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1 Introduction

This handout reviews some of the key points regarding chapters 19-22 in Goldberger.

2 CNR Framework (σ2 Known)

The idea now is that we add a distributional assumption to the CR framework. This allows us to

conduct statistical inference (confidence intervals and hypothesis testing). The assumptions are now:

1. y˜MV N
(
Xβ, σ2I

)

2. X nonstochastic and full rank.

Note that this is almost the same as the classical regression framework except for the normality

assumption since

E (y) = Xβ

V (y) = σ2I

2.1 Sampling Distributions

Let’s consider the implied distributions for the OLS estimator b and corresponding sum of square

residuals e′e.
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1. Claim:

b˜MV N
(
β, σ2

(
X ′X

)−1
)

Proof:

b =
(
X ′X

)−1
X ′y

b is a linear combination of the y′s which are N
(
Xβ, σ2I

)
. This implies the b′s are normal with

expectation

E (b) = E
{(

X ′X
)−1

X ′y
}

=
(
X ′X

)−1
X ′E {y}

=
(
X ′X

)−1
X ′Xβ

= β

and variance covariance matrix

V (b) = V
((

X ′X
)−1

X ′y
)

=
(
X ′X

)−1
X ′V (y) X

(
X ′X

)−1

=
(
X ′X

)−1
X ′σ2IX

(
X ′X

)−1

= σ2
(
X ′X

)−1
X ′X

(
X ′X

)−1

= σ2
(
X ′X

)−1

The key assumption here is that: σ2 is known. If it isn’t we get a Student’s t−distribution.

Note that any nonstochastic linear combination of the parameter vector, Hb, will be normal with

expectation Hβ and variance σ2H (X ′X)−1 H ′ (assuming H ∈ Rp×k and ρ (H) = p).

2. Claim:

e′e/σ2˜χ2
T

Proof: We’ll use the general result that if y ∈ Rn is distributed MV N (µ, Σ) then

(y − µ)′ Σ−1 (y − µ) ˜χ2
n

Since the residual vector has expectation 0,

e′e = (y −Xβ)′ (y −Xβ)

= (y −Xβ)′
[
σ2I

]−1 (y −Xβ)× σ2

So, e′e/σ2˜χ2
T .
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2.2 Confidence Intervals

In the CNR framework with σ2 known, we form a confidence interval as

t± cσt

where t = h′b is our estimated statistic, c is the appropriate critical value from the normal distribution

(e.g. 1.96 for a 95% confidence interval, 1.00 for a 68% confidence interval, etc.) and σt =
√

h′V (b)h

is the standard error of t.

This set-up subsumes the more basic idea of a confidence interval for one parameter bj. In that

case, h is a vector of all 0′s except for a 1 in the jth position.

2.3 Joint Confidence Regions

We’ve got an unknown parameter vector θ = Hβ and we estiamte a sample value t = Hb (we continue

to assume knowledge of σ2 which is an important assumption). From the results above

(t− θ)′
[
σ2H

(
X ′X

)−1
H ′

]−1
(t− θ) ˜χ2

p

where p is the rank of the matrix H.(i.e. it’s the number of linear restrictions). To form a confidence

region for θ we would set

(t− θ)′
[
σ2H

(
X ′X

)−1
H ′

]−1
(t− θ) ≤ cp

where cp is the critical value from the χ2
p distribution. That is cp is the number such that the area to

the left of cp under the χ2
p pdf is equal to the relevant percentage. As a concrete example, consider a

95% confidence interval where the rank of H is 2. cp would be c2 = 5.99.

Note that (t− θ)′
[
σ2H (X ′X)−1 H ′

]−1
(t− θ) can be written more generally as (t− θ)′ [V (t)]−1 (t− θ) .

Exercise 19.1: The CNR model applies with k = 4, X ′X = I, σ2 = 2, and β = 0. Let t = b′b. Find

the number c : Pr (t > c) = 0.10.

b′b = σ2
{

b′
[
σ2I

]−1
b
}

The term in brackets is distributed χ2
4 so we need to find the c :

Pr {t > 2c} = 0.10

Using the χ2 table and the fact that Pr {t ≤ 2c} = 0.90, we get 2c = 7.78 or c = 3.89.



4

2.4 Hypothesis Testing

2.4.1 Univariate

Consider testing whether a particular parameter,βj, is equal to β0
j . The null and alternative hypotheses

are

H0 : βj = β0
j

H1 : βj 6= β0
j

Our test is a simple two-tail z-test,

z =
bj − β0

j

σj
˜N (0, 1)

Assuming our significance level is 5%, if |z| > 1.96, then we reject the null hypothesis H0 : βj = β0
j . If

|z| ≤ 1.96, then we fail to reject the null.

We can just as easily test a linear combination of parameters with
(
t− θ0

)
σt

˜N (0, 1)

where t = hb and σt =
√

V (t) =
√

h′V (b)h.

Example: Consider the following model

y = x1β1 + x2β2 + ε

under the assumptions of the CNR model. We want to test:

H0 : β1 + β2 = 1

H1 : β1 + β2 6= 1

Then

h = (1, 1)′

b = (b1, b2)

θ0 = 1

2.4.2 Multivariate

What about testing a set of parameters? We need a joint null hypothesis about β. Let θ = Hβ where H

is a non-random p×k matrix with rank p (i.e. p linear restrictions on the parameters). The hypotheses

are

H0 : θ = θ0

H1 : θ 6= θ0
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where θ0 is a vector of hypothesized values (numbers).

Consider testing at the 5% significance level. We will accept the null (or more accurately fail to

reject the null) if θ0 lies within the 95% confidence region for θ :

w = (θ − t)′ [V (t)]−1 (θ − t) ≤ cp

and reject otherwise. Here, t = Hb while cp is the 5% critical value from the χ2
p table. We can

equivalently think about rejecting the null if w > cp and accepting the null if w ≤ cp.

Example: Consider the following model

y = x1β1 + x2β2 + x3β3 + ε

under the assumptions of the CNR model. We want to test:

H0 : β1 = 2; β2 − 2β3 = 0

H1 : β1 6= 2; β2 − 2β3 6= 0

Then

H =


 1 0 0

0 1 −2




b = (b1, b2, b3)

θ0 =


 2

0




3 CNR Framework (σ2 Unknown)

The set-up is as before except now σ2 is not assumed known. It therefore must be estimated and the

usual estimator is

σ̂2 =
e′e

T − k

1. Claim:

σ̂2 = χ2
T−k

Proof: See Goldberger pp. 223-224

2. Claim:

b is independent of e

Proof: See Goldberger p. 224

Therefore, any function of b is independent of any function of e (This is a basic fact of math-stat

you should be familiar with).
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3. The test statistic

v = (t− θ)′
[
V̂ (t)

]−1
(t− θ) /p

is distributed F (p, T − k) where

t = Hb

V̂ (t) = σ̂2H
(
X ′X

)−1
H ′

If we recall from Section 3 Handout, an F (p, T − k) random variable takes the form

f =
x/n

y/d

where x˜χ2
n independently of y˜χ2

d. Rewriting v, this distributional result becomes immediately

clear.

v =
(t− θ)′

[
H (X ′X)−1 H ′

]−1
(t− θ) �σ2p

[e′e/T − k] /σ2

The numerator is a χ2
p random variable divided by its degrees of freedom p. It is also random only

through its dependence on b. The denominator is a χ2
T−k random variable and is random only

through e. As noted above, e and b are independent as are any functions of these two random

variables. The result follows.

4. The test statistic

u =
(bj − βj)

σ̂bj

is distributed tT−k. Again, from section 3 handout, we know a t random variable is the ratio

of a standard normal to a χ2 divided by its degrees of freedom where the random variables are

independent of one another. Rewriting u below, we see this is clearly the case.

u =
(bj − βj) /σbj√
[e′e/T − k] /σ2

bj

3.1 Confidence Intervals and Regions

To find confidence intervals, the methodology is exactly the same except now we use the tT−k distri-

bution to find the critical values.

t± cσt

For (T − k) > 50 the difference between the t and normal distribution is negligible. It’s even pretty

close for (T − k) > 25.

Confidence regions are found similarly using the Fp,T−k distribution for the critical values.

(t− θ)′
[
σ̂2H

(
X ′X

)−1
H ′

]−1
(t− θ) ≤ cp
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3.2 Hypothesis Testing

3.2.1 Univariate

This is the standard t−test situation. Consider testing one parameter,

H0 : βj = β0
j

H1 : βj 6= β0
j

Our test statistic is as before except σbj is replaced by its estimate σ̂bj .

t =
bj − β0

j

σ̂bj

which now has the tT−k distribution.

3.2.2 Multivariate

As with confidence intervals, the procedure and test statistic are the same except we use our estimator

for σ2 and the Fp,T−k distribution for defining the rejection region.

3.2.3 Zero Null Subvector Hypothesis

This subsection discusses the situation where we want to test wether a subvector of the β′s are equal to

0. The idea is to relate this testing situation to the short regressions discussed earlier. For illustrative

purposes, assume it is the last k2 elements of the following regression

y = X1β1 + X2β2 + ε

where X1 ∈ RT×k1 , X2 ∈ RT×k2, β1 ∈ Rk1 and β2 ∈ Rk2. The null and alternative hypotheses are

H0 : β2 = 0

H1 : β2 6= 0

Using our standard hypothesis testing framework from above, we can write

t = Hb = b2

θ = Hβ = β2

where H = [0k2×k1 ; Ik2×k2 ] . The estimated variance of t is simply, V̂ (t) = σ̂2H (X ′X)−1 H ′. If we

partition the (X ′X)−1 matrix according to the subvectors we see

H
(
X ′X

)−1
H ′ = (0, I)


 Q11 Q12

Q21 Q22





 0

I


 = Q22
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Recall our test statistic,

w = (t− θ)′
[
V̂ (t)

]−1
(t− θ) /p

which can now be written

v = b′2
[
σ̂2Q22

]−1
b2�k2

Using the results from the FWL theorem (or simply the inverse of a partitioned matrix), we can write

[
Q22

]−1 = X ′
2M1X2

so our statistic becomes

v = b′2X
′
2M1X2b2�σ̂2k2

Residual Sum of Squares: An alternative way of writing this test statistic is to recognize that

e∗′e∗ = e′e + b′2X
′
2M1X2b2

(see Section 3 handout). Therefore

v =
(
e∗′e∗ − e′e

)
/σ̂2k2

=
(T − k)

k2

(e∗′e∗ − e′e)
e′e

Result 1 To calculate the test statistic:

1. Run a short (restricted) regression of y on X1 and compute the sum of square residuals, e∗′e∗.

2. Run the long (unrestricted) regression of y on X1 and X2 and compute the sum of square residuals,

e′e.

3. Using 1) and 2) compute v.

The intuition is as follows. A large value of v leads to a rejection of the null (i.e. β2 6= 0) which

occurs when the relative difference between the restricted and unrestricted sum of squares is large.

This is saying the fit is significantly better when the X2 matrix is included in the regression.

Coefficient of Determination: When an intercept is included in both the restricted and unrestricted

regressions, the R2 is well-defined. Recall

R2 = 1− e′e
y′Miy

where Mi projects into the orthocomplement of the summer vector space (it de-means things). This

suggests another way of writing our test statistic,

v =
(T − k)

k2

(
R2 −R2∗)
(1− R2)

where R2∗ is the R2 from the restricted regression.
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Result 2 To calculate this test statistic:

1. Run a short (restricted) regression of y on X1 and compute the R2
(≡ R2∗)

2. Run the long (unrestricted) regression of y on X1 and X2 and compute the R2.

3. Using 1) and 2) compute v.

As a special case, consider testing whether all the slope coefficients were 0. That is, all coefficients

except for the intercept. Our test statistic can be written as

(T − k)
k − 1

R2

1− R2

since the restricted regression sum of square residuals is e∗′e∗ =
∑

(yt − y)2 = y′Miy implying R2∗ is

in effect 0 since

R2∗ = 1− e∗′e∗

y′Miy
= 1− y′Miy

y′Miy
= 0

3.3 General Linear Hypotheses

Consider the following problem

y = β0 + x1β1 + x2β2 + x3β3 + ε

where xi, i = 1, 2, 3 are T × 1 column vectors.. Now consider testing the following hypotheses

H0 : β3 = −β1; β1 = β2

H1 : β3 6= −β1; β1 6= β2

We can run this test in the usual manner by constructing the test statistic

(θ − t)′
[
V̂ (t)

]−1
(θ − t) ˜Fp,T−k

where

t = Hb =


 1 0 1

1 −1 0




θ =


 0

0




V̂ (t) = σ̂2H
(
X ′X

)−1
H ′

p = 2

k = 3
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The idea this section attempts to illustrate is that any general linear hypothesis can be converted

into a zero-null subvector hypothesis. That is, we can solve out the restrictions, run a short regression

and use methods zero subvector null hypotheses. For the above example we see the first restriction

β3 = −β1 implies

y = β0 + β1 (x1 − x3) + x2β2 + ε

The second restriction, β1 = β2, implies

y = β1 (x1 − x3 + x2) + ε

So our short regression is simply

y = γ1z + ε

where z = x1 − x3 + x2.

Another example is to consider

y = β0 + x1β1 + x2β2 + x3β3 + ε

and the hypothesis β1 + β2 + β3 = 1. But his implies β1 = 1− β2 − β3 so

y = β0 + x1 (1− β2 − β3) + x2β2 + x3β3 + ε

y = β0 + x1 + β2 (x2 − x1) + β3 (x3 − x1) + ε

y − x1 = β0 + β2 (x2 − x1) + β3 (x3 − x1) + ε

Our short regression is thus

y∗ = γ0 + γ2z1 + γ3z2 + ε

where y∗ = y − x1, z1 = x2 − x1 and z2 = x3 − x1.


