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1 Introduction

This handout reviews some of the key points regarding regression algebra and the multivariate normal

distribution. It follows closely Goldberger Ch.’s 17 and Ch. 18.

2 Short and Long Regressions

The basic set-up is

y = Xβ + ε = X1β1 + X2β2 + ε (1)

where we have partitioned the n × k matrix X into two submatrices X1 ∈ Rn×k1 and X2 ∈ Rn×k2 .

We can think of two regressions:

1. a short one

y = X1β1 + ε (2)

and,

2. a long one

y = X1β1 + X2β2 + ε (3)

I’ll use the same notation as Goldberger so let bi be a vector of OLS parameter estimates for the

subvector βi in a long regression and b∗i be the OLS estimates of βi in a short regression. And, let e be

the residuals from the long regression and e∗ be the residuals from the short regression.
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Exercise 1:

Let b∗1 be the OLS estimates of β1 from regression 2 and b1 be the OLS estimates of β1 from

regression 3. Show

b∗1 = b1 +
(
X ′

1X1
)−1

X ′
1X2b2 (4)

Exercise 2:

Letting e∗ be the residuals from 2 show that

e∗ = M1X2b2 + e

In words, what is M1X2?

Exercise 3:

Show that

e∗′e∗ = b′2X
′
2M1X2b2 + e′e

and interpret this result. What implication does this have for the fit of the long regression relative to

the short regression?

Result 1 Some exceptions

1. If b2 = 0 then b∗1 = b1 and e∗ = e.

2. If X ′
1X2 = 0 then b∗1 = b1 but e∗ 6= e.

3 Frisch-Waugh-Lovell

Problem 2 proves the Frisch-Waugh-Lovell theorem which can be thought of as an alternative way of

getting at the OLS estimator of β2.

1. Regress each column of X2 on X1 and save the corresponding set of residuals in a matrix, X∗
2 .

2. Regress y on X1 and save its residual as y∗.(In fact, this step is unnecessary and Goldberger refers

to this as a double residual regression. Exercise: 4 Prove that this step is in fact unnecessary)

3. Regress y∗ on X∗
2 and the resulting coefficient vector is the same as the OLS coefficients from the

original regression in 1.
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To see this consider regressing y on M1X2 (= X∗
2 in Goldberger) . The coefficient vector is

c∗2 =
(
X ′

2M1X2
)−1

X ′
2M1y

=
(
X ′

2M1X2

)−1
X ′

2M1 (X1b1 + X2b2 + e)

=
(
X ′

2M1X2
)−1

X ′
2M1 (X2b2 + e) (M1X1 = 0)

= b2 (cancelling and noting M1e = e and X ′
2e = 0)

For some applications see section 17.4.

4 The CR Model

Recall the set-up

E (y) = Xβ = X1β1 + X2β2

V (y) = σ2I

X : full rank and nonstochastic

4.1 The Parameters

Exercise 5: (Omitted Variables Bias):

Show that the estimated coefficients from the short regression (2) b∗1 are biased.

Exercise 6:

What is the variance of the short regression coefficents b∗1 and what is its relation relative to the

variance of the long regression coefficients b1?

4.2 The Residuals

Exercise 7:

Find the expectation and variance of the short regression residual vector e∗.

Exercise 8:

Find the expectation of the sum of squared residuals, e∗′e∗.
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5 The Normal Distribution

You better become REAL familiar with this. There are just a zillion different properties that the

normal (univariate and multivariate) distribution has. Here’s a short list of some things that might be

worth knowing:

5.1 Univariate Normal Distribution

1. X˜N
(
µ, σ2

)
means X has a univariate normal distribution with mean parameter µ and σ2. The

density is of course

fX (x) =
1√

2πσ2
exp

{
−1

2
(x− µ)2

σ2

}

which is often denoted by φ (x) and there is no closed form for the corresponding distribution,

Φ (x)

2. The distribution is symmetric implying

Φ (−x) = 1−Φ (x)

This is easily seen by thinking of the area under the normal density.

3. Closed under affine transformations. If x˜N
(
µ, σ2

)
then y = α+βx is distributed N

(
α + βµ, β2σ2

)
.

4. Is uniquely determined by it’s first two moments.

5.

φ′ (x) = xφ (x)

6. If Z is standard normal than all odd moments are equal to 0 and

E
(
Z2k

)
=

(2k)!
2k · k!

, k = 1, 2, 3, ...

(This can be shown using integration by parts and induction)

5.2 Multivariate Normal Distribution

1. The vector x ∈ Rn is distributed multivariate normal with mean vector µ and variance-covariance

matrix Σ and has the corresponding density

fX (x) = (2π)−n/2 × |Σ|−1/2 × exp
{
−1

2
(x−µ)′ Σ−1 (x− µ)

}

where |·| means determinant.
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2. Two normal random variables are independent if and only if they are uncorrelated.

3. Affine transformations of a vector of normal random variables are again normal. So, if x˜MV N (µ, Σ)

then y = Hx + b is distributed multivariate normal with mean Hµ + b and variance HΣH′

4. Important!!! Consider a pair of random vectors x and y each multivariate normal such that

(x′, y′) has mean and covariance matrix given by

µ =


 µx

µy


 and Σ =


 Σxx Σxy

Σyx Σyy




respectively. Then the distribution of x conditional on y is also multivariate normal with mean

µx|y = µx + ΣxyΣ−1
yy

(
y− µy

)

and covariance matrix

Σx|y = Σxx −ΣxyΣ−1
yy Σyx

Note that the conditional covariance matrix does not depend on y and that while Σ and Σyy are

assumed to be nonsingular, Σ−1
yy can be replaced by a pseudo inverse.

5.3 Functions of Normal Random Variables

1. Let x be a k−dimensional vector of standard normal random variables. Then x′x is distributed

χ2 with k degrees of freedom.

2. Extending the above result, if x ∈ Rn is distributed MV N (µ, Σ) then

(x−µ)′ Σ (x−µ)

is distributed χ2
n

3. If x ∈ Rn is distributed MV N (0, I) and M is any nonrandom idempotent matrix with rank r ≤ n

then u′Mu is distributed χ2
r .

4. Let x ∈ Rn be distributed MV N (0, I). Let M be any nonrandom idempotent matrix with rank

r ≤ n and let L be a nonrandom matrix such that LM = 0. Then a = Mu and b = Lu are

independent random vectors.

5. Let v˜χ2
n and w˜χ2

d be two independent chi-square random variables. Then

z =
v/n

w/d

is distributed Snedecor-F : F (n, m)
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6. Let z˜N (0, 1) and w˜χ2
n independent of z. Then

t =
z

w/n

has a Student’s t-distribution with n degrees of freedom (tn)

7. If u˜tn then u2˜F (1, n) .


