¢~ « and lim,.. max_,., c./c, = 0 are met
automatically, and in the terminology at the start of this sectipr,ZJs,. The theorem then says
U,-4U, ~N(0,1) if and only if the sample averageo¥ ,>1(]Y,| >&en"?) converges to zero for each
e > 0. The last condition limits the possibility that the deviations in a single random variable could
be as large in magnitude as the sum, so that the shape of the distribution of this variable makes a
significant contribution to the shape of the distribution of the sum. An example shows how the
Lindeberg condition bites. Consider independent random variaplleat¥qual tkwith probability
1/2K*, and zero otherwise, where r is a positive scalar. TH&aVYe mean zero and variance one,

and1(]Y,| >en”?) = 1if K >en' implying n'2) ", E Y, 21(Y,| >en?) = max(0,1e¥'n®2)2),

This converges to zero, so the Lindeberg condition is satisfied iff r < 1/2. Thus, the tails of the
sequence of random variables cannot “fatten” too rapidly.

The Lindeberg condition allows the variances of théoYvary within limits. For example, the
variables Y = +2 with probability 1/2 have,/c, bounded positive, so that the variances grow too
rapidly and the condition fails. The variables2*2* with probability 1/2 have dounded, so that
o,/c, is bounded positive, the variances shrink too rapidly, and the condition fails. The next result
gives some easily checked sufficient conditions for the Lindeberg condition.

Theorem4.12. Suppose random variablesafe independent with mean zero and positive finite
variancess,? that satisfy ¢= Y ., ¢~ « and lim_. max_._, s /c, = 0. Then, each of the
following conditions is sufficient for the Lindeberg condition to hold:

(i) Forsomer>2, Y7, E|YJlc - 0.

(i) (Liapunov) For some r > E |Y /o, is bounded uniformly for all n.
(ii) For some r > 2E |Y,[' is bounded, and @k is bounded positive, uniformly for all k.

Proof: To show that (i) implies the Lindeberg condition, write

Y1 EYEUIY >echic? < )™ Y E V(Y >ec)c?<e* Yo, EIYilel.
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For (ii), the middle expression in the string of inequalities above satisfies

(ec)* Ya EINIAYI>ec)ic? < e¥(max, ENY /o) Dy o/lc)

< e2'(max,., E[Y\Jof) ZE:1 (ol/c?)(max,., (6,/C,)™),
and the assumptions ensure that max,_,, E|Y /o,[ is bounded and max, _, (c,/c.,)™ - O.

Finaly, if (iii), then continuing the first string of inequalities,
i ENle) < ¢n(sup, E Y [)/n(inf, ¢, 7/n),

and the right-hand-side is proportional to ¢,?", which goes to zero. [

4.4.3. The following theorem establishes a CLT for the scaled sum Z, =n*2 Y'Y, of

martingale differences; or Z, = n?(X -X,). The uniform boundedness assumption in thistheorem

isa strong restriction, but it can be relaxed to a Lindeberg condition or to a “uniform integratability”
condition; see P. Billingsley (1984), p. 498-501, or J. Davidson (1994), p. 385. Martingale
differences can display dependence that corresponds to important economic applications, such as
conditional variances that depend systematically on history.

Theorem 4.13. Suppose Yis a martingale difference adapteata.,Y,;,Y,), and Y, satisfies

a uniform bound [ <M. LetEY,?=02 and assume than*) p, ¢2-0c,2>0. Then Z-,
Z, ~N(0.

4.4.4. Intuitively, the CLT results that hold for independent or martingale difference random
variables should continue to hold if the degree of dependence between variables is negligible. The
following theorem from I. Ibragimov and Y. Linnik, 1971, gives a CLT for stationary strong mixing
processes. This result will cover a variety of economic applications, including stationary linear
transformations of independent processes like the one given in the last example.

Theorem 4.14. (Ibragimov-Linnik) Suppose s stationary and strong mixing with mean zero,
variancecs?, and covariancek Y,,.Y, = o°p. Suppose that for some r > R|Y,|" < +~ and

Yoo a®) ¥ <4~ Then, Y o, fpf<+candZ-,Z,~NOs(1+2 Y o, pJ)-

The figure below summarizes the CLT’s stated in this section.
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FIGURE 4.5. CENTRAL LIMIT THEOREMS FOR Z ,,=n"?2 Z Y;

n
|
i=1

1 (Lindeberg-Levy) Y,i.i.d., EY, =0, EY,? = ¢ positive and finite = Z, -, Z, ~ N(0,69)
k k

2 (Lindeberg-Feller) If Y, independent, EY,, =0, EY,2 =62 € (0,+=),C,2= Y ., o> then
C,2 oo, lim,.. maX,_., 0/, =0,and U, = Y ¢, Y, /c,~4U,~N(0,1) if and only if the
Lindeberg condition holds: foreach >0, Y ¢, E Y, >1(|Y,|>ec)/c2~ 0

3

If Y, independent, EY, =0, EY,2=062¢€ (0,+x),c2= Y v, o2 havec? +~ and

lim,... max,.,., o,/C, = 0, then each of the following conditionsis sufficient for the
Lindeberg condition:

(i) Forsomer>2, Y .. E|Y,[lc, - 0.

(i) (Liapunov) For somer > 2, E |Y /o, | is bounded uniformly for al n.
(iii) For somer > 2, E |Y [ is bounded, and ¢ %k is bounded positive, uniformly for all k.

4 Y, amartingale difference sequence adapted to o(...,Y 4, Y,) with |Y,| <M for all t and
EY2=02 saisfying n1) ,, 62-062>0 = Z,~4Z,~N(0,6,)

5 (lbragimov-Linnik) Y, stationary and strong mixingwithE Y, =0, E Y,? = 6° € (0,+),
EY,..Y, =0’ andforsomer>2,E|Y | <+ecand Y , oK) P <+o=— Y. |

<+ and Z, -4 Z,~ N(O,6X1+2 Y oy pJ)
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4.5. EXTENSIONS OF LIMIT THEOREMS

45.1. Limit theorems can be extended in several directions: (1) obtaining results for “triangular
arrays” that include weighted sums of random variables, (2) sharpening the rate of convergence to
the limit for "well-behaved" random variables, and (3) establishing "uniform” laws that apply to
random functions. In addition, there are a variety of alternatives to the cases given above where
independence assumptions are relaxed. The first extension gives limit theorems for random
variables weighted by other (non-random) variables, a situation that occurs often in econometrics.
The second extension provides tools that allow us to bound the probability of large deviations of
random sums. This is of direct interest as a sharper version of a Chebychev-type inequality, and also
useful in obtaining further results. To introduce uniform laws, first defiramd@om function (or
stochastic process) y = Y(0,s) that maps a state of Nature s and a real variable (or vector of variables)

0 into the real line. This may also be written, suppressing the dependence oro¥, &0 that
Y(-,w) is arealization of the random function, and is itself an ordinary non-random functién of
For each value df, Y(0,") is an ordinary random variable. A uniform law is one that bounds sums
of random functions uniformly for all argume#itsFor example, a uniform WLLN would say lim

P(sup | n’lzi”:1 Y.(6,))] >€) = 0. Uniform laws play an important role in establishing the

properties of statistical estimators that are nonlinear functions of the data, such as maximum
likelihood estimates.

4.5.2 Consider a doubly indexed array of constgptieéined for 1< i < nandn=1,2,..., and
weighted sums of the form X Z,”l a,Y,. Ifthe, are i.i.d., what are the limiting properties
of X,? We next give a WLLN and a CLT for weighted sums. The way arrays,ltipiaally arise
Is that there are some weighting constapt@ad either a= ¢/ E,”l G ora,=¢/[ Z,”l cj]”.

If ¢, = 1 for all i, then a= n*or n*2, respectively, leading to the standard scaling in limit theorems.

Theorem4.15. Assume random variablesafe independently identically distributed with mean

zero. If an arrag, satisfiedim,.. Y, 'a,| =0andim, . max_,

8,/ =0, thenX, -, 0.

Proof: This is a weighted version of Khinchine's WLLN, and is proved in the same wadiyt) bet
the second characteristic function of YFrom the properties of characteristic functions we have
¢'(0) = 0 and a Taylor's expansigft) = t{'(At) for some 0 <. < 1. The second characteristic
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n

function of X, isthen y(t) = M, at¢' (@b, implying [y®)| < Y1 [att(ad)] <

t](max._, [{'Oad)) Doy 18- Thenlim Y1, |a,| <eandlim(max,_,|a,|) = 0imply

y(t) — Ofor each t, and hence X, converges in distribution, hence in probability, to 0. [J

Theorem 4.16.Assume random variables Y, arei.i.d. with mean zero and variance 6° € (0,+).

If an array a, satisfieslim,_. max,_, |8, =0andlim_.. Y., a,2=1, thenX, -4 X, ~N(0,6?).

Proof: The argument parallelsthe Lindeberg-Levy CLT proof. The second characteristic function
of X, hasthe Taylor's expansion y(t) = -(1/2)c*t?a,, +[{" (h,a,1)+67-a,2t%2, where ), € (0,1) . The
limit assumptions imply y(t) + (1/2)c?? is bounded in magnitude by

Zinzl |C"O”inant)+02"ant2/2 < [ Zinzl anztzlz]'maxisn Cll(xinant)+02|'

This converges to zero for each t since lim,,... max;_,| " (M @.t)+0?| - 0. Therefore, y(t) converges
to the characteristic function of a normal with mean 0 and variance 6% [

4.5.3. The limit theorems 4.13 and 4.14 are special cases of alimit theory for what are called
triangular arrays of random variables, Y ,witht=1,2,....nandn=1,2,3,... . (One additional level
of generality could be introduced by letting t range from 1 up to a function of n that increases to
infinity, but thisis not needed for most applications.) This setup will include simple caseslikeY
=Z/norY ., =Z/n"? and more general weightingslike Y, = a,Z, with an array of constants a,,, but
can aso cover more complicated cases. Wefirst give limit theoremsfor Y , that are uncorrel ated
or independent within each row. These are by no means the strongest obtainable, but they have the
merit of simple proofs.

Theorem 4.17. Assume random variables Y , fort =1,2,....nand n = 1,2,3,... are uncorrelated

acrosst for eachn, WithE Y, =0,E Y, 2=0,2% Then, Y, o2~ Oimplies Y, Y,-,0.

Proof: Apply Chebyshev’s inequality.]



M cFadden, Statistical Tools © 2000 Chapter 4-24, Page 102

Theorem 4.18 Assume random variables Y, for t = 1,2,....,n and n = 1,2,3,... are independent

across t foreach n, With EY, =0, EY 2=06,%4 Y.y o.~-1, Y., E|Y.*-0 ad

Yo' oot~ 0. ThenX,= Y Yo ~qX,~N(OD).

Proof: From the properties of characteristic functions (see 3.5.12), the c.f. of Y has a Taylor’s
expansion that satisfigss,(s) - 1 + $5,/2| < |S|°E|Y|¥6. Therefore, the c,(s) of X, satisfies

log y.(s) = Y1\, log(l - &, 22 +Ay|S|°E|Y,.|%6), where),| < 1. From 2.1.10, we have the
inequality that forla| < 1/3 and b| < 1/3,|Log(1+a+b) - a| < 4|b| + 3|a|% Then, the assumptions
guarantee thatiog y,(s) + € Y.\, o.72| < 4ls]®* Y, E|Y.[¥6+3¢ Y1, o,Y4. The

assumptions then imply that lgg(s) - -s/2, establishing the result]

In the last theorem, note that if, ¥ n*?Z,, then BZ,|® bounded is sufficient to satisfy all the
assumptions. Another set of limit theorems can be stated for triangular arrays with the property that
the random variables within each row form a martingale difference sequence. Formally, consider
random variables yfort=1,...,nand n = 1,2,3,... that are adaptedfields G,, that are a filtration
in t for each n, with the property that E{Y¥G,.,} = O; this is called anartingale difference array.

A WLLN for this case is adapted from J. Davidson (1994), p. 299.

Theorem 4.19. If Y , andG,, fort=1,...,nand n =1,2,3,... is an adapted martingale difference

array with|Y,,| < M,EY,2=0,% Y., o, uniformly bounded, and) ., o,2- 0, then

Zin:l Ynt “p 0.
The following CLT for martingale difference arrays is taken from D. Pollard (1984), p. 170-174.
Theorem 4.20. If Y, andG,, fort=1,....nand n = 1,2,3,... is an adapted martingale difference

array,h,2 = E(Y,?| G, is the conditional variance of,Y Y ', X2 -,0%¢ (0,+o), and if for

eache >0, Y ', EY. >1(Y.>e)~0,thenX= Y1, Y, ~4X,~N(0Oo?.
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4.5.4. Chebyshev’s inequality gives an easy, but crude, bound on the probability in the tail of a
density. For random variables with well behaved tails, there are sharper bounds that can be used to
get sharper limit theorems. The following inequality, due to Hoeffding, is one of a series of results
calledexponential inequalitiesthat are stated and proved in D. Pollard (1984), p. 191-193:aleY
independent random variables with zero means that satisfy the boynesY;a< b, then

P(n), Yi>e)<exp(-2de% Y., (b+a)). Note that in Hoeffding’s inequality, if <

M, then P( n2) ", Y| > &) < 2exp(-re¥/2M?). The next theorem gets a strong law of large

numbers with weaker than usual scaling:

Theorem 4.21. If Y , are independent random variables with zero means gnd¥, then X,

= n1) ', Y, satisfies Xk"¥log(k) - O.

Proof: Hoeffding's inequality implies ProbtkX, | > e-log k) < 2exp(-(log kx%2M?), and hence

Y Prob(R?|X,| >elog k) < f‘” 2-exp(-(log z§e?/2M?)dz
z=n

k=n+1

< (6/e)-exp(M?/2¢?)-®(-e+(log n)/M + M),

with the standard normal CD® resulting from direct integration. Applying Theorem 4.2, this
inequality implies #|X,|/log n-_0. [

If the Y; are not necessarily bounded, but have a proper moment generating function, one can get
an exponential bound from the moment generating function.

Theorem 4.22. If i.i.d. mean-zero random variables fvave a proper moment generating
function, then X = n’lzi”:l Y, satisfies P(X> €) < exp(zen”*+x), wheret andk are positive
constants determined by the distribution af Y

Proof: P(Z>) = f

Z>e

F(dz)< f €29'F(dz) < e"E€* for a random variable Z. Let m(t) be the
2>t

moment generating function of ¥ndt be a constant such that m(t) is finite for< 2c. Then one
has m(t) = 1 + mt)t%/2 for some/i| < 1, for eacht| < 2, from the properties of mgf (see 3.5.12).
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The mgf of X, is m(t/n)" = (1 + m"(At/n)t%/2n?)", finite for |t|/n < 2t. Replace t/n by tn? and
observethat m"(At/n) < m"(tn™?) and (1+m" (tnV3)1%/2n)" < exp(m" (zn?) 1%/2). Substituting these
expressions in the initial inequality gives P(X,, > €) < exp(-ten'? + m"(tn¥?) 1%2 ), and the result
holds with x = m"(7)t%/2. [

Using the same argument as in the proof of Theorem 4.19 and the inequality P(X, > €) <
exp(-ten??+x) from Theorem 4.20, one can show that X,-k*?/(log k)? -, 0, a SLLN with weak
scaling.

4.5.5. Thissection statesauniform SLLN for random functions on compact set ® inaEuclidean
space R¥. Let (S,F,P) denote a probability space. Define arandom function asamapping Y from
®xS intoR with the property that for eaéhe ®, Y(0,7) is measurable with respect tokF). Note
that Y®,’) is simply a random variable, and that,¥) is simply a function di € ®. Usually, the
dependence of Y on the state of nature is suppressed, and we simply @rit& ¥{ndom function
is also called atochastic process, and Y¢,s) is termed aealization of this process. A random
function Y©,) isalmost surely continuousat6, € ® if for s in a set that occurs with probability one,
Y(:,s) is continuous if at6,. Itis useful to spell out this definition in more detail. For eazl®,

defineA,(e,0,) = {S€S| \eseu\pllk Y(9,s)—Y(90,5)>e} . Almost sure continuity states that these
sets converge monotonically as & to a sefA (g,0,) that has probability zero.
The condition of almost sure continuity allows the modulus of continuity to vary with s, so there
Is not necessarily a fixed neighborhoodgindependent of s on which the function varies by less
thane. For example, the function &,6) =6°for 6 € [0,1] and s uniform on [0,1] is continuous at
6 =0 for every s, buA,(¢,0) = [0,(-loge)/(log k)) has positive probability for all k. The exceptional
setsA,(e,0) can vary withd, and there is no requirement that there be a set of s with probability one,
or for that matter with positive probability, where6Yy) is continuous for alh. For example,
assuming € [0,1] and s uniform on [0,1], and definingtyg) = 1 if6 > s and Y§,s) = O otherwise
gives a function that is almost surely continuous everywhere and always has a discontinuity.
Theorem 4.3 in Section 4.1 established that convergence in probability is preserved by
continuous mappings. The next result extends this to almost surely continuous transformations; the
result below is taken from Pollard (1984), p. 70.

Theorem 4.23. (Continuous Mapping If Y (0) -, Y,(6) uniformly for6 in ® c R¥, random
vectorse,,t, € O satisfyr, -, 1, and Y,(0) is almost surely continuousat then Y(t,) -, Y(t,).
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Consider i.i.d. random functions Y;(0) that have afinite mean y(0) for each 6, and consider the
averageX,(0)= n't Z,”l Y,(6). Kolmogorov’'s SLLN I implies that pointwise,,%0) - ., w(0).

However, we sometimes need in statistics a stronger result {hatsuniformly close tas(0) over

the whole domai®. This is_nofguaranteed by pointwise convergence. For example, the random
function Y,(s9) = 1 if |s -0| < 1, and Y(s9) = 0 otherwise, where the sample space is the unit
interval with uniform probability, has P(},0) > 0) < 2/rf for each®. This is sufficient to give

Y. (,0) - O pointwise. However, P(syl,(0) > 0) = 1.

Theorem 4.24. (Uniform SLLN). AssumeY,(0) are independent identically distributed random
functions with a finite mea(0) for 6 in a closed bounded s@tc R . AssumeY,(-) is almost
surely continuous at eaéle ®. Assume thaY (-) is dominated; i.e., there exists a random variable
Z with a finite mean that satisfied > sup.|Y.(0)|. Thenwy(8) is continuous ind and

X,(0) =

Sl

Y Y(0) satisfies sypy|X,(0) - w(0)| -4 0.
i=1

Proof: We follow an argument of Tauchen (1985). IS9EP) be the probability space, and write
the random function {0,s) to make its dependence on the state of Nature explicit. Wey[tgve

= f Y(0,s)P(ds). Define @(,s,k) = sup |Y(6,s) - YO,S)|. Lete >0 be given. Let
S 16-6,| <1k

A (e/2,0,) be the measurable set given in the definition of almost sure continuity, and note that for
k = k(e/2,0,) sufficiently large, the probability &, (e/2,0,) is less thams/(4-E Z). Then,

u@®,,s.k)P(ds) + f u,,s,k)P(ds)

Eu(@®,, k) <
Ale/2,0,)°

fAk(slz,Go)
< 2-Z(syP(ds) + f ¢/2)P(ds)< e.

A(e/2,0.)°
Let B(6,) be an open ball of radius 1¢K2,6,) aboutd,. These balls constructed for edghe ®
cover the compact sét and it is therefore possible to extract a finite subcovering oftté@)swith
centers at pointg, for j = 1,...,J. Let u=Eu(®;,,k(e/2,0;)) < €. Ford e B(6)), [w(0) - y(6))| < I <
e. Then

f Afel2,9,)

esg(g) [ Xa(0) - w(O0)| < [Xy(0) - Xo(0)) - W] + 1y + [X(0) - w(O)] + [w(®) - w(0)]
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1
<] =

(O, K(@2,0)) - 1| +2 + X,(0) - w(0)] +e.

n
i=1

Apply Kolmogorov's SLLN to each of the first and third terms to determine a samplgssizk that

P( sup | nflznj U@, k(€/29)) - 1| >¢) <e/2J
i-1

nzq

and

P(sup [X,(0) - w(@)] >e) <e/2J.

nzm

With probability at least 1e/J, sup |X,(0) - w(0)| < 4e. Then, with probability at least Z;
GEB(GJ-)

SUPy. | Xn(0) -w(0)| < 4eforn>n=max(p). O

The construction in the proof of the theorem of a finite number of approximating points can be
reinterpreted as the construction of a finite family of functions, tiig-)Y (vith the approximation
property that the expectation of the absolute difference betwegf) f6f any6 and one of the
members of this finite family is less than Generalizations of the uniform SLLN above can be
obtained by recognizing that it is this approximation property that is critical, with a limit on how
rapidly the size of the approximating family can grow with sample size for a givather than
continuity per se; see D. Pollard (1984).
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