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CHAPTER 6. ESTIMATION

6.1. DESIRABLE PROPERTIES OF ESTIMATORS

6.1.1 Consider data x that comes from a data generation process (DGP) that has a density f(x).
Suppose we do not know f(-), but do know (or assume that we know) that f(-) is a member of a
family of densities G. The estimation problem isto use the data x to select a member of G which
IS some appropriate sense is close to the true f(-). Suppose we index the members of G by the
elements of some set O, and identify f () with a particular index value 6,. Then, another way of
stating the estimation problem is that in the family of densities f(x,0) parameterized by 6 € ©, we
want to use the data x to estimate the true parameter value 6,. The parameterization chosen for an
estimation problem is not necessarily unique; i.e., there may be more than one way to parameterize
the same family of densities G. Sometimes this observation can be used to our advantage, by
choosing parameterizations that ssmplify a problem. However, a parameterization can create
difficulties. For example, you might set up ®@ in such away that more than one value of 6 picks out
thetruedensity f; e.g., for some6, # 6,, onehas f(x,0,) =f(x,6,) for all x. Thenyou aresaidto have
anidentification problem. Viewedwithinthe context of aparticular parameterization, identification
problems causereal statistical difficultiesand haveto be dealt with. Viewed from the standpoint of
the fundamental estimation problem, they are an artificial consequence of an unfortunate choice of
parameterization. Another possible difficulty is that the family of densities generated by your
parametric specification f(x,0), 6 € @, may fail to coincidewith G. A particularly critical question
iIswhether thetruef(-) isinfact in your parametric family. Y ou cannot be surethat it isunlessyour
family containsall of G. Classical statisticsalways assumesthat thetrue density isin the parametric
family, and we will start from that assumption too. In Chapter 28, we will ask what the statistical
properties and interpretation of parameter estimates are when the true f is not in the specified
parametric family. A related question iswhether your parametric family contains densities that are
not in G. This can affect the properties of statistical inference; e.g., degrees of freedom for
hypothesis tests and power calculations.

In basic statistics, the parameter 6 is assumed to be a scalar, or possibly a finite-dimensional
vector. Thiswill cover many important applications, but it is also possible to consider problems
where 0 is infinite-dimensional. It is customary to call estimation problems where 9 is finite-
dimensional parametric, and problems where 6 is infinite-dimensional semiparametric or
nonparametric. (It would have been more logical to call them “finite-parametric” and “infinite-
parametric”, respectively, but the custom is too ingrained to change.) Several chapters in the latter
half of this book, particularly Chapter 28, deal with infinite-parameter problems.

6.1.2. In most initial applications, we will think &fas a simple random sample of size n,
X = (Xy,-.-,X,), drawn from a population in which x has a denityo,), so that the DGP density is
f(x,0) =f(x.,0,)-..-f(x,,6,). However, the notation¥(,) can also cover more complicated DGP, such
as time-series data sets in which the observations are serially correlated. Supphse trat
unknown kx1 vector, but one knows that this DGP is contained in a family with densiii@s f(
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indexed by 6 € ®. Animportant leading caseisk = 1, so that 6, isascalar. For many of the topics
inthis Chapter, itisuseful to concentratefirst on this case, and postpone dealing with the additional
complicationsintroduced by having a vector of parameters. However, we will use definitions and
notation that cover the vector aswell asthe scalar case. Let X denotethe domain of x, and ® denote
thedomain of 6. Inthe case of asimple random sample where an observation x isa point in aspace
X, one has X = X". The statistical inference task is to estimate 6,. In Chapter 5, we saw that an
estimator T(x) of 0, was desirablefrom aBayesian point of view if T(-) minimized the expected cost
of mistakes. For typical cost functions where the larger the mistake, the larger the cost, Bayes
estimatorswill try to get "close" to the true parameter value. That is, the Bayes procedure will seek
estimators whose probability densities are concentrated tightly around the true 6,. Classica
statistical procedures lack the expected cost criterion for choosing estimators, but also seek
estimators whose probability densities are near the true density f(x,0,).

In this Chapter, we will denote the expectation of a function r(x,y) of x and a vector of
“parameters¥ by E r(x,y), or when it is necessary to identify the parameter vector of the true DGP,

by E,r(X,y) = f = orx,y)f(x,0)dx. Sometimes, the notatidh,r(x,y) is abbreviated t&,r(x,y).
This notation also applies when the paramatare also ir®. ThenE,,r(x,0) is the expectation of
r(x,y) wheny is set equal to the true parameter veg8t@ndE,,r(x,y) is the expectation when r is
evaluated at an argumenthat is not necessarily equal to the true parameter &ctbne first of
these expectations can be interpreted as a functiéraof the second as a functiorny@ndo.

6.1.3. Listed below are some of the properties that are deemed desirable for classical estimators.
Classical statistics often proceeds by developing some candidate estimators, and then using some
of these properties to choose among the candidates. It is often not possible to achieve all of these
properties at the same time, and sometimes they can even be incompatible. Some of the properties
are defined relative to@ass of candidate estimators, a set of possiblg that we will denote by
T. The density of an estimator-)I'ill be denotedy(t,6,), or when it is necessary to index the
estimatory(t,6,). Sometimes the parameter ve@arill consist of a subvectaerthat is of primary
interest for the application and a subve¢ttinat is not. Theny is termed th@rimary parameter
vector, B is termed &uisance parameter vector, and the DGP f(x,5) depends on both the primary
and nuisance parameters. In this case, the problem is often to eatidestbng with the nuisance
parameters as expediently as possible. One approach with fairly wide applicability is tofreplace
in the DGP by some appropriate functiondafxpbtaining aconcentrated DGP f(xg,r(x,a)) that is
a function only of thex parameters. Some statistical analysis is needed to determine when this is
feasible and can be used as a device to get estimatesgithf reasonable statistical properties. A
specific choice of r(x;) that often works is the argument that solves the problem fau,).

Keep in mind that choice of parameterization is to some extent under the control of the analyst.
Then it may be possible to choose a parameterization that deéindssolates nuisance parameters
in a way that helps in estimation of the primary parameters
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6.1.4. Sufficiency. Suppose there is a one-to-one transformation from the data x into variables
(y,2). Thenthe DGP density f(x,6) can be described in terms of the density of (y,z), which we might
denote g(y,z,0) and write as the product of the marginal density of y and the conditional density of
zgiveny, g(y,z,0) = g,(Y,9)-0,(z]y,0). Therelationship of the density f(x,0) and the density g(y,z,0)
comes from the rules for transforming random variables; see Chapter 3.8. Let x = x(y,z) denotethe
inverse of the one-to-onetransformation from x toy and z, and let J(y,z) denote the Jacobian of this
mapping; i.e., the determinant of the array of derivatives of x(y,z) with respect to its arguments,
signed so that it is positive. Then g(y,z,0) = f(x(y,2))-Jy,z). The Jacobian J(y,z) does not depend
on 6, so g(y,z,0) factors into aterm depending only on 'y and 6 and a term independent of 6 if and
only if f(x(y,z)) factors in the same way.

In general, both the marginal and the conditional densities depend on 6. However, if the
conditional distribution of z giveny isindependent of 6, g,(z|y,0) = g,(z|y), thenthe variablesy are
said to be sufficient for 6. Inthis case, al of the information in the sample about 6 is summarized
in y, and once you know y, knowing z tells you nothing more about 6. (In Chapter 5.4, we
demonstrated this by showing that the posterior density for 6, given'y and z, depended only ony, no
matter what the prior. Sufficiency of y is equivalent to afactorization g(y,z,0) = g,(y,0)-9,(z|y) of
the density into one term depending only on 'y and 6 and a second term depending only onzand y,
where the terms g, and g, need not be densities; i.e., if there is such a factorization, then there is
always an additional normalization by a function of y that makes g, and g, into densities. This
characterization is useful for identifying sufficient statistics. Sufficiency can aso be defined with
respect to asubvector of primary parameters: if g(y,z,a,) =0,(y,®) 0,(z|y,B), theny issufficient for
a. Another situation that could ariseisg(y,z,a,B3) = 9,(y,0):0,(2]y,a,B), so the margina distribution
of y does not depend on the nuisance parameters, but the conditional distribution of z given'y
depends on all the parameters. It may be possible in this case to circumvent estimation of the
nuisance parameters by concentrating on g,(y,o). However, y isnot sufficient for o in this case, as
0,(z]y,,3) contains additional information on «, unfortunately entangled with the nuisance
parameters 3.

An implication of sufficiency is that the search for a good estimator can be restricted to
estimators T(y) that depend only on sufficient statisticsy. In some problems, only the full sample
x isasufficient statistic, and you obtain no useful restriction from sufficiency. In othersthere may
be many different transformations of x into (y,z) for which y is sufficient. Then, among the
alternative sufficient statistics, you will want to chooseay that isaminimal sufficient statistic. This
will bethe caseif there is no further one-to-one transformation of y into variables (u,v) such that u
issufficient for 6 and of lower dimension thany. Minimal sufficient statistics will be most useful
when their dimension is low, and/or they isolate nuisance parameters so that the marginal
distribution of y depends only on the primary parameters.

An example shows how sufficiency works. Suppose one has a simple random sample x =
(X4,---,X,y) from an exponential distribution with an unknown scale parameter . The DGP density is
the product of univariate exponential densities, f(x,A) = (A-eXp(-AX,))-...-(A-exp(-Ax,,)) = A"exp(-A(X,
+...+ X,)). Maketheone-to-onetransformationy =X, + ... +X,, Z; = Xy,..., Z,; = X,,.1, and note that
the inverse transformation impliesx, =y - z, - ... - z,;. Substitute the inverse transformation into
f to obtain g(y,z) = f(x(y,2)) = A™e™. Then, g factorstrivially into amarginal gammadensity g, (y,A)
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= A"y"e™/(n-1)! for y, and aconditional uniform density g,(zly) = (n-1)!/y™* onthesimplex 0 < z,
- ... -Z,4 < Y. Then, yisasufficient statistic for 2, and one need consider only estimators for i that
arefunctionsof theunivariate statisticy =x, + ... +X,. Inthiscase, yisaminimal sufficient statistic
since obviously no further reduction in dimension is possible.

In this exponential example, there are other sufficient statistics that are not minimal. For
example, any y suchasy = (X; + ... +X,,,X,4,X,) Whose components can be transformed to recover
the sum of the x’s is sufficient. Knowing only that one can restrict the search for an estimator to
functionsof suchay isnot asuseful asknowing that one only needsto look at the minimal sufficient
statistic.

6.1.5. Ancillarity. As in the discussion of sufficiency, suppose there is a one-to-one
transformation from the data x into variables (y,z). Also suppose that the parameter vector 6 is
composed of avector o of primary parametersand avector 3 of nuisance parameters. Thenthe DGP
density can be written as the product of the marginal density of y and the conditional density of z
giveny, g,(Y,o,B) 0,(z|y,e.p). Bothg, and g, depend in general on o and . However, thedatay are
ancillary to a if g, does not depend on o and g, does not depend on . In this case, dl the
information in the data about a. is contained in the conditional distribution of zgiveny. Thisimplies
that the search for an estimator for 6 can concentrate solely on the conditional density of z givenyy,
and that the nuisance parameters drop out of this analysis.

An examplewhere ancillarity isuseful arisesin datax = (x,,...,X,,) where the x; are independent
observations from an exponential density and the sample size n is random with a Poisson density
y"-e7/(n-1)! for n=1,2,.... The DGP density isthen A™exp(-A(X, + ... + X.))y"€"/(n-1)!. This
density factorsinto the density A"y™*e™, withy = x, +...+ X, that is now the conditional density of
y given n, timesamarginal density that isafunction of n, y, and y, but not of A. Then, the principle
of ancillarity saysthat to makeinferenceson, oneshould condition onnand not be concerned with
the nuisance parameter y that enters only the marginal density of n.

6.1.6. Admissibility. An estimator T(-) for ascalar parameter 6 from aclass of estimators T is
admissiblerelativeto T if there is no second estimator T(-) in T with the property that E,, (T'(x)
- 0)% < E,(T(x) - 6)* for all 6, with inequality strict for at least one 6 € ©. Thisisthe sameasthe
definition of admissibility in statistical decision theory when the cost of amistakeisdefined asmean
squared error (MSE), the expected value of the square of the difference between the estimate and
the true value of 6. An inadmissible estimator is undesirable because there is an identified
alternative estimator that ismore closely clustered around the true parameter value. One limitation
of admissibility is that there will often be many admissible estimators, and this criterion does not
choose between them. A second limitation is that one might in fact have a cost criterion that is
inconsistent with minimizing mean squared error. Suppose, for example, you incur a cost of zero
iIf your estimate is no greater than a distance M from the true value, and a cost of one otherwise.
Then, you will prefer the estimator that gives ahigher probability of being within distance M, even
if it occasionally haslarge deviations that make its M SE large. The concept of admissibility can be
extended to vectorsof parametersby saying that an estimator isadmissibleif itisadmissiblefor each
linear combination of the parameter vector.
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6.1.7. Unbiasedness. An estimator T(:) is unbiased for 0 if E,,T(x) = 6 for al 6;i.e, 0 =

f ™ T(X)f(x,0)dx. An estimator with this property is "centered" at the true parameter value, and
will not systematically betoo high or too low. Unbiasednessisanintuitively appealing criterion that
Is often used in classical statistics to select estimators. However, unbiased estimators are usually
inadmissible, aconflict between two reasonable criteria. Anexampleillustratestheissue. Suppose
T(-) is an unbiased estimator. Suppose 6* is an arbitrary point in ® and c is a small positive
constant, and define T'(-) = (1-¢)T(:) + ¢6* ; thisis caled a Sein shrinkage estimator. Then

Eo(T'(X) - 0) = By [(1-C)(T(X) - 0) - c(6* - 0)]* = c*(0* - 0)* + (1-C)°Ey [T(X) - 0%,

implying that 0E, (T’ (x) - 6)?/0c = 2¢(6* - 6) - 2(1-C)E , [T(X) - 8] < O for ¢ sufficiently small.
Then, for aproblem where (6* - 6)? and Exio [T(X) - 0]? are bounded for all 6 € @, one can find c for
which T'(-) has lower MSE than T(-), so that T() isinadmissible.

6.1.8. Efficiency. Anestimator T(-) of ascalar parameter isefficient relativeto an estimator T'(+)
if for al 6 onehasE, (T(x) - 6)° < E, o(T'(x) - 6)°. Theestimator T(-) isefficient relativeto aclass
of estimators T if it is efficient relativeto T'(-) for al T'(:) in T. An efficient estimator provides
estimates that are most closely clustered around the true value of 6, by the M SE measure, among all
theestimatorsin T. Thelimitation of efficiency isthat for many problemsand classes of estimators
T, there will be no efficient estimator, in that one cannot satisfy the required inequality uniformly
for al 6. Note that every efficient estimator is admissible, but not every admissible estimator is
efficient. If T contains a unique efficient estimator, then all the other estimators in T must be
inadmissible. The concept of efficiency extends to parameter vectors by requiring that it apply to
each linear combination of the parameter vector. The following theorem establishes an important
efficiency result for estimators that are functions of sufficient statistics:

Theorem 6.1 (Blackwell) If T'(+) isany estimator of 6 from datax, andy isasufficient statistic,
then there exists an estimator T(+) that is a function solely of the sufficient statistic and that is
efficient relative to T'(?). If T'(") is unbiased, then so is T(:). If an unbiased estimator T(*) is
uncorrelated with every unbiased estimator of zero, then T(+) has asmaller variance than any other
unbiased estimator, and is the unique efficient estimator in the class of unbiased estimators.

Proof: Suppose there is a scalar parameter. Make a one-to-one transformation of the data x into
(y,2), wherey isthe sufficient statistic, and | et g,(y,0)-0,(z|y) denote the DGP density. Define T(y)
=E,,T'(y,2). WriteT'(y,2)-6=T'(y,2) - T(y) + T(y) - 0. Then

E(T'(y,2) - 0)° = E(T'(y,2) - T())* + E(T(y) - 0)* + 2E(T(y) - 0)(T'(y,2) - T(¥)) -
But the last term satisfies

2-E(T(y) - 0)(T'(v.2) - T(y)) = 2E|(T(y) - 0)'E, (T (y,2) - T(y)) = 0.
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Therefore, E(T'(y,2) - 6)° > E(T(y) - 6)°. If T'(y,2) isunbiased, then ET(y) = E,E,, T'(y,2) =6, and
T(-) isalsounbiased. Finally, supposeT(-) isuncorrelated with any estimator U(+) that isan unbiased
estimator of zero, i.e., EU(y,z) = 0impliesEU(y,2)-(T(y) - 6) = 0. Then, any unbiased T'(y,z) has
U(y,2):=T'(y,2) - T(y) an unbiased estimator of zero, implying

E(T'(X) - 0)*=E(T'(x) - T(x) + T(x) - 0)*= E(T"(X) - T(x))* + E(T(X) - 0)* + 22ET(x)-(T'(x) - T(x))
=E(T'(x) - T(x)* + E(T(x) - 0)* > E(T(x) - 0)°.

Thetheorem also holdsfor vectors of parameters, and can be established by applying the arguments
above to each linear combination of the parameter vector. O

6.1.9 (MVUE) If T isaclass of unbiased estimators of ascalar parameter, so that E, ,T'(x) = 0
for every estimator T'(+) in this class, then an estimator is efficient in this class if its varianceisno
larger than the variance of any other estimator in the class, and is termed a minimum variance
unbiased estimator (MVUE). There are many problems for which no MV UE estimator exists. We
next give alower bound on the variance of an unbiased estimator. If a candidate satisfies this
bound, then we can be sure that it is MVUE. However, the converse is not true: There may be a
MVUE, its variance may still be larger than this lower bound; i.e., the lower bound may be
unobtainable. Once again, the MV UE concept can be extended to parameter vectors by requiring
that it apply to each linear combination of parameters.

Theorem 6.2. Cramer-Rao Bound) Suppose asimplerandom samplex = (Xy,...,Xy) Withf(x,0)
the density of an observation x. Assume that log f(x,0) is twice continuously differentiable in a
scalar parameter 6, and that thisfunction and its derivatives are bounded in magnitude by afunction
that is independent of 6 and has a finite integral in x. Define the Fisher information in an
observation, J = E,, [V,log f(x,0)][Vylog f(x,0)]". SupposeT(x) hasE, T(x) = 6 + u@). Then ug)
Is thebiasof the estimator. Suppose thad)u¢ differentiable. Then, the variance okx)l§atisfies

Vo(T()) 2 (I + V(@) (nI) (1 + Ven(0))".
If the estimator is unbiased, s®p€ 0, this bound reduces to
V,o(T(X)) = (nI)™,
so thatthe variance of an unbiased estimator is at least as large as the inverse of the Fisher

information in the sample. This result continues to hold whéris a vector, withV, (T(x)) a
covariance matrix and>" interpreted to mean than the matrix difference is positive semidefinite.

Proof: Assumé is a scalar. Let Ix(0) = Z,”l logf(x;,0), so that the DGP density ixf§) =

e®%_ By construction,
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1= f e 9dx and 0+ uE) = f T (x)-€-Odx.

The conditions of the Lebesgue dominated convergence theorem are met, allowing differentiation
under the integral sign. Then, differentiate each integral with respett iget

0= f " VL(x,0)€%9dx and 1+ (6) = f 7 T(X)-VL(x,0)-€dx .

—oo

Combine these to get an expression for the covariance of Y¥,and

1+ (o) = f IT(X) - 0]-V,L(X,0)-€-*Odx .
Apply the Cauchy-Schwartz inequality; see 3.5.9. In this case, the inequality can be written
(U= ([ 770 - 017,00 €4%0x) < [E,(T0) - 07 IE, [TL(x O .

Dividing both sides by the Fisher information in the sample, which is simply the variance of the
sample scoreg,, [V.L(x,0)]? gives the bound.

When# is kx1, one hag8 + u@) = f TT(x)e-*9dx . Differentiating with respect tbgives

| +V,u(®) = ij(x) VoL (x,0) €*9dx = fﬁ:"(T(x)—e—u(e)) V,L(x,0)€-*Idx . The vector

(T(X) -0 - uO))’, VoL(x,0)) has a positive semidefinite covariance matrix that can be written in
Vo TR [1+V )]

partitioned form as
[1+V@]  nd

If one premultiplies this matrix W, and

postmultiplies byV’, the resultis positive semidefinite. Taking Mh -l +Veu(9)](nJ)’1} gives

the Cramer-Rao bound for the vector cdske.

6.1.10.Invariance. In some conditions, one would expect that a change in a problem should not
alter an estimate of a parameter, or should alter it in a specific way. Generically, these are called
invariance properties of an estimator. For example, when estimating a parameter from data obtained
by a simple random sample, the estimate should not depend on the indexing of the observations in
the sample; i.e., T(x..,x,) should benvariant under permutations of the observations. A second
example ignvariance with sample scale: if T (x,,...,X,) denotes the estimator for a sample of size
n, and the observations all equal a constant c, then the estimator should not change with sample size,
or T,(c,...,c) = T(c). A sample mean, for example, has these two invariance properties.

Sometimes a parameter enters a DGP in such a way that there is a simple relationship between
shifts in the parameter and the shifts one would expect to observe in the data. For example, suppose
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the density of an observation is of the form f(x;|6) = h(x;-6); in this case, 6 is called a location
parameter. If the true value of 6 shifts up by an amount A, one would expect observations on
average to shift up by the same amount A. If T,(X,,...,X,) iS an estimator of 6, in this problem, a
reasonable property toimposeon T, (*) isthat T (X, +A,... X, +A) = T (X,,...,.X,) + A. Inthiscase, T, (")
Is termed location invariant. For this problem, one can restrict attention to estimators with this
Invariance property.

Another exampleisscaleinvariance. Supposethe density of an observation hastheformf(x; | 6)
= 0-h(6x;). Then 6 iscalled ascale parameter. If 6 isreduced by a proportion A, one would expect
observations on average to be scaled up by A. The corresponding invariance property on an
estimator T,(-) isthat T, (A-Xy,....,AX) = T(Xq,ee s X)/A

Toillustrate the use of invariance conditions, consider the example of asimple random sample
X = (Xy,..,X,) from an exponential distribution with an unknown scale parameter A, with the DGP
density f(x,A) = A"exp(-A(X; + ... +X,)). Theny =x, + ... + X, issufficient and we need consider
only estimators T,(y). Invariance with respect to scale implies T(y) = T,(1)/y. Invariance with
sample scale requires that if x, = ... = x, =1, so that y = n, then T,(n) = T,(1). Combining these
conditions, T,(1) = T,(1)/n and hence T, (y) = T,(1)/y, so that an estimator that is afunction of the
sufficient statistic and has these invariance properties must be inversely proportional to the sample
mean.

6.1.11. The next group of properties refer to the limiting behavior of estimators in a sequence
of larger and larger samples, and are sometimes called asymptotic properties. The rationale for
employing these propertiesisthat when oneisworking with alarge sample, then propertiesthat hold
in the limit will also hold, approximately, for this sample. The reason for considering such
propertiesat all, rather than concentrating on the sample you actually have, isthat one can usethese
approximate properties to choose among estimators in situations where the exact finite sample
property cannot be imposed or is analytically intractable to work out.

Application of asymptotic properties raises several conceptual and technical issues. The first
guestion iswhat it would mean to increase sample size indefinitely, and whether various methods
that might be used to define thislimit correspond to approximationsthat are likely to be relevant to
a specific problem. There is no ambiguity when one is drawing simple random samples from an
infinite population. However, if one samplesfrom afinite population, afinite sequence of samples
of increasing size will terminate in a complete census of the population. While one could imagine
sampling with replacement and drawing samplesthat arelarger than the population, itisnot obvious
why estimators that have some reasonabl e propertiesin thislimit are necessarily appropriate for the
finite population. Put another way, it isnot obvious that this limit provides a good approximation
to the finite sample.

The issue of the appropriate asymptotic limit is particularly acute for time series. One can
Imagine extending observations indefinitely through time. This may provide approximations that
are appropriate in some situations for some purposes, but not for others. For example, if one is
trying to estimate thetiming of aparticular event, alocal feature of thetime series, it isquestionable
that extending the time seriesindefinitely into the past and future leads to a good approximation to
the statistical properties of the estimator of the timing of an event. Other ways of thinking of
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increasing sample sizesfor time series, such as sampling from more and more "parallel” universes,
or sampling at shorter and shorter intervals, have their own idiosyncrasies that make them
questionable as useful approximations.

A second major issue is how the sequence of estimators associated with various sample sizesis
defined. A conceptualization introduced in Chapter 5 defines an estimator to be afunctiona of the
empirical CDF of thedata, T(F,). Then, itisnatural tothink of T(F(-,0)) asthelimit of this sequence
of estimators, and the Glivenko-Cantelli theorem stated in Chapter 5.1 establishes an approximation
property that the estimator T(F,) converges aimost surely to T(F(-,0)) if the latter exists. This
suggests that defining estimators as “continuous” functions of the CDF leads to a situation in which
the asymptotic limit will have reasonable approximation properties in large samples. However, tt
Is important to avoid reliance on asymptotic arguments when it is clear that the asymptotic
approximation is irrelevant to the behavior of the estimator in the range of sample sizes actually
encountered. Consider an estimation procedure which says "Ignore the data and esiintete
zero in all samples of size less than 10 billion, and for larger samples employ some computationally
complex but statistically sound estimator”. This procedure may technically have good asymptotic
properties, but this approximation obviously tells you nothing about the behavior of the estimator
in economic sample sizes of a few thousand observations.

6.1.12.Consistency. A sequence of estimatorg(X) = T,(Xy,...,%,) for samples of size n are
consistent for 6, if the probability that they are more than a distaned from6, goes to zero as n
increases; i.e., lim. P(T.(Xy,...,%) - 6,] >€) = 0. In the terminology of Chapter 4, thisansak
convergence or convergencein probability, written T (x,,...,%,) -, 0,. One can also talk abaaitong
consistency, which holds when lim., P(Sup,..| Tm(X4,---,%,) -6,| >¢€) =0, and corresponds to almost
sure convergence, (Ky,...,X,) =4 0,

6.1.13 Asymptotic Normality. A sequence of estimatorg‘) for samples of size n acensistent
asymptotically normal (CAN) for 6 if there exists a sequenggof scaling constants such thatr
+e and r-(T,(x,) - 6) converges in distribution to a normally distributed random variable with some
mean | = ) and variance® = ¢(0)% If ¥ (t) is the CDF of T(x,), then Q=r(T,(x,) - 0) has the
CDF P(Q < q) = ¥,(06 + g/r). From Chapter 4, one will have convergence in distribution to a
normal, f(T(X,) - 0) -4 Z with Z ~ N(ug?), if and only if for each ¢, the CDF of Qatisfies

lim_ . [0 + alt) - ®((g-n)b)| = 0. This is the conventional definition of convergence in

— oo

distribution, with the continuity of the normal CEIFpermitting us to state the condition without
excepting jump points in the limit distribution. In this setlfg(t) is converging in distribution to

1(t>90), the CDF of the constant random variable equél tBlowever, ris blowing up at just the

right rate so that¥,(0 + g/r) has a non-degenerate asymptotic distribution, whose shape is
determined by the local shapeBf in shrinking neighborhoods 6f The mean p is termed the
asymptotic bias, andcs? is termed thesymptotic variance. If u = 0, the estimator is said to be
asymptotically unbiased. An unbiased estimator will be asymptotically unbiased, but the reverse

is not necessarily true. Often, when a sequence of estimators is said to be asymptotically normal,
asymptotic unbiasedness is taken to be part of the definition unless stated explicitly to the contrary.
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The scaling term r, can be taken to be n*? in almost all finite-parameter problems, and unlessit is
stated otherwise, you can assume that thisis the scaling that isbeing used. When it isimportant to
make this distinction clear, one can speak of Root-n consistent asymptotically normal (RCAN)
sequences of estimators.

Convergence in distribution to a normal is a condition that holds pointwise for each true
parameter 6. One could strengthen the property by requiring that this convergence be uniformin 6;
i.e., by requiring for each & > 0 and g that there be a sample size n(e,q) beyond which sup, |*¥(0, +
g/r,) - ©((9-p@,))/o(6,))| <e. If this form of convergence holds, and in additio®) jahds(0)? are
continuous functions @ then the estimator is said todeasi stent unifor mly asymptotically normal
(CUAN).

6.1.14.Asymptotic Efficiency. Consider a familyi of sequences of estimatorg(-J that are
CUAN for a parameted and have asymptotic biasg}E 0. An estimator T-) is asymptotically
efficient relative to clasd if its asymptotic variance is no larger than that of any other member of
the family. The reason for restricting attention to the CUAN class is that in the absence of
uniformity, there exist “super-efficient” estimators, constructed in the following way: Supggse T
Is an asymptotically efficient estimator in the CUAN class. For an arbitradefine T *(-) to equal
T.0) if "¥3T,(x) - 0% > 1, and equal té* otherwise. This estimator will have the same asymptotic
variance as [') for fixed 6 = 6*, and an asymptotic variance of zero fior 6*. Thus, it is more
efficient. On the other hand, it has a nasty asymptotic bias for parameter vectors that are “local” to
0*, so that it is not CUAN, and would be an unattractive estimator to use in practice. Once these
non-uniform superefficient estimators are excluded by restricting attention to the CUAN class, one
has the result that under reasonable regularity conditions, an asymptotic version of the Cramer-Rao
bound for unbiased estimators holds for CUAN estimators.

6.1.15. Asymptotic sufficiency. In some problems, sufficiency does not provide a useful
reduction of dimension in finite samples, but a weaker "asymptotic" form of sufficiency will provide
useful restrictions. This could arise if the DGP density can be writ{g)e,(z|y,0) for a
low-dimensional statistig, but both gand g depend of soy is not sufficient. However ,(z|y,0)
may converge in distribution to a density that does not depefid ©hen, there is a large sample
rationale for concentrating on estimators that depend onjy on

6.2. GENERAL ESTIMATION CRITERIA

6.2.1. Itis useful to have some general methods of generating estimators that as a consequence
of their construction will have some desirable statistical properties. Such estimators may prove
adequate in themselves, or may form a starting point for refinements that improve statistical
properties. We introduce several such methods:

6.2.2.Analogy Estimators. Suppose one is interested in a feature of a target population that can
be described as a functional of its CDF,Kuch as its mean, median, or variance, and write this
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feature as 6 = P (F). An analogy estimator exploits the similarity of a population and of a simple
random sample drawn from this population, and forms thmatr Tk) = u(F,), where p is the
functional that produces the target population feature argitke empirical distribution function.

For example, a sample mean will be an analogy estimator for a population mean.

6.2.3.Moment Estimators. Population momentsilvdepend on the parameter index in the
underlying DGP. This is true for ordinary moments such as means, variances, and covariances, as
well as more complicated moments involving data transformations, such as quantiles. Let m(x)
denote a function of an observation &dm(x) =y(6) denote the population moment formed by
taking the expectation of m(x). In a sampke(x,,...,%,), the idea of a moments estimator is to form

n
a sample momenh ’12 mx E,m(x), and then to use the analogy of the population and sample

i-1
moments to form the approximati&m(x) ~ E,, =y(6). The sample average of a function m(x)
of an observation can also be interpreted as its expectation with respect to the empirical distribution
of the sample; we use the notatiBpm(x) to denote this empirical expectation. The moment
estimator TX) solvesE, m(x) =y(T(x)). When the number of moment conditions equals the number
of parameters, an exact solution is normally obtainable, aqdsT{ermed alassical method of
moments estimator. When the number of moment conditions exceeds the number of parameters, it
is not possible in general to findXx) (that sets them all to zero at once. In this case, one may form
a number of linear combinations of the moments equal to the number of parameters to be estimated,
and find Tk) that sets these linear combinations to zero. The linear combinations in turn may be
derived starting from some metric that provides a measure of the distance of the moments from zero,
with T(x) interpreted as a minimand of this metric. This is cajlaeralized method of moments
estimation.

6.2.4.Maximum likelihood estimators. Consider the DGP densityf§) for a given sample as
a function o6. The maximum likelihood estimator of the unknown true valisehe statistic )
that maximizes %,0). The intuition behind this estimator is that if we guess a valuetfat is far
away from the tru@,, then the probability law for thiswould be very unlikely to produce the data
that are actually observed, whereas if we guess a valug tftat is near the true,, then the
probability law for thisd would be likely to produce the observed data. Then, tkg wiich
maximized this likelihood, as measured by the probability law itself, should be close to the true
The maximum likelihood estimator plays a central role in classical statistics, and can be motivated
solely in terms of its desirable classical statistical properties in large samples.

When the data are a sample of n independent observations, each withf@efkityhen the

likelihood of the sample isX(0) = H,”l f(x;,0). Itis often convenient to work with the logarithm

of the densityl(x,0) = Logf(x,0). Then, the.og Likelihood of the sample is IX0) = Log f(x,0) =
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Z,”l [(x;,0). The maximum likelihood estimator is the function t = T(x) of the data that when

substituted for 6 maximizes f(x,0), or equivalently L(x,0).

Thegradient of thelog likelihood of an observation with respect to 6 isdenoted (x,0) = VI (x,9),
and termed the score. The maximum likelihood estimator isazero of the sample expectation of the
score, E s(x,T(x)). Then, the maximum likelihood estimator is a special case of a moments
estimator.

Maximum likelihood estimatorswill under quite general regularity conditions be consistent and
asymptotically normal. Under uniformity conditions that rule out some odd non-uniform "super-
efficient” alternatives, they are also asymptotically efficient. They often have good finite-sample
properties, or can be easily modified so that they do. However, their finite-sample properties have
to be determined on a case-by-case basis. In multiple parameter problems, particularly when there
are primary parameters o and nuisance parameters 3, the maximum likelihood principle can
sometimes be used to handl ethe nuisance parameters. Specifically, maximum likelihood estimation
for all parameters will find the parameter values that solve max,; L(x,a,f3). But one could get the
same sol ution by first maximizing in the nuisance parameters , obtaining asolution f§ = r(x,a), and
substituting this back into the likelihood function to obtain L(X,a,r(X,a)). This is called the
concentrated likelihood function, and it can now be maximized in o alone. The reason this can be
an advantage is that one may be able to obtain r(x,a) “formally” without having to compute it.

6.3. ESTIMATION IN NORMALLY DISTRIBUTED POPULATIONS

6.3.1. Consider a simple random sampte(x,,...,x,) from a population in which observations
are normally distributed with mean p and variante Let ¢(v) = (2r)Y?exp(+%2) denote the
standard normal density. Then the density of observatisrpX(x; - 1)/c)/c. The log likelihood
of the sample is

Locuo?) =- 7 Loge - 7 Loga®- — Y, (- Wi’

We will find estimates pands 2 for the parameters p antiusing the maximum likelihood method,
and establish some of the statistical properties of these estimators.

6.3.2. The first-order-conditions for maximizingxlj{ c® in p ando? are

0= YY", (KW= p=x= nY.' x,

0=-n/a’+ Y1, (Xx-MPH26* = o2= niY ], (xX?
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The maximum likelihood estimator of p is then the sample mean, and the maximum likelihood

estimator ofo? is the sample variance. Defire=sc n/(n-1) = ilz'nl (%-X)?, the sample
n_

variance with a sample size correction. The following result summarizes the properties of these
estimators:

Theorem 6.3. If X = (X...,%,) IS a simple random sample from a population in which
observations are normally distributed with mean p and varisitieen

(1) (x,$9) are joint minimal sufficient statistics for ¢f).

(2) xis an unbiased estimator for p, aAds unbiased estimator fof.

(3) xis a Minimum Variance Unbiased Estimator (MVUE) forsflis MVUE for 6°.
(4) x is Normally distributed with mean p and variasé.

(5) (n-1)$/6° has a Chi-square distribution with n-1 degrees of freedom.

(6) x and $ are statistically independent.

(7) n¥*(x - w)/s has a Student's-T distribution with n-1 degrees of freedom.

(8) (x - u¥/s? has an F-distribution with 1 and n-1 degrees of freedom.

Proof: (1) Factor the log likelihood function as

Loxho?)=- 2 Log@n)- 5 Loge?- 2 - YT (- X+ X~ ufio’

=- 2 ‘Log(2r) - - -Logo®- % C Y (- ®)e” - % S Y (X-pyilo?
__n 1 (n-1)s? n
=- — -Log(2r)- — ‘Logo®- = - 2 — (X-u)/o?.

5 9(2n) , Loge™- = = 5 (x-p)lo

This implies thatyand $ are jointly sufficient for u and?. Because the dimension of€y is the
same as the dimension of ¢f), they are obviously minimal sufficient statistics.

(2) The expectation of isE X = n’lzinzl Ex; = M, since the expectation of each observation

is 4. Hence xs unbiased. To establish the expectatior?,dirst form the nxn matrism =1, -

1.1.'/n, wherel, is the nxn identity matrix andl, is a nx1 vector of ones. The matik is
idempotent (check) and its trace satisfieMdre tr(l,) - tr(1,1,'/n) =n - tr,’1/n) =n - 1. The

result then follows from Theorem 3.11 (viii). For a direct demonstration,’ let(X,-|,...,%-H)

denote the vector of deviations of observations from the population mean. This vector contains
independent identically distributed normal random variables with mean zero and vafjaodbat

EZZ' =4 ,. Further,ZM = (X, - X,...,X,- X) and $=Z’M-M Z/(n-1) = ZM Z/(n-1). ThereforeEs?
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=E(Z'M2)/(n-1) = E tr(Z'M2)/(n-1) = Etr(MZZ")/(n-1) = tr(M-E(ZZ"))/(n-1) = o*tr(M)/(n-1) =
o®. Hence, s is unbiased.

(3) The MVUE property of x and s* is most easily proved by application of the Blackwell
theorem. We already know that these estimators are unbiased. Any other unbiased estimator of
then has the property that the difference of this estimator,amldich we will denote by &, must
satisfyEh(x) = 0. Alternately, ) could be the difference of and any other unbiased estimator

of 6. We have condition (a) that=Eh(x) = f ™ h(x)-exp(L(x,uo2))dx. Striking terms that can

—o0

be taken outside the integral gives condition (b) that f”" h)-exp- Y., (X- LP/26%)dx.

Differentiate (b) with respect t6” and strike out terms that can be taken outside the integral to

obtain condition (c) that 9 f Toh) Y (-pPexp(- Y (% 1H20%)dx. Differentiate

(b) with respect to |, again strike out terms that can be taken outside, and use (b) to obtain condition

(d) that 0= f”" h): Y, xeexp(- Yoy (%-M)¥26%)dx, which implies thaEh(x)-x = 0.

Differentiate (d) with respect to 4, once again strike out terms and eliminate terms that are zero by

property (b) to obtain the condition (e) that Offw h) Y, xeexp(- Y.y (% H269)dx,

which implies thatEh(x)-x? = 0, and hence by (b) and (dBh(x):(x-u)* = 0. But (c) can be written
0 =Eh(x)-[(n-1)$ + n (xp )], and this combined with the last result impligs(x)-s* = 0. Then,
the estimators and $are uncorrelated with any unbiased estimator of zero. The Blackwell theorem
then establishes that they are the unique minimum variance estimators among all unbiased
estimators.

(4) Next consider the distribution of. xWe use the fact that linear transformations of
multivariate normal random vectors are again multivariate normal: N@1;€2) and W = CZ, then
W ~N(Cu,CQC’). Thisresult holdsevenif Z and W are of different dimensions, or C is of less
than full rank. (If the rank of CQC’ isless than full, then the random variable has al its density
concentrated on asubspace.) Now X = Cx when C = (Un,...,1/n). Wehave x multivariate normal
with mean 1, and covariance matriél,, wherel, is a nx1 vector of ones ahds the nxn identity
matrix. Therefore; x N(uC1,,6°CC’) = N(u o4/n).

(5) Next consider the distribution of sConsider the quadratic form/§)’M (x/c), whereM is
the idempotent matriM =1,-1.1'/n from (2). The vectaix/c) is independent standard normal,
so that Theorem 3.11(iii) gives the result.

(6) The matrice€ = (1/n,...,1/n) =1, andM =1, -1,1,'/n haveCM = 0. Then Theorem
3.11(vii) gives the result th&(x/c) = X/c and &/c)'M (x/c) = (n-1)$/c? are independent.

For (7), Use Theorem 3.9(ii), and for (8), use Theorem 3.9(ili).
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4. LARGE SAMPLE PROPERTIES OF MAXIMUM LIKELIHOOD ESTIMATES

This section providesabrief and informal introduction to the statistical properties of maximum
likelihood estimators and similar estimation methods in large samples. Consider asimple random
sample x = (X4,...,X,) from a population in which the density of an observation isf(x,0,). The DGP
density or likelihood of the sampleisthen f(x,0) = f(x,,0)-...-f(x,,,0), with 6, the true value of 6. The
log likelihood of an observationisl(x,0) =1ogf(x,0,), and thelog likelihood of the sampleisL(x,0)

= Z,”l 1(X,,0). The maximum likelihood estimator T,(x) is a value of 6 which maximizes

L,.(x,0). Thefirst-order condition for this maximum is that the sample score,
Vel o(X,0) = Zinzl Vol (%:,0) ,

equal zero at 6 = T,(x). The second order condition is that the sample hessianV,,L, (x,0) =
Z,”l Vol (X;,0), benegativeat 6 = T(x). When the parameter 6 ismorethan one-dimensional, the

second-order condition is that the sample hessian is a negative definite matrix.
Under very mild regularity conditions, the expectation of the score of an observation is zero at

the true parameter vector. Start from the identity f ™ exp(l(x,0))-dx = 1 and differentiate with

respect to 6 under the integral sign to obtain the condition f Vl(x,0)-exp(l(x,0))-dx = 0.

(Regularity conditions are needed to assure that one can indeed differentiate under the integral; this
will be supplied by assuming a dominance condition so that the Lebesgue dominated convergence
theorem can be applied; see Theorem 3.1 and the discussion following.) Then, at the true parameter
0,0ne has E, ,V,l(x,0) = 0, the condition that the population score is zero when 6 = 0,. Another

regularity condition requires that EX‘ o Vol(x,0) =0onlyif 6 =6, this hasthe interpretation of an

identification condition. The maximum likelihood estimator can be interpreted as an analogy
estimator that chooses T, (x) to satisfy a sample condition (that the sample score be zero) that is
analogous to the population score condition. One could sharpen the statement of this analogy by
writing the population score as an explicit function of the population DGRFu€,) =

Eo Vol(x,0), and writing the sample score a® k() = E.V,I(x,0), where E,” stands for
empirical expectation, or sample average. The mappifig) is(linear in its second argument, and

this is enough to assure that it is continuous (in an appropriate sense) in this argument. Then one has
almost sure convergence obK,) to u@,F(,0,)) for eachd, from the Glivenko-Cantelli theorem.
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A few additional regularity conditions are enough to ensure that this convergence is uniformin 6,
and that a solution T, (X) that sets the sample score to zero converges almost surely to the value 6,
that sets the population score to zero.

Thebasic large sample properties of maximum likelihood estimators are that, subject to suitable
regularity conditions, T, converges in probability to the true parameter vector 0., and V4T, - 6,)
convergesindistribution to anormal random variablewith mean zero and avariance which achieves
the Cramer- Rao bound for an unbiased estimator. Theseresultsimply that inlarge samples, T, will
become a more and more precise estimate of the true parameter. Further, the convergence in
distribution to a Normal permits one to use the properties of a Normal population to construct
approximate hypothesi stests and confidence bounds, and get approximationsfor significancelevels
and power whose accuracy increases with sample size. The achievement of the Cramer-Rao lower
bound on variance indicates that in large samples there are no alternative estimators which are
uniformly more precise, so MLE is the "best" one can do.

Wenext list aseries of regularity conditions under which the results stated above can be shown
to hold. Only thesingle parameter casewill be presented. However, the conditionsand resultshave
direct generalizations to the multiple parameter case. Thislist ischosen so the conditions are easy
tointerpret and to check in applications. Note that these are conditions on the population DGP, not
on a specific sample. Hence, "checking" means verifying that your model of the DGP and your
assumptions on distributions of random variables are logically consistent with the regularity
conditions. They cannot be verified empirically by looking at the data, but it is often possible to set
up and carry out empirical teststhat may allow you to conclude that some of theregularity conditions
fail. Thereareaternative formsfor the regularity conditions, as well as weaker conditions, which
give the same or similar limiting results. The regularity conditions are quite generic, and will be
satisfied in many economic applications. However, it is a serious mistake to assume without
checking that the DGP you assume for your problem is consistent with these conditions. Whilein
most cases the mantra "l assume the appropriate regularity conditions” will work out, you can be
acutely embarrassed if your DGP happens to be one of the exceptions that islogically inconsistent
with the regularity conditions, particularly if it results in estimators that fail to have desirable
statistical properties. Here are the conditions:

A.l. Thereisasingle parameter 6 which is permitted to vary in a closed bounded subset ©.
Thetruevalue 6, isin the interior of .

A.2. Thesampleobservationsare realizations of independently identically distributed random
variables x,,...,X,, with acommon density f(x,0,).

A.3. Thedensity f(x,0) iscontinuousin 6, and three times continuously differentiablein 6, for
each x, and is "well behaved" (e.g., measurable or piecewise continuous or continuous) in x
for each 6.

A.4. There exists abound (x) on the density and its derivatives which is uniformin 6 and
satisfies [1(x,0)| < B(), (Vl(x,0))* < BO), [Vagl 0) < B, |Vigel (x,0)] < B(x), and

f ™ B(X)%(x|6,)dx < + . (Then, B(x) isadominating, square-integrable function.)
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A.5 Thefunction A(0) = E,, 1(x,0) hasA(0) <A(6,) and VA(6) # Ofor 6 # 6, and J = -VyA(0,)
>0.

The expression J in A.5 is termed the Fisher information in an observation. The first two
assumptions mostly set the problem. The restriction of the parameter to a closed bounded set
guarantees that a MLE exists, and can be relaxed by adding conditions elsewhere. Requiring 6,
interior to ® guarantees that the first-order condition E.V,I(x,T,(-)) = 0 for a maximum holds for
large n, rather than an inequality condition for a maximum at a boundary. This really matters
because MLE at boundaries can have different asymptotic distributions and rates of convergence
than the standard n*? rate of convergence to the normal. The continuity conditions A.3 are satisfied
for most economic problems, and in some weak form are critical to the asymptotic distribution
results. Condition A.4 gives bounds that permit exchange of the order of differentiation and
integration in forming expectations with respect to the population density. Condition A.5 isan
identification requirement which implies there cannot be a parameter vector other than 6, that on
average always explains the dataas well as ..

The next result establishes that under these regularity conditions, a MLE is consistent and
asymptotically norma (CAN):

Theorem 6.4. If A.1-A.5 hold, then a maximum likelihood estimator T, satisfies
(1) T, isconsistent for 6.
(2) T, is asymptotically normal: n**(T (x) - 0,) -4 Z,~ N(0,J%), with J equal to the Fisher

information in an observation, J= E,,  V,l(x,0,).

(3) E[Vel (X, T)]? -, J and -E Vel (X,T,) =, J.
(4) Suppose T,/ is any sequence of estimators that solve equations of the form E g(x,0) =0,

where g istwice continually differentiable and satisfies EX‘e g(x,0) =0if andonly if 6 =6,

uniform bounds |g(x,0)| < B(X), |V,a(Y,0)?| < B(X), |Ved(X,0)| < B(X), where EB(X)? < + o;
and R =-EV,g(y,0,) = 0. Let S=Eg(x,0)% ThenT,’~ 0,and n(T, - 0") ~4 Z,~N(O,V),
whereV = R*SR’™. Further, V > J%, so that the MLE T, isefficient relativeto T,’. Further,
Z, and Z, have the covariance property cov(Z,,Z, - Z,) = 0.

Result (2) in this theorem implies that to a good approximation in large samples, the estimator T,
is normal with mean 0, and variance (nJ)*, where J is the Fisher information in an observation.
Since this variance is the Cramer-Rao bound for an unbiased estimator, this also suggests that one
Isnot going to be ableto find other estimatorsthat are a so unbiased in this approximation sense and
which have lower variance. Result 3 gives two ways of estimating the asymptotic variance J*
consistently, where we use the fact that J* is a continuous function of Jfor J # 0, so that it can be
estimated consistently by theinverse of aconsistent estimator of J.. Result (4) establishesthat MLE
Is efficient relative to abroad class of estimators called M-estimators.
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Proof: Anintuitivedemonstration of the Theoremwill be given rather than formal proofs. Consider
first the consistency result. The reasoning is as follows. Consider the expected likelihood of an
observation,

MO) = By 1060)= [ 1xO(x0)0x.

We will argue that 4(6) has a unique maximum at 6,. Then we will argue that any function which
is uniformly very close to A(6) must have its maximum near 6,. Finally, we argue by applying a
uniform law of large numbers that the likelihood function is with probability approaching one
uniformly very close to A for n sufficiently large. Together, these results will imply that with
probability approaching one, T, iscloseto 6, for n large.

Assumption A.4 ensures that A(6) is continuous, and that one can reverse the order of
differentiation and integration to obtain continuous derivatives

VMO = [T VIO = By Vil (x0)

Vak(0) = [ Vil (< Of(x0Jdx = Eyy Vil (x0)

Starting from the identity
1= f Tof(x0)dx = [T d*9dx,

—oo

one obtains by differentiation

0= [ Vil(x)e*dx

0= [ [Val(0) *+ Vil (07 clx

Evaluated at 0,, theseimply 0= V,0(0,) and -Vyh(0p) = E, Vol(x,0)2=1J.

Assumption A.5 requires further that J # 0, and that 0, is the only root of V,A(0). Hence, A(0) has
aunique maximum at 6,, and at no other 6 satisfiesafirst-order condition or boundary condition for
alocal maximum.

We argue next that any function which is close enough to V,2(0) will have at |east one root near
0, and no roots far away from 6,. The figure below graphs V,A(0), dong with a"seeve’ whichisa
vertical distanced from Vi Any function trapped in the sleeve must have at | east one root between
0,-¢,and 0, + ¢, where[0.,-g,,0,+¢,] istheinterval where the sleeve intersects the axis, and must
have no roots outside this interval. Furthermore, the uniqueness of the root 6, of V,A(0) plus the
condition VyA(6,) < 0imply that asd shrinks toward zero, so do g, and g,. In the graph, the sample
score intersects the axis within the sleeve, but for parameter values near two is outside the sleeve.
The last step in the consistency argument is to show that with probability approaching one the
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sample score will be entirely contained within the sleeve; i.e., that L,(x,0) is with probability
approaching one contained in a 3-deeve around A(0). For fixed 6, L(x,0) = I(x;,0) is a sample
averageof i.i.d. random variables|(x,0) with mean A(0). Then Kolmogorov's SLLN impliesL,(x,0)
- M0). Thisisnot quite enough, because there is a question of whether L (x,0) could converge
non-uniformly to A(0), so that for any n there are some values of 6 where L(x,0) is outside the
deeve. However, assumptionsA.1, A.3, and A.4imply max,, |L,(X,0) - A(8)| - 0. Thisfollows
in particular because the differentiability of f(x,0) in 6 from A.3 and the bound on VI (x,0) from A.4
imply that I(-,0) is almost surely continuous on the compact set ®, so that the uniform SLLN in
Chapter 4.5 applies. Thisestablishesthat T~ 6.
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We next demonstrate the asymptotic normality of T,. A Taylor's expansion about 6 of the
first-order condition for maximization of the log likelihood function gives

(1) 0=V,L(T,) =VeLn(0) + VoL o(0)(T-0) + VoL (T (T,-0)7/2,
where T, is some point between T, and 6. Define the quantities
B.= nt) Vi(4:90),Co= n YN Vel (110), D= n Y Vil (v Ta)
Multiply equation (1) by n¥4/(1+n"?|T,-0|) and let Z, = n"(T-0)/(I + n¥3|T,-0|). Then, one gets
0= n¥2B, /(1+n"?| T -0|) + C, Z, + D,Z(T,-0)/2.
We make alimiting argument on each of theterms. First, the V,I(y,,0,) arei.i.d. random variables

with EV,l(y,,0,) = VoAM0,) = 0 and E[V,l(Y;,0,)] = - VeeM(0,) = J. Hence the Lindeberg-Levy CLT
impliesB, -4 W, ~N(0,J). Second, V(Y ,0,) arei.i.d. random variables with EVl(Y;,0,) = -J.
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Hence the Khinchine WLLN implies C, -, -J. Third, |D,| < N Vel 0 Ta) | <

nY ', B(y) =, EB(Y) < +e, by A.4 and Khinchine’'s WLLN, so that |D,| is stochastically

bounded. Furthermore, |Z,| < 1, implying Z, = Oy(1). Since T, is consistent, (T, - 0,) = 0,(1).
Therefore, by rule 6 in Figure 4.3, D, Z.(T,- 0,)/2 = 0,(1).

Given J/2 > & > 0, these arguments establish we can find n, such that for n > n, with probability
at least 1-e, wehave |D,Z(T,- 0,)/2| <e, |C,+J| <eand |B,| <M for alarge constant M (since B,
-4 W, = B, impliesO,(1)). Inthisevent, |C,| > J¢, |B,+ C,n"4(T,-0,)| <g(1 +n"*|T -6,|), and
|B,| < M imply |C,|n"?3|T-0,| - |B,| < |B+C,n"?|T,-0,)| <e(l-n"?-|T,-0,|). Thisimpliesthe
inequality (J- 2e)n"*|T -0, <M +¢. Thereforen’*(T -6,) = O,(1); i.e., itisstochastically bounded.
Therefore, by rule 6 in Figure 3.3, multiplying (2) by 1 + n¥*|T.-6,| yields0 =B, + C,n"*|T,-0,|
+0,(1). ButC,~,-J<0impliesC;*~,-J*. Byrule6, (C,+J")B,=0,(1) and n"*(T-6,) = J'B, +
0,(1). Thelimit rulesin Figure 3.1 then imply J'B, -, Z, ~ N(0,J%), n**|T,-6,| - J'B, -, 0, and
hence n¥%|T,-0,| -4 Z,.

The third result in the theorem is that Jis estimated consistently by

(3) Jn = rrlz:in:l V(9|(yi’Tn)2-
To show this, make a Taylor’s expansion of this expression around 6.,
@ J= N L0 +2 N Tl T Vel (7 Taod (Ti6o).

We have aready shown that thefirst termin (4) convergesin probability to J. The second term
is the product of (T, - 0,) -, 0 and an expression which is bounded by n’lzinzl 28(y,)° -,

2E,B(Y)? <+, by Khinchine’'s WLLN. Hence the second term is 0,(1) and J, -, J.
Thefinal result in the theorem establishes that the MLE is efficient relative to any M-estimator

T, satisfying n’lzi”:l a(y,,T,/) = 0, where g meets a series of regularity conditions. The first

conclusion in thisresult isthat T, is consistent and n¥3(T,’-0,) is asymptotically normal. Thisis
actually of considerable independent interest, since many of the alternatives to MLE that are used
ineconometricsfor reasonsof computational convenienceor robustnessare M-estimators. Ordinary
least squaresis aleading example of an estimator in this class. The argument for the properties of
T, areexactly the same asfor the MLE case above, with g replacing V,l. Theonly differenceisthat
R and S are not necessarily equal, whereasfor g =V, inthe MLE case, wehad R=S=J. To make
the efficiency argument, consider together the Taylor’s expansions used to get the asymptotic
distributionsof T,and T,
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0=Vl(y,T,) = nilzinzl Vol (y;,0,) + nilzinzl Vool (¥::0,) nﬂz(Tn'eo) + Op(l)

0 = g(yi’Tnl) = I’lili:in:l g(yi’eo) + I’lili:in:l gO(Yi’eo)nllz(Tnl'eo) + Op(l)

Solving these two equations gives
nY*(T,-6,) = J'W, + 0,(1)

nY*(T,’-6,) = R'U, + 0,(1)

withW,= n¥2} 7 Vi(y,0)adU,= n¥2) " g(y,0,). Consider any weighted average
of these equations,
nﬂz((l'Y)Tn + yTn’ - 9o) = Jl(l'Y)Wn + R_LYUn + Op(l) .

The Lindeberg-Levy CLT impliesthat thisexpression isasymptotically normal with mean zero and
variance

Q = JHLY)EVI(Y [0,)° + RHEQ(Y ,0,)° + 2 R™(L- v)vEl, (Y [0)9(Y .0,)

The condition 0 = [ 9(y,0)f(y|0)dy = [ g(y,0)e'¥dy, implies, differentiating under theintegral sign,

0= [ V,g(y.0)e*dy + [ Vyl(y,0)g(y.0)e* Yy .
Evaluated at 6, thisimplies 0 = -R + EV,I(Y [6,)g(Y ,0,). Hence,
Q = I (1y)? + R%S 9% + 2(1-y)y I'R'R = J1 + [R?S - J)y2
Since Q2 > O for any v, thisrequires V = R?S > J*, and hence Q > J*. Further, note that
Q=va(Z,+y(Z,-2,)) = var(Z,) + v’ var(Z,-Z,) + 2y cov(Z,,Z,- Z,)
and var(Z,) = J*, implying
2y cov(Z,, Z,-Z,) > -y*var(Z,- Z.).

Taking y small positive or negative impliescov(Z,, Z, - Z,)) = 0. [J
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