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CHAPTER 3. A REVIEW OF PROBABILITY THEORY
3.1. SAMPLE SPACE

The starting point for probability theory is the concept of a state of Nature, which is a description
of everything that has happened and will happen in the universe. In particular, this description
includes the outcomes of all probability and sampling experiments. The set of all possible states of
Nature is called the sample space. Let s denote a state of Nature, and S the sample space. These are
abstract objects that play a conceptual rather than a practical role in the development of probability
theory. Consequently, there can be considerable flexibility in thinking about what goes into the
description of a state of Nature and into the specification of the sample space; the only critical
restriction is that there be enough states of Nature so that distinct observations are always associated
with distinct states of Nature. In elementary probability theory, it is often convenient to think of the
states of Nature as corresponding to the outcomes of a particular experiment, such as flipping coins
or tossing dice, and to suppress the description of everything else in the universe. Sections 3.2-3.4
in this Chapter contain a few crucial definitions, for events, probabilities, conditional probabilities,
and statistical independence. They also contain a treatment of measurability, the theory of
integration, and probability on product spaces that is needed mostly for more advanced topics in
econometrics. Therefore, readers who do not have a good background in mathematical analysis may
find it useful to concentrate on the definitions and examples in these sections, and postpone study
of the more mathematical material until it is needed.

3.2. EVENT FIELDS AND INFORMATION

3.2.1. Anevent is a set of states of Nature with the property that one can in principle determine
whether the event occurs or not. If states of Nature describe all happenings, including the outcome
of a particular coin toss, then one event might be the set of states of Nature in which this coin toss
comes up heads. The family of potentially observable events is denoted by F. This family is
assumed to have the following properties:

(1) The "anything can happen" event S is in F.

(i1) If event A is in F, then the event "not A", denoted A° or S\A, is in F.

(ii1) If A and B are events in F, then the event "both A and B", denoted AnB, is in F.

(iv) If A|,A,,... is a finite or countable sequence of events in F, then the event "one or more of

A orAjor.." denoted U , A,isinF.

A family F with these properties is called a o-field (or Boolean c-algebra) of subsets of S. The pair
(S,F) consisting of an abstract set S and a 6-field F of subsets of S is called a measurable space, and
the sets in F are called the measurable subsets of S. Implications of the definition of a o-field are
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(v) If A|,A,,... is a finite or countable sequence of events in F, then ﬂleAi is also in F.

(vi) IfA,A,,... is a countable sequence of events in F that is monotone decreasing (i.e., A, 2 A,
>...), then its limit, also denoted A, « A,, is also in F. Similarly, if a sequence in F is monotone

increasing (i.e., A, < A, c ...), then its limit Ay = U 4, ,isalsoin F
(vii) The empty event ¢ is in F.
We will use a few concrete examples of sample spaces and o-fields:

Example 1. [Two coin tosses] A coin is tossed twice, and for each toss a head or tail appears.
Let HT denote the state of Nature in which the first toss yields a head and the second toss yields a
tail. Then S = {HH,HT,TH,TT}. Let F be the class of all possible subsets of S; F has 2* members.

Example 2. [Coin toss until a tail] A coin is tossed until a tail appears. The sample space is S
= {T, HT, HHT, HHHT,...}. In this example, the sample space is infinite, but countable. Let F be
the o-field generated by the finite subsets of S. This o-field contains events such as “At most ten
heads”, and also, using the monotone closure property (vi) above, events such as "Ten or more tosses
without a tail", and "an even number of heads before a tail". A set that is not in F will have the
property that both the set and its complement are infinite. It is difficult to describe such a set,
primarily because the language that we normally use to construct sets tends to correspond to
elements in the o-field. However, mathematical analysis shows that such sets must exist, because
the cardinality of the class of all possible subsets of S is greater than the cardinality of F .

Example 3. [S&P stock index] The stock index is a number in the positive real line R,, so S =
R,. Take the o-field of events to be the Borel 6-field B(R.), which is defined as the smallest family
of subsets of the real line that contains all the open intervals in R, and satisfies the properties (i)-(iv)
of a o-field. The subsets of R, that are in B are said to be measurable, and those not in B are said
to be non-measurable.

Example 4. [S&P stock index on successive days] The set of states of Nature is the Cartesian
product of the set of calues on day one and the set of values on day 2, S = R, xR, (also denoted R,?).
Take the o-field of events to be the product of the one-dimensional o-fields, F = B,®B,, where "®"
denotes an operation that forms the smallest o-field containing all sets of the form AxXC with A €
B, and C € B,. In this example, B, and B, are identical copies of the Borel 5-field on R,. Assume
that the index was normalized to be one at the beginning of the previous year. Examples of events
in F are "below 1 on day 1", "at least 2 on both days", and "higher on the second day than the first
day". The operation "®" is different than the cartesian product "x", where B, xB, is the family of all
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rectangles AxC formed from A € B, and C € B,. This family is not itself a o-field, but the o-field
that it generates is B,®B,. For example, the event "higher on the second day than the first day" is
not a rectangle, but is obtained as a monotone limit of rectangles.

In the first example, the o-field consisted of all possible subsets of the sample space. This was
not the case in the last two examples, because the Borel o-field does not contain all subsets of the
real line. There are two reasons to introduce the complication of dealing with o-fields that do not
contain all the subsets of the sample space, one substantive and one technical. The substantive
reason is that the o-field can be interpreted as the potential information that is available by
observation. Ifan observer is incapable of making observations that distinguish two states of Nature,
then the 6-field cannot contain sets that include one of these states and excludes the other. Then, the
specification of the 5-field will depend on what is observable in an application. The technical reason
is that when the sample space contains an infinite number of states, it may be mathematically
impossible to define probabilities with sensible properties on all subsets of the sample space.
Restricting the definition of probabilities to appropriately chosen o-fields solves this problem.

3.2.2. Itis possible that more than one o-field of subsets is defined for a particular sample space
S. If A is an arbitrary collection of subsets of S, then the smallest o-field that contains A is said to
be the o-field generated by A. 1t is sometimes denoted 6(A). If F and G are both o-fields, and G
c F, then G is said to be a sub-field of F, and F is said to contain more information or refine G. It
is possible that neither F < G nor G c F. The intersection FNG of two o-fields is again a c-field
that contains the common information in F and G. Further, the intersection of an arbitrary countable
or uncountable collection of o-fields is again a o-field. The union FUG of two o-fields is not
necessarily a o-field, but there is always a smallest o-field that refines both Fand G, which is simply
the o-field o(FUG) generated by the sets in the union of F and G, or put another way, the intersection
of all o-fields that contain both F and G.

Example 1. (continued) Let F denote the o-field of all subsets of S. Another o-field is G =
{0,S,{HT,HH},{TT,TH} }, containing events with information only on the outcome of the first coin
toss. Yet another o-field contains the events with information only on the number of heads, but not
their order, H = {¢,S,{HH},{TT},{HT,TH},{HH,TT},{HT,TH,TT},{HH,HT,TH}}. Then, F
contains more information than G or H. The intersection GNH is the “no information” o-field
{9,S}. The union GuUH is not a o-field, and the o-field o( GUH) that it generates is F. This can be
verified constructively (in this finite S case) by building up o(GuUH) by forming intersections and
unions of members of GUH, but is also obvious since knowing the outcome of the first toss and
knowing the total number of heads reveals full information on both tosses.

Example 3. (continued) Let F denote the Borel 6-field. Then G = {@,S,(1,%),(-~,1]} and D =
{0,S,{-=,2),[2,)} are both o-fields, the first corresponding to the ability to observe whether the
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index is above 1, the second corresponding to the ability to tell whether it is above 2. For shorthand,
let a = (-0,1], b = (-0,2], ¢ = (1,+), d = (2,+), and e = (1,2]. Neither G or D contains the other,
both are contained in F, and their intersection is the “no information” o-field {¢,S}. The o-field
generated by their union, corresponding to the ability to tell if the index is in a,e, or d, is 6(GuD) =
{9,S,a,b,c,d,e,aud}.

An element B in a o-field G of subsets of S is an atom if the only set in G that is a proper subset
of B is the empty set @. In the last example, D has atoms b and d, and the atoms of 6(GuD) are a,
d, and e, but not b=aue or ¢ = eud. The atoms of the Borel o-field are the individual real numbers.
An economic interpretation of this concept that if the o-field defining the common information of
two economic agents contains an atom, then a contingent contract between them must have the same
realization no matter what state of Nature within this atom occurs.

3.3. PROBABILITY

3.3.1. Given a sample space S and c-field of subsets F, a probability (or probability measure)
is defined as a function P from F into the real line with the following properties:

(1) P(A) > 0 forall A € F.
(i) P(S)=1.
(iii) [Countable Additivity] If A,, A,.... is a finite or countable sequence of events in F that are

mutually exclusive (i.e., ANA; = ¢ foralli = j), then P( U7, A)= Y 7, P(A).
With conditions (i)-(iii), P has the following additional intuitive properties of a probability when A
and B are events in F:

(iv) P(A) + P(A%) = 1.

(v) P(9) =0.

(vi) P(AUB) =P(A) + P(B) - P(AnB).

(vii) P(A) > P(B) when B c A.

(viii) If A, in F is monotone decreasing to ¢ (denoted A, » @), then P(A)) - 0.

00

(ix) If A, € F, not necessarily disjoint, then P( U, A)) < Zi: . P(A).
(x) If {A;} is a finite or countable partition of S (i.e., the events A, € F are mutually exclusive

00

and exhaustive, or AiNA,; = ¢ for all i # j and U”, A;=S), then P(B)= Zi: . P(BNA)).
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The triplet (S,F,P) consisting of a measurable space (S,F) and a probability measure P is called a
probability space.

Example 1 (continued). Consider the o-field H containing information on the number of heads,
but not their order. The table below gives three functions P,, P,, P, defined on H. All satisfy
properties (i) and (ii) for a probability. Functions P, and P, also satisfy (iii), and are probabilities,
but P, violates (iii) since P,({HH}u{TT}) = P,({HH}) + P,({TT}). The probability P, is generated
by fair coins, and the probability P, by one fair coin and one biased coin.

(0] S |HH | TT | HT,TH | HH,TT | HT,TH,TT | HH,HT,TH
P, 0 1 173 | 173 12 172 2/3 2/3
P, | O 1 1/4 | 1/4 12 172 3/4 3/4
P, | O 1 173 | 1/6 12 172 2/3 5/6

3.3.2. If A € F has P(A) =1, then A is said to occur almost surely (a.s.), or with probability one
(w.p.1). If A € Fhas P(A) =0, then A is said to occur with probability zero (w.p.0). Finite or
countable intersections of events that occur almost surely again occur almost surely, and finite or
countable unions of events that occur with probability zero again occur with probability zero.

Example 2. (continued) If the coin is fair, then the probability of k-1 heads followed by a tail
is 1/2%. Use the geometric series formulas in 2.1.10 to verify that the probability of “At most 3
heads” is 15/16, of "Ten or more heads" is 1/2'°, and of "an even number of heads" is 2/3.

Example 3. (continued) Consider the function P defined on open sets (s,) € R, by P((s,)) =
e*?. This function maps into the unit interval. It is then easy to show that P satisfies properties
(1)-(ii1) of a probability on the restricted family of open intervals, and a little work to show that when
a probability is determined on this family of open intervals, then it is uniquely determined on the
o-field generated by these intervals. Each single point, such as {1}, is in F. Taking intervals that
shrink to this point, each single point occurs with probability zero. Then, a countable set of points
occurs w.p.0.

3.3.3. Often a measurable space (S,F) will have an associated measure v that is a countably

00

additive function from F into the nonnegative real line; i.e., v( U_, A) = Zm Vv(A,) for any

sequence of disjoint A, € F. The measure is positive if v(A) > 0 for all A € F; we will consider only
positive measures. The measure v is finite if |[v(A)| < M for some constant M and all A € F, and
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o-finite if F contains a countable partition {A,} of S such that the measure of each partition set is
finite; i.e., V(A,) < +e. The measure v may be a probability, but more commonly it is a measure of
"length" or "volume". For example, it is common when the sample space S is the countable set of
positive integers to define v to be counting measure with v(A) equal to the number of points in A.
When the sample space S is the real line, with the Borel o-field B, it is common to define v to be
Lebesgue measure, with v((a,b)) = b - a for any open interval (a,b). Both of these examples are
positive o-finite measures. A set A is said to be of v-measure zero if v(A) = 0. A property that holds
except on a set of measure zero is said to hold almost everywhere (a.e.). It will sometimes be useful
to talk about a c-finite measure space (S,F,i) where p is positive and o-finite and may either be a
probability measure or a more general counting or length measure such as Lebesgue measure.

3.3.4. Suppose f'is a real-valued function on a o-finite measure space (S,F,u). This function is
measurable if f'(C) € F for each open set C in the real line. A measurable function has the
property that its contour sets of the form {seS|a<f(s)<c} are contained in F. This implies that if B
€ F is an atom, then f(s) must be constant for all s € B.

The integral of measurable f on a set A € F, denoted [ f(s)-u(ds), is defined for p(A) < +eo
4

as the limit as n ~ o of sums of the form E;::_w (k/n)-u(C,,), where C,, is the set of states of
Nature in A for which f(s) is contained in the interval (k/n,(k+1)/n]. A finite limit exists

if E};w [k/n|-n(C,,) < +e°, in which case f is said to be integrable on A. Let {A;} € F be a

countable partition of S with u(A,) <+, guaranteed by the o-finite property of p. The function f
is integrable on a general set A € F if it is integrable on ANA, for each i and if f [f(s)|-n(ds) =
4
lim,__ Z?:I f [f(s)]-n(ds) exists, and simply integrable if it is integrable for A = S. In
Ana,
general, the measure | can have point masses (at atoms), or continuous measure, or both, so that the
notation for integration with respect to p includes sums and mixed cases. The integral f f(s)u(ds)
4

will sometimes be denoted [ f(s)dp, or in the case of Lebesgue measure, f f(s)ds.
A 4

3.3.5. For a o-finite measure space (S,F,u), define L (S,F,u) for 1 < q <+ to be the set of
measurable real-valued functions on S with the property that [f]* is integrable, and define ||f], =



McFadden, Statistical Tools, © 2000 Chapter 3-7, Page 49

[ [ [f(s)|* u(ds)]" to be the norm of f. Then, L S,F,u) is a linear space, since linear

combinations of integrable functions are again integrable. This space has many, but not all, of
familiar properties of finite-dimensional Euclidean space. The set ofall linear functions on the space
L (S,F,u) for > 1 is the space L,(S,F,u), where 1/r =1 - 1/q. This follows from an application of
Holder’s inequality, which generalizes from finite vector spaces to the condition

fe Ly(S,F,u)and g € L(S,F,p) with ¢ +r" = I imply f |f(s)g(s)[ m(ds) < Il gl

The case q =r =2 gives the Cauchy-Schwartz inequality in general form. This case arises often in
statistics, with the functions f interpreted as random variables and the norm |f]|, interpreted as a
quadratic mean or variance.

3.3.6. There are three important concepts for the limit of a sequence of functions f, € L (S,F,u).
First, there is convergence in norm, or strong convergence: fis a limit of f, if |f, - f], - 0. Second,
there is convergence in u-measure: fis alimit of £, if p({seS| |f,(s) - f(s)| > €}) ~ 0 for each € > 0.

Third, there is weak convergence: fis a limit of f if [ (f,(s) - f(s))-g(s) n(ds) ~» 0 for each g €
L(S,F,n) with 1/r=1 - 1/q. The following relationship holds between these modes of convergence:
Strong Convergence == Weak Convergence == Convergence in p-measure

An example shows that convergence in p-measure does not in general imply weak convergence:
Consider L,([0,1],B,1) where B is the Borel o-field and p is Lebesgue measure. Consider the
sequence f (s) =n-1(s<1/n). Then pu({seS||f,(s)| > €}) = 1/n, so that f, converges in p-measure to

zero, but for g(s) = s'?, one has |g|, = 3"* and f f (s)g(s) u(ds) = 3n"?/2 divergent. Another

example shows that weak convergence does not in general imply strong convergence: Consider S
= {1,2,...} endowed with the o-field generated by the family of finite sets and the measure p that
gives weight k'* to point k. Consider f,(k) =n"*1(k = n). Then |f,|,~= 1. If g is a function for

which ) ;. f(k)gk)u({k})= gn)n"* does not converge to zero, then g(k)* u({k}) is bounded
k-1

away from zero infinitely often, implying |g|, = Z};l g(k)* u({k}) = +e. Then, f, converges

weakly, but not strongly, to zero. The following theorem, which is of great importance in advanced
econometrics, gives a uniformity condition under which these modes of convergence coincide.
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Theorem 3.1. (Lebesgue Dominated Convergence) If gand f, forn=1,2,... are in L (S,F,u) for
1 < q <+ and a o-finite measure space (S,F,u), and if |f(s)| < g(s) almost everywhere, then f,
converges in u-measure to a function f'if and only if f € L (S,F,u) and ||f, - f], - 0.

One application of this theorem is a result for interchange of the order of integration and
differentiation. Suppose f(:,t) € L (S,F,u) for t in an open set T = R™. Suppose f'is differentiable,
meaning that there exists a function V/{(:,t) € L (S,F,u) for t € T such that if t+h € T and h # 0, then
the remainder function r(s,t,h) = [f(s,t+h) - {(s,t) - V(:,t)-h]/|h| € L (S,F,u) converges in u-measure

to zero as h -~ 0. Define F(t) = f f(s,0u(ds). If there exists g € L(S,F,u) which dominates the

remainder function (i.e., [r(s,t,h)| < g(s) a.e.), then Theorem 3.1 implies lim,_y[r(,t,h)[, = 0, and F(t)
is differentiable and satisfies V,F(t) = [ VA(s,Hu(ds).

A finite measure P on (S,F) is absolutely continuous with respect to a measure v if A € F and
v(A) =0 imply P(A) = 0. If P is a probability measure that is absolutely continuous with respect to

the measure v, then an event of measure zero occurs w.p.0, and an event that is true almost
everywhere occurs almost surely. A fundamental result from analysis is the theorem:

Theorem 3.2. (Radon-Nikodym) If a finite measure P on a measurable space (S,F) is absolutely
continuous with respect to a positive 6-finite measure v on (S,F), then there exists an integrable real-
valued function p € L,(S,F,v) such that

f p(s)v(ds) = P(A) for each A € F.

4

When P is a probability, the function p given by the theorem is nonnegative, and is called the
probability density. An implication of the Radon-Nikodym theorem is that if a measurable space

(S,F) has a positive o-finite measure v and a probability measure P that is absolutely continuous with
respect to v, then there exists a density p such that for every f € L (S,F,P) for some 1 < q <+, one

has fs f(s)P(ds) = [s f(s)-p(s)v(ds).

3.3.7. In applications where the probability space is the real line with the Borel o-field, with a
probability P such that P((-e,s]) = F(s) is continuously differentiable, the fundamental theorem of

integral calculus states that p(s) = F'(s) satisfies F(A) = f p(s)ds. What the Radon-Nikodym
4

theorem does is extend this result to o-finite measure spaces and weaken the assumption from
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continuous differentiability to absolute continuity. In basic econometrics, we will often characterize
probabilities both in terms of the probability measure (or distribution) and the density, and will
usually need only the elementary calculus version of the Radon-Nikodym result. However, it is
useful in theoretical discussions to remember that the Radon-Nikodym theorem makes the
connection between probabilities and densities. We give two examples that illustrate practical use
of the calculus version of the Radon-Nikodym theorem.

Example 3. (continued) Given P((s,)) = e*?, one can use the differentiability of the function
in s to argue that it is absolutely continuous with respect to Lebesgue measure on the line. Verify
by integration that the density implied by the Radon-Nikodym theorem is p(s) = €*%/2.

Example 5. A probability that appears frequently in statistics is the normal, which is defined
on (R,B), where R is the real line and B the Borel o-field, by the density n(s-u,0) =

(2n62) e W29 o that P(A) = f (2n62) e W29 4o n this probability, p and o are
A

parameters that are interpreted as determining the /ocation and scale of the probability, respectively.
When p =0 and 6 = 1, this probability is called the standard normal.

3.3.8. Consider a probability space (S,F,P), and a o-field G c F. If the event B € G has P(B) >
0, then the conditional probability of A given B is defined as P(A|B) = P(AnB)/P(B). Stated
another way, P(A |B) is a real-valued function on FxG with the property that P(AnB) = P(A|B)P(B)
forall A € Fand B € G. When B is a finite set, the conditional probability of A given B is the ratio
of sums

ZseAmB P( {S})

AR S

Example 6. On a quiz show, a contestant is shown three doors, one of which conceals a prize,
and is asked to select one. Before it is opened, the host opens one of the remaining doors which he
knows does not contain the prize, and asks the contestant whether she wants to keep her original
selection or switch to the other remaining unopened door. Should the contestant switch? Designate
the contestant’s initial selection as door 1. The sample space consists of pairs of numbers ab, where
a=1,2,3 is the number of the door containing the prize and b = 2,3 is the number of the door opened
by the host, withb # a: S={12,13,23,32}. The probability is 1/3 that the prize is behind each door.
The conditional probability of b = 2, given a = 1, is 1/2, since in this case the host opens door 2 or
door 3 at random. However, the conditional probability of b = 2, given a = 2 is zero and the
conditional probability of b =2 given a =3 is one. Hence, P(12) =P(13) =(1/3):(1/2), and P(23) =
P(32) =1/3. Let A = {12,13} be the event that door 1 contains the prize and B = {12,32} be the
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event that the host opens door 2. Then the conditional probability of A given B is
P(12)/(P(12)+P(32)) = (1/6)/((1/6)+(1/3)) = 1/3. Hence, the probability of receiving the prize is 1/3
if the contestant stays with her original selection, 2/3 if she switches to the other unopened door.

Example 7. Two fast food stores are sited at random points along a street that is ten miles long.
What is the probability that they are less than five miles apart? Given that the first store is located
at the three mile marker, what is the probability that the second store is less than five miles away?
The answers are obvious from the diagram below, in which the sample space is depicted as a
rectangle of dimension 10 by 10, with the horizontal axis giving the location of the first store and
the vertical axis giving the location of the second store. The shaded areas correspond to the event
that the two are more than five miles apart, and the proportion of the rectangle in these areas is 1/4.
Conditioned on the first store being at point 3 on the horizontal axis, the second store is located at
random on a vertical line through this point, and the proportion of this line that lies in the shaded
area is 1/5. Let x be the location of the first store, y the location of the second. The conditional
probability of the event that |x - y|>5, given X, is [x-5|/10. This could have been derived by forming
the probability of the event [x - y| > 5 and ¢ < x < c+d for a small positive 9, taking the ratio of this
probability to the probability of the event ¢ < x < c+3d to obtain the conditional probability of the
event [x - y| > 5 given ¢ < x < ¢+, and taking the limit 6 - 0.

Location of Fast Food Stores

10 /
8 |

1/

Second Store

0 2 4 6 8 10
First Store

The idea behind conditional probabilities is that one has partial information on what the state of
Nature may be, and one wants to calculate the probability of events using this partial information.
One way to represent partial information is in terms of a subfield; e.g., F is the field of events which
distinguish outcomes in both the past and the future, and a subfield G contains events which
distinguish only past outcomes. A conditional probability P(A|B) defined for B ¢ G can be
interpreted for fixed A as a function from G into [0,1]. To emphasize this, conditional probabilities
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are sometimes written P(A| G), and G is termed the information set, or a family of events with the
property that you know whether or not they happened at the time you are forming the conditional
probability.

Example 1. (continued) If G = {¢,S,{HT,HH},{TT,TH}}, so that events in G describe the
outcome of the first coin toss, then P(HH | {HH,HT } )= P(HH)/(P(HH)+P(HT)) = ' is the probability
ofheads on the second toss, given heads on the first toss. In this example, the conditional probability
of a head on the second toss equals the unconditional probability of this event. In this case, the
outcome of the first coin toss provides no information on the probabilities of heads from the second
coin, and the two tosses are said to be statistically independent. If G =
{0,S,{HT, TH},{HH},{TT},{HH},{TT}}, the family of events that determine the number of heads
that occur in two tosses without regard for order, then the conditional probability of heads on the
first toss, given at least one head, is P({HT,HH} | {TT}°) = (P(HT)+P(HH))/(1-P(TT))= 2/3. Then,
the conditional probability of heads on the first toss given at least one head is not equal to the
unconditional probability of heads on the first toss.

Example 3. (continued) Suppose G = {@,S,(1,),(-=,1]} is the o-field corresponding to the
event that the index exceeds 1, and let B denote the Borel -field containing all the open intervals.
The unconditional probability P((s,)) = €*? implies P((1,»)) = ¢ = 0.6065. The conditional
probability of (2,) given (1,%) satisfies P(((2,5)|(1,%)) = P((1,0)"(2,))/P((1,)) =€"'/e"*=0.6065
>P((2,)) =0.3679. The conditional and unconditional probabilities are not the same, so that the
conditioning event provides information on the probability of (2,).

For a probability space (S,F,P), suppose A,....,A, is a finite partition of S; i.e., A;NA; = ¢ and
Uf.ll A. = S. The partition generates a finite field G < F . From the formula P(AnB) =

1

P(A |B)P(B) satisfied by conditional probabilities, one has for an event C € F the formula

k
P(C)= ) P(CIA)P(A).
i=1
This is often useful in calculating probabilities in applications where the conditional probabilities
are available.

3.3.9. In a probability space (S,F,P), the concept of a conditional probability P(A|B) of A € F
given an event B in a o-field G ¢ F can be extended to cases where P(B) = 0 by defining P(A |B)
as the limit of P(A |B,) for sequences B, € G that satisfy P(B;) > 0 and B, -~ B, provided the limit
exists. If we fix A, and consider P(ANB) as a measure defined for B € G, this measure obviously
satisfies P(ANB) < P(B), so that it is absolutely continuous with respect to P(B). Then, Theorem 3.2



McFadden, Statistical Tools, © 2000 Chapter 3-12, Page 54

implies that there exists a function P(A[) € L,(S,G,P) such that P(AnB) = fB P(Als)-P(ds). We

have written this function as if it were a conditional probability of A given the “event” {s}, and it
can be given this interpretation. If B € G is an atom, then the measurability of P(A|-) with respect
to G requires that it be constant for s € B, so that P(AnB) = P(AJs)-P(B) for any s € B, and we can
instead write P(ANB) = P(A|B)-P(B), satisfying the definition of conditional probability even if P(B)
=0.

Example 4. (continued) Consider F = BB, the product Borel o-field on R,, and G =
B&{@.R,}, the o-field corresponding to having complete information on the level of the index on
the first day and no information on the second day. Suppose P((s,)x(t,)) = 2/(1+e*""). This is a
probability on these open intervals that extends to F; verifying this takes some work. The
conditional probability of (s,e0)x(t,) given the event (r,)%(0,) € G and s < r equals P((r,>)*(t,%))
divided by P((r,)*(0,%)), or (1+e")/(1+e"™"). The conditional probability of (s,)x(t,) given the
event (r,r+3)x(0,) € Gand s < ris [1/(1+e™) - 1/(1+e™°)]/[1/(1+€") - 1/(1+e"*®)]. The limit of this
expression as & — 0 is e(1+e")?/(1+e™)? = P((s,)x(t,=)|{r} x(0,)); this function of r is also the
integrand that satisfies Theorem 3.2. Note that P((s,)x(t,)|{r} *(0,20)) # P((s,0)*(0,%0)) = 1/(1+¢€°),
so that the conditioning event conveys information about the probability of (s,)x(t,).

3.4. STATISTICAL INDEPENDENCE AND REPEATED TRIALS

3.4.1. Consider a probability space (S,F,P). Events A and C in F are statistically independent
if P(ANC) = P(A)-P(C). From the definition of conditional probability, if A and C are statistically
independent and P(A) > 0, then P(C|A) = P(ANC)/P(A) = P(C). Thus, when A and C are
statistically independent, knowing that A occurs is unhelpful in calculating the probability that C
occurs. The idea of statistical independence of events has an exact analogue in a concept of
statistical independence of subfields. Let A= {@,A,A°,S} and C= {¢,C,C*,S} be the subficlds of
F generated by A and C, respectively. Verify as an exercise that if A and C are statistically
independent, then so are any pair of events A’ € A and C’ € C. Then, one can say that the subfields
A and C are statistically independent. One can extend this idea and talk about statistical
independence in a collection of subfields. Let N denote an index set, which may be finite, countable,
or non-countable. Let F, denote a o-subfield of F (F, c F) for each i € N. The subfields F, are

1

mutually statistically independence (MSI) if and only if P( A) = H P(A;) for all finite K
JjeK jekK

< Nand A € F; forj € K. Asin the case of statistical independence between two events (subfields),
the concept of MSI can be stated in terms of conditional probabilities: F, for i € N are mutually
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statistically independent (MSI) if, for all i € N, finite K = N\{i} and A, € F; for j € {i}UK, one has

P(Ai\ N A,) = P(A)), so the conditional and unconditional probabilities are the same.
JjeK

Example 1. (continued) Let A = {HH,HT} denote the event of a head for the first coin, C =
{HH,TH} denote the event of a head for the second coin, D = {HH,TT} denote the event of a match,
G = {HH} the event of two heads. The table below gives the probabilities of various events.

Event | A C D G | AnC | AnD | CD | ANCND | ANG

Prob. | 2 2| 1/4 1/4 1/4 1/4 1/4 1/4

The result P(ANC) = P(A)P(C) = 1/4 establishes that A and C are statistically independent. Verify
that A and D are statistically independent, and that C and D are statistically independent, but that
P(ANCND) # P(A)P(C)P(D), so that A, C, and D are not MSI. Verify that A and G are not
statistically independent.

Example 4. (continued) Recall that S = R? with F = BeB, the product Borel o-field. Define N
= {@,R} and the subfields F, = BxN and F, = NxB, containing information on the index levels on
the first and second day, respectively. Define G to be the o-field generated by the rectangles
(0,171x(0,1], (0,17%(1,00),(1,0)x(0,1], and(1,)x(1,.2). Then G is the subfield of B containing
information on whether the indices on the two days are above one. Define F; to be the c-subfield
of B®B generated by sets of the form A;xA, with A, € G and A, € B; then F, contains full
information on the second day index, but only the qualitative information on whether the first day
index is above one. Suppose P((s,)*(t,)) =¢*". Then {F,,F,} are MSI. However, {F,,F,} are not
independent.

Example 8. Consider S = {0, 1, 2, 3, 4, 5, 6, 7}, with F equal to all subsets of S. As a
shorthand, let 0123 denote {0,1,2,3}, etc. Define the subfields

F, = {9,0123,4567,S}, F, = {9,2345,0167,S}, F, = {¢,0246,1357,S},

F,={9,01,23,4567,0123,234567,014567,S},
F;={9,01,23,45,67,0123,0145,0167,2345,2367,4567,012345,012367,014567,234567,S},
F, = {9,06,17,24,35,0167,0246,0356,1247,1357,2345,123457,023456,013567,012467,S}.

The field F, is a refinement of the field F, (i.e., F, c F,), and can be said to contain more information
than F,. The field F, is a mutual refinement of F, and F, (i.e., F,uF, c F;), and is in fact the smallest
mutual refinement. It contains all the information available in either F, or F,. Similarly, F, is a
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mutual refinement of F, and F;. The intersection of F; and F is the field F,; it is the common
information available in F; and F,. If, for example, F, characterized the information available to one
economic agent, and F, characterized the information available to a second agent, then F, would
characterize the common information upon which they could base contingent contracts. Suppose
P(i) = 1/8. Then {F,, F,, F,} are MSI. E.g., P(0123]2345)=P(0123]0246) = P(0123|2345n0246)
=P(0123) = 1/2. However, {F,, F,} are not independent; e.g., | =P(0123|01) = P(0123) = 1/2.

For M c N, let F, denote the smallest o-field containing F, for all i € M. Then MSI satisfies the
following theorem, which provides a useful criterion for determining whether a collection of
subfields is MSI:

Theorem 3.3. If F, are MSI fori € N, and M c N\{i}, then {F,F,,} are MSI. Further, F, forieN
are MSI if and only if {F,Fy,} are MSI for all ieN.

Example 5. (continued) If M = {2,3}, then F, = F,, and P(0123 \A) =Ys for each A € Fy,.

3.4.2. The idea of repeated trials is that an experiment, such as a coin toss, is replicated over
and over. It is convenient to have common probability space in which to describe the outcomes of
larger and larger experiments with more and more replications. The notation for repeated trials will
be similar to that introduced in the definition of mutual statistical independence. Let N denote a
finite or countable index set of trials, S; a sample space for trial i, and G, a o-field of subsets of S..
Note that (S;,G,) may be the same for all i. Assume that (S, G)) is the real line with the Borel o-field,
or a countable set with the field of all subsets, or a pair with comparable mathematical properties
(i.e., S; is a complete separable metric space and G, is its Borel field). Let t = (s,,S,,...) = (s; : iEN)

denote an ordered sequence of outcomes of trials, and Sy = XieN S, denote the sample space of these
sequences. Let Fy = ®. (G, denote the o-field of subsets of Sy generated by the finite rectangles

which are sets of the form (XieK Ai)X(xieN\K Si) with K a finite subset of N and A, € G, fori e K.
The collection Fy is called the product o-field of subsets of Sy.

Example 9. N={1,2,3},S,={0,1}, G,= {9,{0},{1},S} is a sample space for a coin toss, coded
“1" if heads and “0" if tails. Then Sy = {s152s3\si e S,} = {000, 001,010, 011, 100, 101, 110, 111},
where 000 is shorthand for the event {0} x{0}x{0}, and so forth, is the sample space for three coin
tosses. The field Fy is the family of all subsets of Sy.

For any subset K of N, define S, = X, S, and G, = ®,(G.. Then, G is the product o-field
on Sg. Define Fy to be the o-field on Sy generated by sets of the form AXSy for A € Gi. Then Gy
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and Fy contain essentially the same information, but Gy is a field of subsets of Sk and F is a
corresponding field of subsets of Sy which contains no information on events outside of K. Suppose
Py is a probability on (Sy, Fy). The restriction of Py to (Sk,Gy) is a probability Py defined for A €
G by P(A) = Py(AxSyk)- The following result establishes a link between different restrictions:

Theorem 3.4. If M c K and Py, Pk are restrictions of Py, then P, and Py satisfy the
compatibility condition that Py (A) = P (AxS,) for all A € Fy,.

There is then a fundamental result that establishes that when probabilities are defined on all finite
sequences of trials and are compatible, then there exists a probability defined on the infinite sequence
of trials that yields each of the probabilities for a finite sequence as a restriction.

Theorem 3.5. If P on (S, G) for all finite K c N satisfy the compatibility condition, then there
exists a unique Py on (Sy,Fy) such that each Py is a restriction of Py.

This result guarantees that it is meaningful to make probability statements about events such as “an
infinite number of heads in repeated coin tosses".

Suppose trials (S;,G,,P,) indexed by i in a countable set N are mutually statistically independent.
For finite K c N, let G, denote the product o-field on Sg. Then MSI implies that the probability of

a set XieK A, € Gy satisfies PK(XieK A) = H P,(A;). Then, the compatibility condition in
JjeK

Theorem 3.3 is satisfied, and that result implies the existence of a probability Py on (Sy,Fy) whose

restrictions to (Sg,Gk) for finite K < N are the probabilities Py.

3.4.3. The assumption of statistically independent repeated trials is a natural one for many
statistical and econometric applications where the data comes from random samples from the
population, such as surveys of consumers or firms. This assumption has many powerful
implications, and will be used to get most of the results of basic econometrics. However, it is also
common in econometrics to work with aggregate time series data. In these data, each period of
observation can be interpreted as a new trial. The assumption of statistical independence across
these trials is unlikely in many cases, because in most cases real random effects do not conveniently
limit themselves to single time periods. The question becomes whether there are weaker
assumptions that time series data are likely to satisfy that are still strong enough to get some of the
basic statistical theorems. It turns out that there are quite general conditions, called mixing
conditions, that are enough to yield many of the key results. The idea behind these conditions is that
usually events that are far apart in time are nearly independent, because intervening shocks
overwhelm the older history in determining the later event. This idea is formalized in Chapter 4.
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3.5. RANDOM VARIABLES, DISTRIBUTION FUNCTIONS, AND EXPECTATIONS

3.5.1. Arandom variable X is a measurable real-valued function on a probability space (S,F,P),
or X:S — R. Then each state of Nature s determines a value X(s) of the random variable, termed its
realization in state s. When the functional nature of the random variable is to be emphasized, it is
denoted X(*), or simply X. When its values or realizations are used, they are denoted X(s) or x. For
each set B € B, the probability of the event that the realization of X is contained in B is well-defined
and equals P’(B) = P(X'(B)), where P’ is termed the probability induced on R by the random
variable X. One can have many random variables defined on the same probability space; another
measurable function y = Y(s) defines a second random variable. It is important in working with
random variables to keep in mind that the random variable itselfis a function of states of Nature, and
that observations are of realizations of the random variable. Thus, when one talks about
convergence of a sequence of random variables, one is actually talking about convergence of a
sequence of functions, and notions of distance and closeness need to be formulated as distance and
closeness of functions. Multiplying a random variable by a scalar, or adding random variables,
results in another random variable. Then, the family of random variables forms a /inear vector
space. In addition, products of random variables are again random variables, so that the family of
random variables forms an Abelian group under multiplication. The family of random variables is
also closed under majorization, so that Z:S — R defined by Z(s) = max(X(s),Y(s)) for random
variables X and Y is again a random variable. Then, the family of random variables forms a lattice
with respect to the partial order X < Y(i.e., X(s) < Y(s) almost surely).

3.5.2. The term measurable in the definition of a random variable means that for each set A in
the Borel o-field B of subsets of the real line, the inverse image X '(A) = {seS|X(s)eA} is in the
o-field F of subsets of the sample space S. The assumption of measurability is a mathematical
technicality that ensures that probability statements about the random variable are meaningful. We
shall not make any explicit reference to measurability in basic econometrics, and shall always
assume implicitly that the random variables we are dealing with are measurable.

3.5.3. The probability that a random variable X has a realization in a set A € B is given by
F(A) = P(X'(A)) = P({seS|X(s)A}).
The function F is a probability on B; it is defined in particular for half-open intervals of the form A
= (-o0,x], in which case F((-,x]) is abbreviated to F(x) and is called the distribution function (or,

cumulative distribution function, CDF) of X. From the properties of a probability, the distribution
function has the properties
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(1) F(-e0) = 0 and F(+e) = 1.

(i1) F(x) is non-decreasing in x, and continuous from the right.

(ii1) F(x) has at most a countable number of jumps, and is continuous except at these jumps.
(Points without jumps are called continuity points.)

Conversely, any function F that satisfies (i) and (ii) determines uniquely a probability F on B. The
support of the distribution F is the smallest closed set A € B such that F(A) = 1.

Example 5. (continued) The standard normal CDF is ®(x) = f Y@2n) e "2ds , obtained by

integrating the density @(s) = (2m) * =2 Other examples are the CDF for the standard

exponential distribution, F(x) =1 - €™ for x > 0, and the CDF for the logistic distribution, F(x) =

1/(1+e™). An example of a CDF that has jumps is F(x) =1 -¢™/2 - Z;;l 1(k>x)/25" for x > 0.

3.5.4. If F is absolutely continuous with respect to a o-finite measure v on R; i.e., F gives
probability zero to any set that has v-measure zero, then (by the Radon-Nikodym theorem) there
exists a real-valued function f on R, called the density (or probability density function, pdf) of X,
such that

F(A) = fA f(x)v(dx)

for every A € B. With the possible exception of a set of v-measure zero, F is differentiable and the
derivative of the distribution gives the density, f(x) = F'(x). When the measure v is Lebesgue
measure, so that the measure of an interval is its length, it is customary to simplify the notation and

write F(A) = f f(x)dx.
A

If F is absolutely continuous with respect to counting measure on a countable subset C of R, then
it is called a discrete distribution, and there is a real-valued function f on C such that

FA)= Y fx).

x€A
Recall that the probability is itself a measure. This suggests a notation F(A) = f F(dx) that covers
4

both continuous and counting cases. This is called a Lebesgue-Stieltjes integral.
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3.5.5. If (R,B,F) is the probability space associated with a random variable X, and g:R ~ R is
a measurable function, then Y = g(X) is another random variable. The random variable Y is

integrable with respect to the probability F if fR |g(x)|F(dx) < +eo;

if it is integrable, then the integral f g(x)F(dx) = f g-dF exists, is denoted E g(X), and is
R R

called the expectation of g(X). When necessary, this expectation will also be denoted E,g(X) to
identify the distribution used to form the expectation. When F is absolutely continuous with respect

to Lebesgue measure, so that F has a density f, the expectation is written E g(X) = f g(x)f(x)dx.
R

Alternately, for counting measure on the integers with density f(k), E g(X) = . g(f(k).

The expectation of X, if it exists, is called the mean of X. The expectation of (X - EX)? if it
exists, is called the variance of X. Define 1(X<a) to be an indicator function that is one if X(s) <
a, and zero otherwise. Then, E 1(X<a) = F(a), and the distribution function can be recovered from
the expectations of the indicator functions. Most econometric applications deal with random
variables that have finite variances. The space of these random variables is L,(S,F,P), the space of
random variables X for which E X* = [(X(x)’P(ds) < +ew. The space L,(S,F,P) is also termed the
space of square-integrable functions. The norm in this space is root-mean-square, | X|, = [[<X(s)’
P(ds)]”*. Implications of X € L,(S,F,P) are E [X| < [¢max(X(s),1)P(ds)< [¢(X(s)*+1)P(ds) = |X],
+1<+eoand E (X - EX)* = | X|, - (E |X])* < | X],* < +ee, so that X has a well-defined, finite mean
and variance.

Example 1. (continued) Define a random variable X by

0 ifs=T1T
X(s)= {1 ifs=THorHT
2 ifs=HH

Then, X is the number of heads in two coin tosses. For a fair coin, E X = 1.

Example 2. (continued) Let X be a random variable defined to equal the number of heads that
appear before a tail occurs. Then, possible values of X are the integers C = {0,1,2,...}. Then C is
the support of X. For x real, define [x] to be the largest integer k satisfying k < x. A distribution
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. . 1 -2 for0 <x . .
function for X, defined on the real line, is F(x) = ; the associated density
0 for(0>x

defined on C is f(k) =2™*". The expectation of X, obtained using evaluation of a special series from
2.1.10,isEX= Y k2% =1,
k=0

Example 3. (continued) Define a random variable X by X(s) = |s - 1|. Then, X is the magnitude
ofthe deviation of the index from one. The inverse image of an interval (a,b) is (1-b,1-a)u(1+a,1+b)
€ F, so that X is measurable. Other examples of measurable random variables are Y defined by Y(s)
= Max {1,s} and Z defined by Z(s) = s°.

3.5.6. Consider a random variable Y on (R,B). The expectation EY* is the k-th moment of Y,
and E(Y-EY) is the k-th central moment. Sometimes moments fail to exist. However, if g(Y) is
continuous and bounded, then Eg(Y) always exists. The expectation m(t) = Ee" is termed the
moment generating function (mgf) of Y; it sometimes fails to exist. Call a mgf proper ifit is finite
for t in an interval around 0. When a proper mgf exists, the random variable has finite moments of
all orders. The expectation y(t) = Ee"', where 1is the square root of -1, is termed the characteristic
function (cf) of Y. The characteristic function always exists.

Example 5. (continued) A density f(x) that is symmetric about zero, such as the standard normal,

has EX* = f _W X (x)dx = f 0

-0

xM(-x)dx + f " xM(x)dx = f [+ (-DFxM(x)dx = 0 for
0 0
k odd. Integration by parts yields the formula EX* = 2k f " x*1[1-F(x)]dx for k even. For the
0
standard normal, EX* = 2- f @m) V2 2l gy = (2k-1)-EX*? for k > 2 using integration
0
by parts, and EX? = 2 f (@2m) Ve *xdx =2-0(0) = 1. Then, EX* =3 and EX°= 15. The
0
moment generating function of the standard normal is m(t) = f Q) Pe e Pex .

Completing the square in the exponent gives m(t) = e’ f T@r) Ve WOy = o2

oo
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3.5.7. If T random variables are formed into a vector, X(-) = (X(-,1),...,X(-,T)), the result is
termed a random vector. For each s € S, the realization of the random vector is a point
(X(s,1),...,X(s,T)) in R', and the random vector has an induced probability on R" which is
characterized by its multivariate CDF, Fy(x,,...,x;) =P({seS|X(s,1)<X,,...,X(s,T) <X} ). Note that all
the components of a random vector are functions of the same state of Nature s, and the random
vector can be written as a measurable function X from the probability space (S,F,P) into (R',B"" .
(The notation B" means B&B...B T times, where B is the Borel o-field on the real line. This is

.....

copies of B.) The measurability of X requires X '(C) € S for each open rectangle C in R™. The
independence or dependence of the components of X is determined by the fine structure of P on S.

A useful insight comes from considering different representations of vectors in finite-
dimensional spaces, and extending these ideas to infinite-dimensional situations. To be specific,
consider R>. When we express a function X on T = {1,2} as a point (X(1),X(2)) in this space, what
we are really doing is defining two functions Z, = (1,0) and Z, = (0,1) with the property that Z, and
Z, span the space, and then writing X as the linear combination X = X(1)-Z, +X(2)-Z,. The pair of
functions (points) Z, and Z, is called a Hamel basis for R, and every point in the space has a unique
representation in terms of this basis. However, there may be many different Hamel bases. For
example, the unit function (1,1) and the function cos(xt) or (-1,1) also form a Hamel basis, and in
terms of this basis X has the representation X = 2(X(1)+X(2)):(1,1) + (X (2)-X(1)):(-1,1).

Another way to write a random vector X is to define an index set T = {1,...,T}, and then define
X as areal-valued functionon S and T, X:SxT—R. Then, X(:,t) is a simple random variable for each
t € T, and X(s,") is a real vector that is a realization of X for each s € S. A function defined in this
way 1is also called a stochastic process, particularly when T is not finite. The measurability
requirement on X is the same as before, but can be written in a different form as requiring that the
inverse image of each open interval in R be contained in F® T, where T is a o-field of subsets of T
that can be taken to be the family of all subsets of T and “®” denotes the operation that forms the
smallest o-field containing all sets AXB with A € F and B € T. There is then a complete duality
between random vectors in a T-dimensional linear space and random functions on a T-dimensional
index set. This duality between vectors and functions will generalize and provide useful insights into
statistical applications in which T is a more general set indexing time. The distribution function
(CDF) of X is

F(xy,...,.x7) = P({seS|X(s) < x, fori=1,...,T}).

If A € B, define F(A) = P({seS|X(s)eA}). IfF(A) =0 for every set A of Lebesque measure
zero, then there exists a probability density function (pdf) f(x,,...,x;) such that
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(1) F(XpXy) = [w [w [w f(y,,....y7) dy,...dy;.

F and f are termed the joint or multivariate CDF and pdf, respectively, of X. The random variable
X, has a distribution that satisfies

F,(x,) = P({s€S|X,(s) < x,}) = F(x,,o0,..., o).

This random variable is measurable with respect to the o-subfield G, containing the events whose
occurrence is determined by X, alone; i.e., G, is the family generated by sets of the form AxXRx...xR
with A € B. If F is absolutely continuous with respect to Lebesque measure on B, then there are
associated densities f and f; satisfying

() Fi(x)= fXI fi(y)) dy,
-
3) BO)= [T [T YY) dYedyy
(SR

F, and f, are termed the marginal CDF and pdf, respectively, of X,.

3.5.8. Corresponding to the concept of a conditional probability, we can define a conditional
distribution: Suppose C is an event in G, with P(C) > 0. Then, define F,(x,,....x,|C) =
F({yeR"|y,€C.y,<X,,....y,<X,} )/F,(C) to be the conditional distribution of (X,,...,X,) given X, € C.
When F is absolutely continuous with respect to Lebesgue measure on R", the conditional
distribution can be written in terms of the joint density,

f fxz fx” SO Yyseey,) Ay, dy,...dy,
— INECIy =y
F(z)(xz,...,xn|C)—

‘/}:IGCA/;);O:—oo fm f(pr’2a~-~,yn)'dyldyz...dyn

yn:—oc

Taking the limit as C shrinks to a point X, = x,, one obtains the conditional distribution of (X,....,X,)
given X, = X,

fxz fx" S Ypseey,)dy,dy,...dy,
Yy =7 Y=

F o) (Xas-.X, | X=X ) = s

Sty

provided f,(x,) > 0. Finally, associated with this conditional distribution is the conditional density
£ (XpooX, | X1=X)) = f(X),Xp,.... X, )/f1(X)).  More generally, one could consider the marginal
distributions of any subset, say X,,...X,, of the vector X, with X,,,,...X, integrated out; and the
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conditional distributions of one or more of the variables X,,,,...X, given one or more of the
conditions X, = Xy,..., Xy = X,.

3.5.9. Just as expectations are defined for a single random variable, it is possible to define
expectations for a vector of random variables. For example, E(X, - EX,)(X,-EX,) is called the
covariance of X, and X,, and Ee'*, where t' = (t,,...,t,) is a vector of constants, is a (multivariate)
moment generating function for the random vector X. Here are some useful properties of
expectations of vectors:

(a) If g(X) is a function of a random vector, then Eg(X) is the integral of g with respect to the
distribution of X. When g depends on a subvector of X, then Eg(X) is the integral of g(y) with
respect to the marginal distribution of this subvector.

(b) If X and Z are random vectors of length n, and a and b are scalars, then E(aX + bZ) = aEX
+ bEZ.

(c) [Cauchy-Schwartz inequality] If X and Z are random vectors of length n, then (EX'Z)* <
(EX'X)(EZ'Z).

(d) [Minkowski Inequality] If X is a random vector of length n and r > 1 is a scalar, then

(E| Z:Ll Xi|r)l/r£ 2?21 (E|Xi‘r)1/r‘

(e) [Loeve Inequality] If X is a random vector of length n and r > 0, then E| Z;':l X,

‘ r
i

<

max(1,n™) Y ', E[X|]|"

() [Jensen Inequality] If X is a random vector and g(x) is a convex function, then E g(X) >
g(EX). If g(x) is a concave function, the inequality is reversed.

When expectations exist, they can be used to bound the probability that a random variable takes on
extreme values.

Theorem 3.6. Suppose X is a nx1 random vector and € is a positive scalar.

a. [Markov bound] If maxE|X;| <+, then max,Pr(| X;| > €) < max,E|X;|/e.

b. [Chebyshev bound] If EX'X < +e, then Pr(| X, > €) < EX'X/¢e.

c. [Chernoff bound] If Ee'* exists for all vectors t in some neighborhood of zero, then for some
positive scalars o and M, Pr(| X|, > €) < Me™.

Proof: All these inequalities are established by the same technique: If r(y) is a positive non-
decreasing function of y > 0, and Er(|X]|) < +ee, then
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Pr(|X| > €) = [

Ix[>e

F(dx) < [H . [r(|x])/r(e)]F(dx) < Ex(|X])/r(e).

Taking r(y) = y* gives the result directly for the Chebyshev bound. In the remaining cases, first get
a component-by-component inequality. For the Markov bound, Pr(| X;| > €) < E|X;|/e for each i
gives the result. For the Chernoff bound,

Pr(|X|,>e) < YL, [Pr(X>en™) +Pr(X; < -en'?)]

since if the event on the left occurs, one of the events on the right must occur. Then apply the
inequality Pr(| X;| > &) < Er(| X;|)/r(g) with r(y) = n""*-¢*” to each term in the right-hand-side sum.
The inequality for vectors is built up from a corresponding inequality for each component. []

3.5.10. When the expectation of a random variable is taken with respect to a conditional
distribution, it is called a conditional expectation. If F(x|C) is the conditional distribution of a
random vector X given the event C, then the conditional expectation of a function g(X) given C is
defined as

Eycg(X)= [ g()F(dy/C).

Another notation for this expectation is E(g(X)|C). When the distribution of the random variable
X is absolutely continuous with respect to Lebesgue measure, so that it has a density f(x), the

conditional density can be writtenas f{(x|C) =f(x):1(xeC)/ f f(s)ds ,andthe conditional expectation
c

can then be written

[ g
Ey cg(X) = f gx)fx|Cydx = —— .
¢ f fx)dx
c
When the distribution of X is discrete, this formula becomes
> &RYfk)
Eycg(X)= =t :
D e S0

The conditional expectation is actually a function on the o-field C of conditioning events, and is
sometimes written Ey, ¢ g(X) or E(g(X)|C) to emphasize this dependence.

Suppose A,,...,A, partition the domain of X. Then the distribution satisfies
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Fx)= Y+, FxIA)FA),
implying
k

EgX)= [ eF@)= Y, [ ecoF(@x|AYFA)= YI, E{e(OA}FA).

This is called the law of iterated expectations, and is heavily used in econometrics.

Example 2. (continued) Recall that X is the number of heads that appear before a tail in a
sequence of coin tosses, and that the probability of X =k is 2*! fork =0,1,... . Let C be the event
of an even number of heads. Then,

Ek=0,2,4,... k2 Zj=0,1,2,... 47

Ey X = el — =12/3,
Ek:0,2,4,.“ 2 Zj:O,l,Z,.“ 4712

where the second ratio is obtained by substituting k = 2j, and the value is obtained using the
summation formulas for a geometric series from 2.1.10. A similar calculation for the event A of an
odd number of heads yields Ey,X = 5/3. The probability of an even number of heads is

k-1 _ . . .
Zk:m’ 4. 2 = 2/3. The law of iterated expectations then gives
E X =E{X|C)-P(C) + E{X|]A)-P(A) = (2/3)(2/3) + (5/3)(1/3) =1,
which confirms the direct calculation of E X.

The concept of a conditional expectation is very important in econometrics and in economic
theory, so we will work out its properties in some detail for the case of two variables. Suppose
random variables (U,X) have a joint density f(u,x). The marginal density of X is defined by

g = [ fluxdy,
and the conditional density of U given X = x is defined by f(u|x) = f(u,x)/g(x), provided g(x) > 0.
The conditional expectation of a function h(U,X) satisfies E(h(U,X)|X=x) = [h(u,x)f(u|x)du, and
is a function of x. The unconditional expectation of h(U,X) satisfies

Eh(U,X) = f f h(u,x)f(u,x)dudx = f e ( f i h(u,x)f(ux)du) g(x)ydx = ExExh(U,X);

X=-> u

another example of the law of iterated expectations. The conditional mean of U given X=x is
My (%) = EyxU; by the law of iterated expectations, the conditional and unconditional mean are
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related by E U = ExEy;xU = ExMy (X). The conditional variance of U is defined by V(U|x) =
Eyx(U - MU‘X(X))z. It is related to the unconditional variance by the formula

Ey(U - EyU)” = ExEy (U - My (X) + My x(X) - E,U)’
=ExEy x(U - My x(X))” + ExEy x(My x(X) - EU)* + 2EEy; (U - My (X))(My x(X) - E,U)
= ExV(U|X) + Ex(My x(X) - E;U)’ + 2E(Myx(X) - E;U)Ey x(U - My x(X))
= ExV(U[X) + Ex(My x(X) - E;U)’

Then, the unconditional variance equals the expectation of the conditional variance plus the variance
of the conditional expectation.

Example 10: Suppose (U,X) are bivariate normal with means EU = p, and EX = p_, and second
moments E(U-p )’ = o2 E(X-p,)* =6, and E(U-p )(X-pn,) = 6, = po,c,. Define

2 2
u-u, . xp | 2 u-p, | | x-n,
Gu Gx Gu GX ’
2
_ x_“'x _ 1 . u_“'u _ . x_ux
¢ o ) 1-0? o P o
X p u X

The bivariate normal density is f(u,x) = [2nc,6,(1-p*)"*]"-exp(-Q/2). The marginal density of X is
normal with mean p, and variance 6,.*: n(x-p,,0,) = (2n0,>) ""exp(-(x-p,)*/26,%) . This can be derived
from the bivariate density by completing the square for u in Q and integrating over u. The
conditional density of U given X then satisfies

1
Q= >
1-p

and observe that
2

f(u]x) = [2n0,0,(1-p*) “T"-exp(-Q/2)/(2n5, ) -exp(-(x-p,)"/26.,7).
2
-1

: - o
2:(1-pH) |\ o, O,
Hence the conditional distribution of U, given X = x, is normal with conditional mean E(U|X=x)
=p, + po,(x - p)/o, = n, + o,(x-n)/c” and variance V(U|X=x) = E((U-E(U|X=x))*| X=x) =
o’ (1-p?) = 6,2 - 6,,%/6,>. When U and X are joint normal random vectors with EU=p , EX=p_,

E(U-p)(U-p,)" = Q EX-p)(X-p,) = Q,, and E(U-p, )(X-p,)" = Q,,, then (U| X=x) is normal with
E(U|X=x)=p, +Q,Q,.'x-p)and VU|X=x)=Q,_,-Q, Q. "Q .

ux= TxXx ux= TxX

= [2n6,*(1-p*)] ™ exp
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3.5.11. Conditional densities satisfy f(u,x) = f(u|x)g(x) = f(x |u)h(u), where h(u) is the marginal
density of U, and hence f(u|x) = f(x|u) h(u)/g(x). This is called Bayes Law. When U and X are
independent, f(u,x) = h(u)-g(x), or f(u|x) = h(u) and f(x|u) = g(x). For U and X independent, and
1(*) and s(*) any functions, one has E(r(U)|X=x) = [r(w)f(u|x)du = [r(u)h(u)du = Er(U), and
Er(U)s(X)) = [r(w)s®)f(u,x)dudx = [s(x)gx)[r(wf(u[x)du dx = [s(x)gxX)Er(U|x)dx =
[Es(X)][Er(U)], or cov(r(U),s(X)) = 0, provided Er(U) and Es(X) exist. If r(u) =u - EU, then
E(r(U)|X=x) = 0 and cov(U,X) = E(U-EU)X = 0. Conversely, suppose U and X are jointly
distributed. If cov(r(U),s(X)) = 0 for all functions r (*), s(*) such that Er(U) and Es(X) exist, then X
and U are independent. To see this, choose r(u) = 1 for u < u’, r(u) = 0 otherwise; choose s(x) = 1
for x < x", s(x) = 0 otherwise. Then Er(U) = H(u") and Es(X) = G(x"), where H and G are the
marginal cumulative distribution functions, and 0 = cov=F(u",x") - H(u")'G(x"), where F is the joint
cumulative distribution function. Hence, F(u,x) = H(u)'G(x), and X, U are independent.

Note that cov (U,X) = 0 is not sufficient to imply U,X independent. For example, g(x) = 2 for
-1 < x < land f(u|x) =% for -1 < u-x* < 1 is nonindependent with E(U|X=x) = x?, but cov(U,X) =
EX®=0. Furthermore, E(U|X=x) = 0 is not sufficient to imply U,X independent. For example, g(x)
=1 for -1 < x < 1 and f(u|x)= 1/2(1 + x?) for -(1+ x*) < u < (1 + x°) is nonindependent with E
(U*|x)= (1 +x*)* # E U*=28/15, but E(U|X=x) = 0.

Example 11. Suppose monthly family income (in thousands of dollars) is a random variable Y
with a CDF F(y) = 1 - y* for y > 1. Suppose a random variable Z is one for home owners and zero
otherwise, and that the conditional probability of the event Z = 1, given Y, is (Y-1)/Y. The
unconditional expectation of Y is 2. The joint density of Y and Z is f(y)-g(zly) = 2y”) (1 - y™) for

z=1. The unconditional probability of Z = 1 is then [ ™ f(y)-g(zly)dy = 1/3. Bayes Law gives

y=1

+o0

the conditional density of Y given z = 1, f(y|z) = f(y)-g(z|y)/ f 1 f(y)g(zly)dy = (6y°) (1 - y"), so

e
that the conditional expectation of Y given z =1 is E(Y|Z=1) = [ ™ yf(ylz)dy = 3.
y=1

Example 12. The problem of interpreting the results of medical tests illustrates Bayes Law. A
blood test for prostate cancer is known to yield a “positive” with probability 0.9 if cancer is present,
and a false “positive” with probability of 0.2 if cancer is not present. The prevalence of the cancer
in the population of males is 0.05. Then, the conditional probability of cancer, given a “positive”
test result, equals the joint probability of cancer and a positive test result, (0.05)(0.9), divided by the
probability of a positive test result, (0.05)(0.9)+(0.95)(0.2), or 0.235. Thus, a “positive” test has a
low probability of identifying a case of cancer, and if all “positive” tests were followed by surgery,
about 75 percent of these surgeries would prove unnecessary.
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3.5.12. The discussion of expectations will be concluded with a list of detailed properties of
characteristic functions and moment generating functions:

a. y(t) = Ee" = Ecos(tY) + 1Esin(tY).

b. Z=a+bY has the cf e"y(bt) and Z = f(Y) has the cf Ee*Y,

c. IFEY" exists, then y®(t) = d“y(t)/dt" exists, satisfies the bound |d“y(t)/dt*| < E|Y ¥, and is
uniformly continuous, and EY* = (1)*y®(0). If y®(t) exists, then EY* exists.

d. If Y has finite moments through order k, then y(t) has a Taylor's expansion

yt)y= Yty UEYNj+ [yORt) - y®(0)]t/k!
where A is a scalar with 0 <A < 1; the Taylor's expansion satisfies the bounds

) - Yo ¢ EY) < [tE[Y |9k

/

and

WO - Yre ¢ EY)E < 2]t B[ Y]¥k!
If EY® exists, then the expression {(t) = Ln y(t), called the second characteristic function or

cumulant generating function, has a Taylor's expansion
(= D el [0 - L),

where (' = d“¢/dt*, and A is a scalar with 0 <A < 1. The expressions k; are called the cumulants
of the distribution, and satisfy k, = EY and k, = Var(Y). The expression k,/k,”” is called the
skewness, and the expression «,/k,” - 3 is called the kurtosis (i.e., thickness of tails relative to
center), of the distribution.

e. If'Y is normally distributed with mean p and variance ¢, then its characteristic function is
exp(iut-6°t*/2). The normal has cumulants k, = p, k, = 6%, k; = K, = 0.

f. Random variables X and Y have identical distribution functions if and only if they have
identical characteristic functions.

g. If'Y, -, Y (see Chap. 4.1), then the associated characteristic functions satisfy y,(t) - y(t) for
eacht. Conversely, if Y, has characteristic function y (t) converging pointwise to a function y(t)
that is continuous at t = 0, then there exists Y such that y(t) is the characteristic function of Y
and Y, -, Y.

h. The characteristic function of a sum of independent random variables equals the product of
the characteristic functions of these random variables, and the second characteristic function of
a sum of independent random variables is the sum of the second characteristic functions of these
variables; the characteristic function of a mean of n independently identically distributed random
variables, with characteristic function y(t), is y(t/n)".
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Similar properties hold for proper moment generating functions, with obvious modifications:
Suppose a random variable Y has a proper mgf m(t), finite for |t| <1, where 1 is a positive constant.
Then, the following properties hold:

a. m(t) = Ee" for |t| <.

b. Z=a+bY has the mgf e“m(bt).

c. EY*exists for all k> 0, and m = d*m(t)/dt" exists and is uniformly continuous for |t| <t, with
EY* = my(0).

d. m(t) has a Taylor's expansion (for any k) m(t) = (EY?)¢/j! + [m(At) - m(0)]t*/k!, where A is
a scalar with 0 <A < 1.

e. If'Y is normally distributed with mean p and variance o7, then it has mgf exp(ut+c2t2).

f. Random variables X and Y with proper mgf have identical distribution functions if and only
if their mgf are identical.

g. If Y, - Y and the associated mgf are finite for [t| <7, then the mgfof Y, converges pointwise
to the MGF of Y. Conversely, if Y, have proper MGF which converges pointwise to a function
m(t) that is finite for [t| <, then there exists Y such that m(t) is the mgfof Yand Y, -, Y.

h. The mgf of a sum of independent random variables equals the product of the mgf of these
random variables; the mgf of the mean of n independently identically distributed random
variables, each with proper mgf m(t), is m(t/n)".

The definitions of characteristic and moment generating functions can be extended to vectors of
random variables. Suppose Y is a nx1 random vector, and let t be a nx1 vector of constants. Then
y(t) = Ee"" is the characteristic function and m(t) = Ee'” is the moment generating function. The
properties of cf and mgf listed above also hold in their multivariate versions, with obvious
modifications. For characteristic functions, two of the important properties translate to

(b’) Z=a+ BY, where a is a mx1 vector and B is a mxn matrix, has cf " *y(Bt).

(¢’) if Y is multivariate normal with mean p and covariance matrix X, then its characteristic

function is exp(u't - t' Xt/2).
A useful implication of (b’) and (¢’) is that a linear transformation of a multivariate normal vector
is again multivariate normal. Conditions (c) and (d) relating Taylor’s expansions and moments for
univariate cf have multivariate versions where the expansions are in terms of partial derivatives of
various orders. Conditions (f) through (h) are unchanged in the multivariate version.

The properties of characteristic functions and moment generating functions are discussed and
established in C. R. Rao Linear Statistical Inference, 2b.4, and W. Feller An Introduction to
Probability Theory, II, Chap. 13 and 15.
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3.6. TRANSFORMATIONS OF RANDOM VARIABLES

6.1. Suppose X is a measurable random variable on (R,B) with a distribution F(x) that is absolutely
continuous with respect to Lebesgue measure, so that X has a density f(x). Consider an increasing
transformation Y = H(X); then Y is another random variable. Let h denote the inverse function of
H; i.e., y = H(x) implies x = h(y). The distribution function of Y is given by

G(y) =Pr(Y < y) = Pr(H(X) < y) = Pr(X < h(y)) = F(h(y)).

When h(y) is differentiable, with a derivative h'(y) = dh(y)/dy, the density of Y is obtained by
differentiating, and satisfies g(y) = f(h(y))h'(y). Since y = H(h(y)), one obtains by differentiation
the formula 1 = H'(h(y))h'(y), or h'(y) = 1/H'(h(y)). Substituting this formula gives g(y) =

fth(y))/H'(h(y)).

Example 13. Suppose X has the distribution function F(x) = 1-e™ for x > 0, with F(x) =0 for
x < 0; then X is said to have an exponential distribution. Suppose Y = H(X) = log X, so that X =
h(Y) = e". Then, G(y) = 1-exp(-¢”) and G(y) = exp(-€”)e’ = exp(y-€”) for -«o <y <+, This is called
an extreme value distribution. A third example is X with some distribution function F and density
f, and Y = F(X), so that for any value of X, the corresponding value of Y is the proportion of all X
that are below this value. Let x, denote the solution to F(x) = p. The distribution function of Y is
G(y) = F(xy) =y. Hence, Y has the uniform density on the unit interval.

The rule for an increasing transformation of a random variable X can be extended in several
ways. If the transformation Y = H(X) is decreasing rather than increasing, then

G(y) = Pr(Y <y) = Pr(H(X) < y) = Pr(X > h(y)) = 1-F(h(y)),
where h is the inverse function of H. Differentiating,
g(y) = f(h(y)(-h'(y)).

Then, combining cases, one has the result that for any one-to-one transformation Y = H(X) with
inverse X = h(Y), the density of Y is

g(y) =fh(y)[h'(y)| = f(h(y))/|H'(h(y)|.

An example of a decreasing transformation is X with the exponential density e™ for x >0, and Y =
1/X. Show as an exercise that G(y) = e and g(y) = e'¥/y%.
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Consider a transformation Y = H(X) that is not one-to-one. The interval (-=,y) is the image of
a set A, of x values that may have a complicated structure. One can write

G(y) =Pr(Y < y) =Pr(H(X) < y) =Pr(X € A)) =F(A)).
If this expression is differentiable, then its derivative gives the density.

Example 14. If X has a distribution F and density f, and Y = |X|, then A, = [-y,y], implying
G(y) = F(y) - F(-y) and f(y) = f(y) + f(-y).

Example 15. If Y = X°, then A, = [-y"”,y"?], G(y) = F(y'?) - F(-y"?). Differentiating fory # 0,

g(y) = (f(y"») + f(-y"?))/2y"?. Applying this to the standard normal with F(x) = ®(x), the density of
Y is g(y) =@(y"?)/y"* = (2my) *-e*?, called the chi-square with one degree of freedom.

3.6.2. Next consider transformations of random vectors. These transformations will permit us
to analyze sums or other functions of random variables. Suppose X is a nx1 random vector.
Consider first the transformation Y = AX, where A is a nonsingular nxn matrix. The following
result from multivariate calculus relates the densities of X and Y:

Theorem 3.8. If X has density f(x), and Y = AX, with A nonsingular, then the density of Y is

&(y) = f(A™y)/|det(A)]

Proof: We will prove the result in two dimensions, leaving the general case to the reader. First,

Yi| Jan 01X
consider the case = with a,;; > 0 and a,, > 0. One has G(y,,y,) = F(y,/a,,,y,/a,,).
o] 10 )|y
Differentiating with respect to y, and y,, g(y,,y,) = f(y,/a,,,¥,/a5,)/a,,a,,. This establishes the result
Yi| Jan 01X
for diagonal transformations. Second, consider = with a;, >0 and a,, > 0. Then
5| (a1 4|l Xy

G(ypy,) = f i f 0272 fix,x,)dx,dx,. Differentiating with respect to y, and y, yields
x = Jx,=-e

azG(YU}’z)/ 9y,0y; = g(y1.y2) = (anazz)_lf(}ﬁ/ a,1,(y2-Y13y1/2,,)/ay).
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This establishes the result for triangular transformations. Finally, consider the general

Y X

1| |4 1

1 4

transformation with a,;, >0 and a,,a,,-a,,a,; > 0. Apply the result for triangular

Y| ay an|iX,

z X, Y,| [a 0 z

1 alz/a11

1

1 11 1

transformations first to = ,and second to = . This

2 ay Ay =apna, a2,

2 2

a,, a, 1 ala,

0 1

gives the general transformation, as . The density of

a, 0
Ay Ayl |ay  ayaayla;,

Z is h(z,,z,) = f(z,-2,a;,/2,,,2,), and of Y is g(y;,y,) = h(yi/a;,(y-yia21/8)/(an-a1,8,1/8)))).
Substituting for h in the last expression and simplifying gives

g(y1y,) = f((ayy,-2,,y,)/D.(a,,y,-a,,y,)/D)/D,

where D = a,,a,,-a,,a,, 1s the determinant of the transformation.

We leave as an exercise the proof of the theorem for the density of Y = AX in the general case
with A nxn and nonsingular. First, recall that A can be factored so that A=PLDU'Q’, where P and
Q are permutation matrices, L and U are lower triangular with ones down the diagonal, and D is a
nonsingular diagonal matrix. Write Y = PLDUQ’X. Then consider the series of intermediate
transformations obtained by applying each matrix in turn, constructing the densities as was done
previously. [J

3.6.3. The extension from linear transformations to one-to-one nonlinear transformations of
vectors is straightforward. Consider Y = H(X), with an inverse transformation X =h(Y). Ata point
y® and x° = h(y°), a first-order Taylor's expansion gives

Y-y = ARX-x%) +o(x - X%,
where A is the Jacobean matrix
oH'(x°)/ox, ... 0H'(x°)/ox,
A= | |
oH"(x?)/ox, ... oH"(x?)/ox,

and the notation o(z) means an expression that is small relative to z. Alternately, one has
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oh'(y°)/oy, ... oh'(y°)ay,
B=A'= | | |
Oh"(x°)dy, ... oh"(y°)dy,

The probability of Y in the little rectangle [y°,y*+Ay] is approximately equal to the probability of X
in the little rectangle [x°,x°+A'Ay]. This is the same situation as in the linear case, except there the
equality was exact. Then, the formulas for the linear case carry over directly, with the Jacobean
matrix of the transformation replacing the linear transformation matrix A. If f(x) is the density of
X, then g(y) = f(h(y))-|det(B)| = f(h(y))/|det(A)| is the density of Y.

Example 16. Suppose a random vector (X,Z) has a density f(x,z) for x,z > 0, and consider the
nonlinear transformation W = X-Z and Y = X/Z, which has the inverse transformation X = (WY)"?

/ o W—1/2yl/2/2 W1/2Y—1/2/2
and Z = (W/Y)". The Jacobean matrix is B = , and det(B) = 1/2y.

W—l/2y—1/2/2 _W1/2Y—3/2/2
Hence, the density of (w,y) is f((wy)"%(w/y)"?)/2y.

In principle, it is possible to analyze n-dimensional nonlinear transformations that are not
one-to-one in the same manner as the one-dimensional case, by working with the one-to-many
inverse transformation. There are no general formulas, and each case needs to be treated separately.

Often in applications, one is interested in a transformation from anx 1 vector of random variables
X to a lower dimension. For example, one may be interested in the scalar random variable S = X,
+ ... + X,. If one "fills out" the transformation in a one-to-one way, so that the random variables of
interest are components of the complete transformation, then Theorem 3.6 can be applied. In the
case of S, the transformation Y, = S filled out by Y, = X, for i = 2,...,n is one-to-one, with

111 11X
Lilo 1 0 .. ofX
v.=lo 0 1 .. ollx

P~<

(e]

(e]

[a)
=><_
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Example 17. Consider a random vector (X,Z) with a density f(x,z), and the transformation S =

S 1{|X
X+Zand T=2Z, or = 1] e The Jacobean of this transformation is one, and its inverse is
X |1 18 . . . . .
P = 0 e so the density of (S,T) is g(s,t) = f(s-t,t). The marginal density of S is then g,(s)

= f ™ f(s-t,t)dt. If X and Z are statistically independent, so that their density is f(x,z) = f,(x)-f,(2),

=—00

then this becomes g,(s) = f M

t=—o0

f,(s-t)-f,(t)dt. This is termed a convolution formula.

3.7. SPECIAL DISTRIBUTIONS

3.7.1. A number of special probability distributions appear frequently in statistics and
econometrics, because they are convenient for applications or illustrations, because they are useful
for approximations, or because they crop up in limiting arguments. The tables at the end of this
Chapter list many of these distributions.

3.7.2. Table 3.1 lists discrete distributions. The binomial and geometric distributions are
particularly simple, and are associated with statistical experiments such as coin tosses. The Poisson
distribution is often used to model the occurrence of rare events. The hypergeometric distribution
is associated with classical probability experiments of drawing red and white balls from urns, and
is also used to approximate many other distributions.

3.7.3. Table 3.2 listanumber of continuous distributions, including some basic distributions such
as the gamma and beta from which other distributions are constructed. The extreme value and
logistic distributions are used in the economic theory of discrete choice, and are also of statistical
interest because they have simple closed form CDEF’s.

3.7.4. The normal distribution and its related distributions play a central role in econometrics,
both because they provide the foundation for finite-sample distribution results for regression models
with normally distributed disturbances, and because they appear as limiting approximations in large
samples even when the finite sample distributions are unknown or intractable. Table 3.3 lists the
normal distribution, and a number of other distributions that are related to it. The t and F
distributions appear in the theory of hypothesis testing, and the chi-square distribution appears in
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large-sample approximations. The non-central versions of these distributions appear in calculations
of the power of hypothesis tests.

It is a standard exercise in mathematical statistics to establish the relationships between normal,
chi-square, F, and t distributions. For completeness, we state the most important result:

Theorem 3.9. Normal and chi-square random variables have the following properties:
(DIfS=Y*+..+Y,? where the Y, are independent normal random variables with means p,
and unit variances, then S has a non-central chi-square distribution with degrees of freedom
parameter k and non-centrality parameter 8 = p,* + ... + %, denoted y'*(k,3). If § = 0, this is
a (central) chi-square distribution with degrees of freedom parameter k, denoted %*(k).

(i1) If Y and S are independent, Y is normal with mean A and unit variance, and S is chi-square
with k degrees of freedom, then T = Y/(S/k)” is non-central t-distributed with degrees of
freedom parameter k and non-centrality parameter A, denoted t'(k,A). If A =0, this is a (central)
t-distribution with degrees of freedom parameter k, denoted t(k).

(ii1) If R and S are independent, R is non-central chi-square with degrees of freedom parameter
k and non-centrality parameter 6, and S is central chi-square with degrees of freedom parameter
n, then F = nR/kS is non-central F-distributed with degrees of freedom parameters (k,n) and
non-centrality parameter 6, denoted F'(k,n,5). If 6 = 0, this distribution is F-distributed with
degrees of freedom parameters (k,n), and is denoted F(k,n).

(iv) T is non-central t-distributed with degrees of freedom parameter k and non-centrality
parameter A if and only if F = T* is non-central F-distributed with degrees of freedom
parameters (1,k) and non-centrality parameter & = A%,

Proof: These results can be found in most classical texts in mathematical statistics; see particularly
Rao (1973), pp. 166-167, 170-172, 181-182, Johnson & Kotz (1970), Chap. 26-31, and Graybill
(1961), Chap. 4.. [

In applied statistics, it is important to be able to calculate values x = G'(p), where G is the CDF
of the central chi-square, F, or t, distribution, and values p = G(x) where G is the CDF of the non-
central chi-square, F, or t distribution. Selected points of these distributions are tabled in many
books of mathematical and statistical tables, but it is more convenient and accurate to calculate these
values within a statistical or econometrics software package. Most current packages, including TSP,
STATA, and SST, can provide these values.

3.7.5. One of the most heavily used distributions in econometrics is the multivariate normal. We
describe this distribution and summarize some of its properties. A nx1 random vector Y is
multivariate normal with a vector of means p and a positive definite covariance matrix X if it has
the density
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n(y - p,2) = 2y det(2)"” exp(-((y - p)'Z'(y - n)/2).

This density is also sometimes denoted n(y;p,X), and the CDF denoted N(y;p,2). Its characteristic
function is exp(in't - t'Xt/2), and it has the moments E Y = p and E (Y-p)(Y-p)’ = X. From the
characteristic function and the rule for linear transformations, one has immediately the property that
a linear transformations of a multivariate normal vector is again multivariate normal. Specifically,
if Y is distributed N(y;p,2), then the linear transformation Z = a + BY, which has mean a + Bp and
covariance matrix B’ B, is distributed N(z;a + Bu,B’ZB). The dimension of Z need not be the same
as the dimension of Y, nor does B have to be of maximum rank; if B’XB is less than full rank, then
the distribution of Z is concentrated on an affine linear subspace of dimension n through the point
a + Bp. Let 6, = (Z,))” denote the standard deviation of Y, and let p,; = %,/c, o; denote the
correlation of Y, and Y;. Then the covariance matrix % can be written

6, 0 .. 0][1 o, - @e,|[6;, 0 ... O]

0 o, .. Ofjey, I .. 0,10 o0 .. 0
5= 2 21 2 2 _ DRD,

_O 0 .. o0, @, - 1__0 0 ... o

n n

where D = diag(c,,...,0,) and R is the array of correlation coefficients.

Theorem 3.10. Suppose Y is partitioned Y' = (Y, Y,'), where Y, ismx1,and letp' = (n," n,")
I, X,
Z, Z,

and be commensurate partitions of p and X. Then the marginal density of Y, is

multivariate normal with mean p, and covariance matrix X,,. The conditional density of Y,, given
Y, =vy,, is multivariate normal with mean p, + 2,,' %, (y, - n,) and covariance matrix X,, - X,, X,
'2,,. Then, the conditional mean of a multivariate normal is linear in the conditioning variables.

Proof: The easiest way to demonstrate the theorem is to recall from Chapter 2 that the positive
definite matrix X has a Cholesky factorization X = LL’, where L is lower triangular, and that L has
an inverse K that is again lower triangular. If Z is a nx1 vector of independent standard normal
random variables (e.g., each Z, has mean zero and variance 1), then Y = p + LZ is normal with mean
p and covariance matrix X. Conversely, if Y has density n(y - p,2), then Z = K(Y - p) is a vector
of i.i.d. standard normal random variables. These statement use the important property of normal
random vectors that a linear transformation is again normal. This can be shown directly by using
the formulas in Section 3.6 for densities of linear transformations, or by observing that the
(multivariate) characteristic function of Y with density n(y - p,X) is exp( itt'p - t'2t/2), and the form
of this characteristic function is unchanged by linear transformations.
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The Cholesky construction Y = p + LZ provides an easy demonstration for the densities of
marginal or conditional subvectors of Y. Partition L and Z commensurately with (Y," Y,’), so that

L. 0
L

11
andZ'=(Z,'Z,"). Then X, =L, L, X, =L, L11/, 2, =L,Ly," +L,L,’, and

21 22

hence X,,X,," =L, L,,”, implying L,,L,, = X,, - ,,%,,'Z,,. Then, Y, =p, +L,,Z, has a marginal
multivariate normal density with mean p, and covariance matrix L ,L,," = 2,,. Also, Y,=pn,+L,,Z,
+LyZ,, implying Y, = pn, + Ly, L,, (Y, - n,) + L,,Z,. Conditioned on Y, =y,, this implies Y, =,
+ 2,2, '(y, - n) + L,,Z, is multivariate normal with mean p, - Z,,X,, ', and covariance matrix

222 - 221211_1212' O

The next theorem gives some additional useful properties of the multivariate normal and of
quadratic forms in normal vectors.

Theorem 3.11. Let Y be a nx1 random vector. Then,
(1) IfY'=(Y,"Y,') is multivariate normal, then Y, and Y, are independent if and only if they
are uncorrelated. However, Y, and Y, can be uncorrelated and each have a marginal normal
distribution without necessarily being independent.
(i) If every linear combination ¢'Y is normal, then Y is multivariate normal.
(ii1) If' Y is i.i.d. standard normal and A is an idempotent nxn matrix of rank k, then Y'AY is
distributed (k).
(iv) If Y is distributed N(p,I) and A is an idempotent nxn matrix of rank k, then Y'AY is
distributed y'*(k,5) with & = p’Ap.
(v) If Y is 1.1.d. standard normal and A and B are positive semidefinite nxn matrices, then
Y'AY and Y'BY are independent if and only if AB = 0.
(vi) If' Y is distributed N(p,I), and A, is an idempotent nxn matrix of rank k, for I=1,...K, then
the Y'A, Y are mutually independent and distributed y'*(k;,5,) with 8, = p’ A, if and only if
either (a) AJA; =0 for I = jor (b) A, + ... + Ay is idempotent.
(vii) If'Y is distributed N(p,I), A is a positive semidefinite nxn matrix, B is a kxn matrix, and
BA =0, then BY and Y'AY are independent.
(viii) If' Y is distributed N(pn,I) and A is a positive semidefinite nxn matrix, then E Y'AY =
n'Ap +tr(A).

Proof: Results (i) and (ii) are proved in Anderson (1958), Thm. 2.4.2 and 2.6.2. For (iii) and (iv),
write A = UU’, where this is its singular value decomposition with U a nxk column orthogonal
matrix. Then U’Y is distributed N(U’p,I,), and the result follows from Theorem 3.8. For (v), let k
be the rank of A and m the rank of B. There exists a nxk matrix U of rank k and a nxm matrix V
of rank m such that A = UU’ and B = VV'. The vectors U'Y and V'Y are uncorrelated, hence
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independent, if and only if U’V =0. But AB=U(U'V)V" is zero if and only if U’V = 0 since U and
V' are of maximum rank. For (vi), use the SVD decomposition as in (iv). For (vii), write A = UU’
with U of maximum rank as in (v). Then BA =(BU)U’ =0 implies BU =0, so that BY and U'Y are
independent by (i). For (vii), EY'AY =p’'Ap +E (Y-p)'A(Y-pn) = p’Ap + tr(E (Y-p)' A(Y-p)) =
p'Ap +tr(A). O

3.8. NOTES AND COMMENTS

The purpose of this chapter has been to collect the key results from probability theory that are
used in econometrics. While the chapter is reasonably self-contained, it is expected that the reader
will already be familiar with most of the concepts, and can if necessary refer to one of the excellent
texts in basic probability theory and mathematical statistics, such as P. Billingsley, Probability and
Measure, Wiley, 1986; or Y. Chow and H. Teicher, Probability Theory, 1997. A classic that
provides an accessible treatment of fields of subsets, measure, and statistical independence is J.
Neveu, Mathematical Foundations of the Calculus of Probability, Holden-Day, 1965. Another
classic that contains many results from mathematical statistics is C. R. Rao (1973) Linear Statistical
Inference and Its Applications, Wiley. A comprehensive classical text with treatment of many
topics, including characteristic functions, is W. Feller, An Introduction to Probability Theory and
Its Applications, Vol. 1&2, Wiley, 1957. For special distributions, properties of distributions, and
computation, a four-volume compendium by N. Johnson and S. Kotz, Distributions in Statistics,
Houghton-Mifflin, 1970, is a good source. For the multivariate normal distribution, T. Anderson
(1958) An Introduction to Multivariate Statistical Analysis, Wiley, and F. Graybill (1961) An
Introduction to Linear Statistical Models, McGraw-Hill, are good sources. Readers who find some
sections of this chapter unfamiliar or too dense may find it useful to first review an introductory text
at the undergraduate level, such as K. Chung, 4 Course in Probability Theory, Academic Press, New
York, or R. Larsen and M. Marx, Probability Theory, Prentice-Hall.
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TABLE 3.1. SPECIAL DISCRETE DISTRIBUTIONS

NAME & DOMAIN | DENSITY MOMENTS CHAR. FN.
1. Binomial U= np (I-ptpe")”

n

k 1- n-k

P p)
k=0,1,..,n 0<p<l o> =np(1-p) Note 1
2. Hypergeometric p = nr/(r+w) Note 2

r w| [rw
k an integer r+w>n B

.. . 2 nrw r+w-n

max{0,n-w} <k I,W,n positive integers G = 5 1
& k < min{r,n} (r+w) rrwe
3. Geometric p(1-p)* u=(1-p)/p Note 3
k=0,1,2,... 0<p<l o’ = (1-p)/p*
4. Poisson e™\/k! n=2>x exp[A(e"-1)]
k=0,12.... A>0 ol =\ Note 4
5. Negative Binomial, u=r(1-p)p

r+k-1 o)

K p-p
k=0,1,2... rinteger, 1>0& 0<p<1 | o> =1(1-p)/p’ Note 5
NOTES

1. pu = EX (the mean), and ¢* = E(X-p)? (the variance). The density is often denoted b(k;n,p). The moment
generating function is (1-p+pe")".
2. The characteristic and moment generating functions are complicated.
3. The characteristic function is p/(1-(1-p)e") and the moment generating function is p/(1-(1-p)e"), defined for t <

-In(1-p).

4. The moment generating function is exp(A(e*-1)), defined for all t.
5. The characteristic function is p”/(1-(1-p)e")", and the moment generating function is p”/(1-(1-p)e')’, defined for

t <-In(1-p).
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TABLE 3.2. SPECIAL CONTINUOUS DISTRIBUTIONS

NAME & DOMAIN DENSITY MOMENTS CHAR. FN.
1. Uniform 1/(b-a) u = (atb)/2 bt at
a<x<b o> = (b-a)¥/12 e e
u(b-a)
Note 1
2. Triangular (1-[x|/a)/a p=0 ) 1 —cos at
x| <a o’ =a’/6 a’t?
3. Cauchy a/m(a’ + (x-p)%) none "ol
—o0o < X < +o0
4. Exponential e/ n=>x 1/(1-1At)
x>0 o’ =\ Note 2
5. Pareto ba"x ! u = ab/(b-1) Note 3
X>a o’ = ba*/(b-1)*(b-2)
6. Gamma a1 b p=ab (1-bt)*
x>0 r € o’ = ab’ Note 4
[(a)b*
7. Beta T(a+h) o . u = a/(atb) Note 5
0<x<l1 ———— x"(1-x)
[(a)['(b) o2 = ab
(a+b)*(a+b+1)
8. Extreme Value p=a+0.57721b Note 6
1 ( X-a ~(x —a)/b)
—exp | —— -e
b
—0 < X < oo o’ = (nb)*/12
9. Logistic 1 exp((a-x)/b) p=a Note 7
b (1+exp((a-x)/b))*
o0 < X < +oo o’ = (nb)’/6
NOTES

N kv =

The moment generating function is (™ - €*)/(b-a)t, defined for all t.
The moment generating function is 1/(1 - At), defined for t < 1/A.

The moment generating function does not exist. The mean exists for b > 1, the variance exists for b > 2.
Fora>0,I(a)= [, x “'e™dx is the gamma function. If a is an integer, ['(a) = (a-1)!.
For the characteristic function, see C. R. Rao, Linear Statistical Inference, Wiley, 1973, p. 151.

The moment generating function is e*T'(1 - tb) for t < 1/b .
The moment generating function is e*nbt/sin(nbt) for |t|< 1/2b.
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TABLE 3.3. THE NORMAL DISTRIBUTION AND ITS RELATIVES

t-distribution

k pos. integer

T((k-1)/2)A
T(k2)

o = (1+\)k/(k-2) - p?
ifk>2

ifk>1

NAME & DOMAIN DENSITY MOMENTS CHAR. FN.
1. Normal IS L = mean exp(itp-c°t*/2)
n(x-u,0) (2nc?) *exp( Gl ) o’ = variance Note 1
—00 <X <400, 5> 0 206°
2. Standard Normal o(x) = (2m) ™ exp(-x*/2) nu=0 exp(-t*/2)
—00 < X < oo o’=1
3. Chl‘square (k/2)71 3 7x/2 u = k (1‘21t)>k/2
0<x <o Pxk= X © ? =2k Note 2
[(k/2)2 k=12,..
4. F-distribution F(x;k,n) p=ifn>2 Note 3
<X < oo itive i
0<x k,n positive integers . 2n?(kn-2)
k(n-2)%(n-4)
ifn>4
5. t-distribution kel pu=0ifk>1 Note 4
“00 < X < +oo I'( > )(1+x /) * D2 o =k/(k-2) ifk > 2
1., 1+2k
k T'(=)Ir
vk TN
1. Noncentral v(x:k,8) n=k+8 Note 5
Chi-Squared k pos. integer o” = 2(k+29)
x>0 0>0
2. Noncentral F(x;k,n,0) ifn>2, p=n(k+3)/k(n-2) Note 6
F-distribution k,n positive integers ifn>4, 6’ =
>
x>0 620 2(n/ky*(k+8)*+(k+28)(n-2)
(n-2)’(n-4)
3. Noncentral t(x;k,\) Note 7
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NOTES TO TABLE 3.3

1. The density is often denoted n(x-u,6°), and the cumulative distribution referred to as N(x-u,6%), or simply N(u,6?). The
moment generating function is exp(ut+c°t*/2), defined for all t. The standard normal density is often denoted @(x), and the
standard normal CDF is denoted ®(x). The general normal and standard normal formulas are related by n(x-p,c%) =
o((x-p)/o)/c and N(x-u,6%) = O((x-pn)/c).

2. The moment generating function is (1-t/2)*? for t < 2. The Chi-Square distribution with parameter k (= degrees of
freedom) is the distribution of the sum of squares of k independent standard normal random variables. The Chi-Square
density is the same as the gamma density with b =2 and a = k/2.

3. The F-distribution is the distribution of the expression nU/kV, where U is a random variable with a Chi-square
distribution with parameter k, and V is an independent random variable with a Chi-square distribution with parameter n.

k+n

( 2 ) .kk/Znn/2xk/2—1

The density is . Forn < 2, the mean does not exist, and for n < 4, the variance does not exist.

ryrcy (ko

The characteristic and moment generating functions are complicated.

4. If'Y is standard normal and Z is independently Chi-squared distributed with parameter k, then Y/ /Z/k  has a

T-Distribution with parameter k (= degrees of freedom). The characteristic function is complicated; the moment generating
function does not exist.

5. The Noncentral Chi-square is the distribution of the sum of squares of k independent normal random variables, each
with variance one, and with means whose squares sum to 3. The Noncentral Chi-Square density is a Poisson mixture of

oo

(central) Chi-square densities, Zj:O [ 2(8/2) 4 T (x:k+27).

6. The Non-central F-distribution has a density that is a Poisson mixture of rescaled (central) F-distributed densities,
k kx

Yo [€@2) — F(

——— ;k+2j,n). Itisthe distribution of the expressionnU’/kV, where U’ is a Noncentral
k+2j k+2j

Chi-Squared random variable with parameters k and 8, and V is an independent central Chi-Squared distribution with

parameter n.

7. If Y is standard normal and Z is independently Chi-squared distributed with parameter k, then (Y+A)/ /(Z/k)  has

a Noncentral T-Distribution with parameters k and A. The density is a Poisson mixture of scaled Beta distributed densities,

o0 A2 20 xk kk 1+2f
- e A°2Y/5! B ) .
o | WY s B )

The square of a Noncentral T-Distributed random variable has a Noncentral F-Distribution with parameters 1, k, and 8 =22
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3.9 EXERCISES

1. In Example 1, write out all the members of F.
2. Prove that a c-field of events contains countable intersections of its members.

3. Example 2 claims that the class of all subsets of countable S has greater cardinality than S itself. Mathematically, this
means that it is not possible to associate a unique element of S with each member of the class. Use the following device
to convince yourself this is true: Write each number in the unit interval as a fraction in binary notation, 0.b,b,.... Associate
with each number the class member that contains the sequence with j heads if and only if bj = 1. Then, the real numbers,
which are uncountable, map into unique members of the class, so the class is also uncountable.

4. In Example 4, show that the event “the change is the same on successive days” is not in B;xB, , but is a monotone limit
of sets in B, xB,.

5. Economic agents can make contingent trades only if it is common knowledge if the contingency is realized. In Example
1, Agent 1 knows F, Agent 2 knows G, Agent 3 knows H = {o,{HH,TT},{HT,TH},S}. What is the common knowledge
of Agents 1 and 2? Of Agents 1 and 3?

6. Suppose, in Example 1, that instead of H and T being equally likely, the probability measure satisfies

HH HT TH TT

0.2 0.4 0.1 0.3

What is the probability that the first coin is heads? That the second coin is heads? That the two coins give the same result?

7. Consider the sequence of functions f,(x) = x"" for 0 < x < 1. These are square integrable. Do they converge to a limit,
and if so, what is the convergence strong, in measure, or weak?

8. Consider the probability measure P([0,x]) =x1/2 on 0 < x < 1. Does it meet the Radon-Nikodym conditions for the
existence of a probability density?

9. It is known that 0.2 percent of the population is HIV-positive. It is known that a screening test for HI'V has a 10 percent
chance of incorrectly showing positive when the subject is negative, and a 2 percent chance of incorrectly showing negative
when the subject is positive. What proportion of the population that tests positive has HIV?

10. John and Kate are 80 years old. The probability that John will die in the next year is 0.08, and the probability that Kate
will die in the next year is 0.05. The probability that John will die, given that Kate dies, is 0.2. What is the probability
that both will die? That at least one will die? That Kate will die, given that John dies?

11. The probability that a driver will have an accident next year if she has a Ph.D. is 0.2. The probability she will have
an accident if she does not have a Ph.D. is 0.25. The probability the driver has a Ph.D. and an accident is 0.01. What is
the probability the driver has a Ph.D.? What is the probability of a Ph.D. given an accident?
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12. A quiz show offers you the opportunity to become a millionaire if you answer nine questions correctly. Questions can
be easy (E), moderate (M), or hard (H). The respective probabilities that you will answer an E, M, or H question correctly
are 2/3, 1/2, and 1/3. If you get an E question, your next question will be E, M, or H with probabilities 1/4, 1/2, and 1/4
respectively. If you geta M question, your next question will be E, M, or H with probabilities 1/3, 1/3, and 1/3 respectively.
If you get a H question, your next question will be E, M, or H with probabilities 1/2, 0, and 1/2 respectively. The first
question is always an E question. What is the probability that you will become a millionaire? [Hint: Show that the
probability of winning if you reach question 9 is independent of whether this question is E, M, or H. Then use backward
recursion. ]

13. Show that if A ¢ B and P(A) > 0, then P(C|A) can be either larger or smaller than P(C|B).

14. An airplane has 100 seats. The probability that a ticketed passenger shows up for the flight is 0.9, and the events that
any two different passengers show up is statistically independent. Ifthe airline sells 105 seats, what is the probability that
the plane will be overbooked? How many seats can the airline sell, and keep the probability of overbooking to 5 percent
or less?

15. Prove that the expectation E(X - ¢)? is minimized when ¢ = EX.
16. Prove that the expectation E|X - ¢| is minimized when ¢ = median(X).

17. What value of ¢ minimizes E{a-max(X-c,0) + (1-o)'max(c-X,0)}? (Hint: describe the solution in terms of the
distribution F of X.]

18. A sealed bid auction has a tract of land for sale to the highest of n bidders. You are bidder 1. Your experience is that
the bids of each other bidder is distributed with a Power distribution F(X) = X“ for 0 < X < 1. Your profit if you are
successful in buying tract at price y is 1 - y. What should you bid to maximize your expected profit? What is your
probability of winning the auction?

19. A random variable X has a normal distribution if its density is Ax) = (2nc?)"exp(-(x-n)*/26%), where p and o are
parameters. Prove that X has mean p and variance 6°. Prove that E(X-p)* = 0 and E(X-p)*=3c". [Hint: First show that
[x-exp(-x*/2)dx = - exp(-x*/2) and for k > 1, the integration by parts formula [x*exp(-x*/2)dx = -x*"-exp(-x*/2) +
(k-1) [x**exp(-x*/2)dx.]

20. Suppose the stock market has two regimes, Up and Down. In an Up regime, the probability that the market index will
rise on any given day is P. In a Down regime, the probability that the market index will rise on any given day is Q, with
Q <P. Within a regime, the probability that the market rises on a given day is independent of its history. The probability
of being in a Up regime is 1/2, so that if you do not know which regime you are in, then all you can say is that the
probability that the market will rise on any given day is R = (P+Q)/2. Assume that regimes persist far longer than runs of
rises, so that when analyzing runs the regime can be treated as persisting indefinitely. Show that when you are in the Up
regime, the probability of a run of k or more successive days in which the market rises is P*, and that the probability of
a run of exactly k days in which the market rises is P*'(1-P). A similar formula with Q instead of P holds when you are
in a Down regime. Show that expected length in an Up regime of a run of rises is 1/(1-P). Show that %4/(1-P) + 4/(1-Q)
> 1/(1-R).

21. The random vector (X,,X,) has the distribution function exp(-(exp(-2x,)+exp(-2x,))"?). What is the marginal
distribution of X,? What is the conditional distribution of X, given X, < ¢? Given X, =¢?
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22. The expectation E(X+aZ)* > 0 for random variables X, Z and any scalar a.. Use this property to prove the Cauchy-
Schwartz inequality.

23. Prove Jensen’s inequality for a probability concentrated at two points.

24. In Example 2, use the law of iterated expectations to calculate the expectation of the number of heads, given that the
number exceeds one.

25. If X and Z are bivariate normal with means 1 and 2, and variances 1 and 4, respectively, and covariance , what is the
density of X given Z =z? Use Bayes law to deduce the conditional density of Z given X = x?

26. Prove the formula for the characteristic function of a standard normal random variable.

27. What is the domain of the moment generating function of an exponentially distributed random variable with density
f(x) = exp(-3x) for x > 0?

28. If (X,Z) is a random vector with density f(x,z) and z > 0, and S = X/Z, T = Z, what is the Jacobean of the
transformation?

29.If X and Y are multivariate normal with zero means, EXX’' = A, EYY' =B, and EXY’ =C, show that X and Z=Y -
XB'C are independent.

30. For the binomial distribution b(k;n,p), what is the variance of the frequency f = k/n?

31. The hypergeometric distribution describes the probability that k of n balls drawn from an urn will be red, where the urn
contains r red and w white balls, and sampling is without replacement. Calculate the same probability if sampling is with
replacement. Calculate the probabilities, with and without replacement, when r= 10, w=90,n=5,k=1.

32. In a Poisson distribution, what is the expected count conditioned on the count being positive?

33. Under what conditions is the characteristic function of a uniform distribution of [-a,b] real?

34. Show that if X and Y are independent identically distributed extreme value, then X - Y is logistic distributed.

35. Suppose that the duration of a spell of unemployment (in days) can be described by a geometric distribution, Prob(k)
=p*(1-p), where 0 <p < 1 is a parameter and k is a non-negative integer. What is the expected duration of unemployment?
What is the probability of a spell of unemployment lasting longer than K days? What is the conditional expectation of the
duration of unemployment, given the event that K > m, where m is a positive integer? [Hint: Use formulas for geometric
series, see 2.1.10.]

36. Use the moment generating function to find EX® when X has density /A, x > 0.

37. A log normal random variable Y is one that has log(Y) normal. If log(Y) has mean p and variance o°, find the mean
and variance of Y. [Hint: It is useful to find the moment generating function of Z = log(Y).]



McFadden, Statistical Tools, © 2000 Chapter 3-45, Page 87

38. If X and Y are independent normal, then X+Y is again normal, so that one can say that the normal family is closed
under addition. (Addition of random variables is also called convolution, from the formula for the density of the sum.)
Now suppose X and Y are independent and have extreme value distributions, Prob(X < x) = exp(-e**) and Prob(Y < y)
=exp(-e™Y), where a and b are location parameters. Show that max(X,Y) once again has an extreme value distribution (with
location parameter ¢ = log(e*+¢®)), so that the extreme value family is closed under maximization.

39. If X is standard normal, derive the density and characteristic function of Y = X?, and confirm that this is the same as
the tabled density of a chi-square random variable with one degree of freedom. If X is normal with variance one and a mean
u that is not zero, derive the density of Y, which is non-central chi-square distributed with one degree of freedom and
noncentrality parameter p.

40. Random Variables X and Y are bivariate normal, with EX =1, EY =3, and Var(X) = 4, Var(Y) =9, Covariance(X,Y)
=5.

(a) What is the mean of Z =2X - Y?

(b) What is the variance of Z=2X-Y?

© What is the conditional mean of Z given X = 5?

(d) What is the conditional variance of Z given X = 5?

41. What is the probability that the larger of two random observations from any continuous distribution will exceed the
population median?

42. If random variables X and Y are independent, with EX =1, EY =2, EX*=4, EY?=9, what is the unconditional
mean and variance of 3-X-Y? What is the conditional mean and variance of 3-X'Y given Y =5?

43. Jobs are characterized by a wage rate W and a duration of employment X, and (W,X) can be interpreted as a
random vector. The duration of employment has an exponential density A-¢™, and the wage rate W has a exponential
density, conditioned on X = x, equal to (a+Bx)e ™™, where A, a, and B are positive parameters. What is the marginal
density of W? The conditional density of X given W?

44. Random Variables X and Y are bivariate normal, with EX =1, EY = 3, and Var(X) = 4, Var(Y) =9,
Covariance(X,Y) = 5.

(a) What is the mean of Z =2X - Y?

(b) What is the variance of Z=2X-Y?

© What is the conditional mean of Z given X = 5?

(d) What is the conditional variance of Z given X = 5?

45. The data set nyse.txt in the class data area of the class home page contains daily observations on stock market
returns from Jan. 2, 1968 through Dec. 31, 1998, a total of 7806 observations corresponding to days the market was
open. There are four variables, in columns delimited by spaces. The first variable (DAT) is the date in yymmdd
format, the second variable (RNYSE) is the daily return to the NYSE market index, defined as the log of the ratio of
the closing value of the index today to the closing index on the previous day the market was open, with distributions
(dividends) factored in. The third variable (SP500) is the S&P500 market index, an index of a majority of the high
market value stocks in the New York stock exchange. The fourth variable (RTB90) is the rate of interest in the
secondary market for 90-day Treasury Bills, converted to a daily rate commensurate with RNYSE..

a. Let E, denote a sample average (empirical expectation). Find the sample mean p = E X, variance ¢* = E (X - ),
skewness E (X - p)*/c®, and kurtosis E (X - p)*/c* - 3, for the variables RNYSE and RTB90. Normally distributed
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random variables have zero skewness and kurtosis in the population. Making an "eyeball" comparison, do the sample
moments appear to be consistent with the proposition that RNYSE and RTB90 are normally distributed?

b. For RNYSE, form the standardized variable Z = (RNYSE - p)/c, by subtracting this variable's sample mean and
then dividing by the square root of its variance (or standard deviation). Sort the values of Z from low to high, and then
construct a new variable Y that equals /7806 for 1 < i < 7806. The values of Z are called the order statistics of the
sample, and Y is the empirical CDF, a CDF that puts 1/7806 probability at each observed value of RNYSE. Plot Y
against ®(Z), where O is the standard normal CDF. If RNYSE is normal, then these curves will differ only because of
sampling noise in Y. Does it appear by eyeball comparison that they are likely to be the same? A particular issue is the
theoretical question of whether the distribution of returns has fat tails, so that the variance and higher moments are hard
to estimate precisely or may fail to exist. In a normal sample, one would expect that on average 99 percent of
standardized observations are less than 2.575 in magnitude. Do the standardized values Z appear to be consistent with
this frequency?

c. A claim in the analysis of stock market returns is that the introduction of financial derivatives and index funds
through the 1980's made it easier for arbitragers to close windows of profit opportunity. The argument is made that the
resulting actions of arbitragers have made the market more volatile. Compare the subsamples of NYSE excess returns
(EXCESS = RNYSE - NRTB90) for the periods 1968-1978 and 1988-1998. By eyeball comparison, were there
differences in mean excess return in the two decades? In the variance (or standard deviation) of excess return? Now
do a 2x2 table of sample means classified by the two decades above and by whether or not the previous day’s excess
return was above its decade average. Does it appear that the gap between mean excess returns on days following
previous rises and falls has increased or shrunk in the decade of the 90's?



