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CHAPTER 4.  LIMIT THEOREMS IN STATISTICS

4.1.   SEQUENCES OF RANDOM VARIABLES 

4.1.1. A great deal of econometrics uses relatively large data sets and methods of statistical
inference that are justified by their desirable properties in large samples.  The probabilistic
foundations for these arguments are �laws of large numbers�, sometimes called the �law of
averages�, and �central limit theorems�.  This chapter presents these foundations.  It concentrates
on the simplest versions of these results, but goes some way in covering more complicated versions
that are needed for some econometric applications.  For basic econometrics, the most critical
materials are the limit concepts and their relationship covered in this section, and for independent
and identically distributed (i.i.d.) random variables the first Weak Law of Large Numbers in Section
4.3 and the first Central Limit Theorem in Section 4.4.  The reader may want to postpone other
topics, and return to them as they are needed in later chapters.

4.1.2. Consider a sequence of random variables Y1,Y2,Y3,...  .  These random variables are all
functions Yk(s) of the same state of Nature s, but may depend on different parts of s.  There are
several possible concepts for the limit Yo of a sequence of random variables Yn.  Since the Yn are
functions of states of nature, these limit concepts will correspond to different ways of defining limits
of functions.   Figure 4.1 will be used to discuss limit concepts.  Panel (a) graphs Yn and Yo as
functions of the state of Nature.  Also graphed are curves denoted Yo± and defined by  Yo ± � which
for each state of Nature s delineate an �-neighborhood of Yo(s).  The set of states of Nature for which
�Yo(s) - Yn(s)� > � is denoted Wn.  Panel (b) graphs the CDF's of Yo and Yn.  For technical
completeness, note that a random variable Y is a measurable real-valued function on a probability
space (S,F,P), where F is a σ-field of subsets of S, P is a probability on F, and �measurable� means
that F contains the inverse image of every set in the Borel σ-field of subsets of the real line.  The
CDF of a vector of random variables is then a measurable function with the properties given in 3.5.3.
  

4.1.3. Yn converges in probability to Yo, if for each � > 0, limn�� Prob(�Yn - Yo� > �) = 0.
Convergence in probability is denoted Yn �p Yo, or plimn�� Yn = Yo.  With Wn defined as in Figure
4.1, Yn �p Yo iff limn�� Prob(Wn) = 0 for each � > 0. 
 

4.1.4. Yn converges almost surely to Yo, denoted Yn �as Yo, if for each � > 0,
limn�� Prob(supm�n�Ym- Yo� > �) = 0.  For Wn defined in Figure 4.1, the set of states of nature for

which �Ym(w) - Yo(w)� > � for some m � n is Wm, and Yn �as Yo iff Prob( Wn�) � 0.�m�n �m�n

An implication of almost sure convergence is limn�� Yn(s) = Yo(s) a.s. (i.e., except for a set of states
of Nature of probability zero); this is not an implication of Yn �p Yo. 
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FIGURE 4.1.  CONVERGENCE CONCEPTS FOR RANDOM VARIABLES
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McFadden, Statistical Tools © 2000                                 Chapter 4-3, Page 91
______________________________________________________________________________

4.1.5.  Yn converges in ρ-mean (also called convergence in ���ρ norm, or convergence in Lρ
space) to Yo if limn�� E�Yn - Yo�

ρ = 0.  For ρ = 2, this is called convergence in quadratic mean.  The

norm is defined as �Y�ρ = [ �Y(s)�ρ��P(ds)]1/ρ = [E�Y�ρ]1/ρ, and can be interpreted as a probability-�S

weighted measure of the distance of Y from zero.  The norm of a random variable is a moment.
There are random variables for which the ρ-mean will not exist for any ρ > 0; for example, Y with
CDF F(y) = 1 - 1/(log y) for y � e has this property.  However, in many applications moments such
as variances exist, and the quadratic mean is a useful measure of distance. 
 

4.1.6. Yn converges in distribution to Yo, denoted Yn �d Yo, if the CDF of Yn converges to the
CDF of Yo at each continuity point of Yo.  In Figure 4.1(b), this means that Fn converges to the
function Fo point by point for each argument on the horizontal axis, except possibly for points where
Fo jumps.  (Recall that distribution functions are always continuous from the right, and except at
jumps are continuous from the left.  Since each jump contains a distinct rational number and the
rationals are countable, there are at most a countable number of jumps.  Then the set of jump points
has Lebesgue measure zero, and there are continuity points arbitrarily close to any jump point.
Because of right-continuity, distribution functions are uniquely determined by their values at their
continuity points.)  If A is an open set, then Yn �d Yo implies liminfn�� Fn(A) � Fo(A); conversely,
A closed implies limsupn�� Fn(A) � Fo(A) see P. Billingsley (1968), Theorem 2.1.  Convergence in
distribution is also called weak convergence in the space of distribution functions.

4.1.7. The relationships between different types of convergence are summarized in Figure 4.2.
In this table, �A |��� B� means that A implies B, but not vice versa, and �A ����B� means that A
and B are equivalent.  Explanations and examples are given in Sections 4.1.8-4.1.18.  On first
reading, skim these sections and skip the proofs.

4.1.8. Yn �as Yo implies Prob(Wn) � Prob( Wm) � 0, and hence Yn �p Yo.  However,�m�n

Prob(Wn) � 0 does not necessarily imply that the probability of Wm is small, so Yn �p Yo does�m�n

not imply Yn �as Yo.  For example, take the universe of states of nature to be the points on the unit
circle with uniform probability, take the Wn to be successive arcs of length 2π/n, and take Yn to be
1 on Wn, 0 otherwise.  Then Yn �p 0 since Pr(Yn � 0) = 1/n, but Yn fails to converge almost surely
to zero since the successive arcs wrap around the circle an infinite number of times, and every s in
the circle is in an infinite number of Wn. 

4.1.9.  Suppose Yn �p Yo.  It is a good exercise in manipulation of probabilities of events to show
that Yn �d Yo.  Given � > 0, define Wn as before to be the set of states of Nature where �Yn(s) - Yo(s)�
> �.  Given y, define An, Bo, and Co to be, respectively, the states of Nature with Yn � y, Yo � y - �,
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and Yo � y + �.  Then Bo � An	Wn (i.e., Yo(s) � y - � implies either Yn(s) � y or �Yo(s) - Yn(s)� > �)
and An � Co	Wn (i.e., Yn(s) � y implies Yo(s) � y + � or �Yo(s) - Yn(s)� > �).  Hence, for n large
enough so Prob(Wn) < �, Fo(y-�) 
 Prob(Bo) � Prob(An) + Prob(Wn) < Fn(y) + �, and Fn(y) 
 Prob(An)
� Prob(Co) + Prob(Wn) < Fo(Y+�) + �, implying Fo(y-�) - � � limn�� Fn(y) � Fo(y+�) + �.  If y is a
continuity point of Yo, then Fo(y-�) and Fo(y+�) approach Fo(y) as � � 0, implying limn�� Fn(y) =
Fo(y).  This establishes that Yn �d Yo.  

Convergence in distribution of Yn to Yo does not imply that Yn and Yo are close to each other.
For example, if Yn and Yo are i.i.d. standard normal, then Yn �d Yo trivially, but clearly not Yn �p Yo
since Yn - Yo is normal with variance 2, and �Yn - Yo� > � with a positive, constant probability.
However, there is a useful representation that is helpful in relating convergence in distribution and
almost sure convergence; see P. Billingsley (1986), p.343.

Theorem 4.1. (Skorokhod) If Yn �d Yo, then there exist random variables Yn� and Yo� such that
Yn  and Yn� have the same CDF, as do Yo and Yo�, and Yn� �as Yo�.

 4.1.10. Convergence in distribution and convergence in probability to a constant are equivalent.
If Yn �p c constant, then Yn �d c as a special case of 4.1.9 above.  Conversely, Yn �d c constant means
Fn(y) � Fo(y) at continuity points, where Fc(y) = 0 for y < c and Fc(y) = 1 for y � c.  Hence � > 0
implies Prob(�Yn - c� > �) = Fn(c-�) + 1 - Fn(c+�) � 0, so Yn �p c.  This result implies particularly that
the statements Yn - Yo �p 0 and Yn - Yo �d 0 are equivalent.  Then, Yn - Yo �d 0 implies Yn �d Yo, but
the reverse implication does not hold.

4.1.11. The condition that convergence in distribution is equivalent to convergence of
expectations of all bounded continuous functions is a fundamental mathematical result called the
Helly-Bray theorem.  Intuitively, the reason the theorem holds is that bounded continuous functions
can be approximated closely by sums of continuous �almost-step� functions, and the expectations
of �almost step� functions closely approximate points of CDF�s.  A proof by J. Davidson (1994), p.
352, employs the Skorokhod representation theorem 4.1.

4.1.12. A Chebyshev-like inequality is obtained by noting for a random variable Z with density

f(z) that E�Z�ρ = �z�ρf(z)dz � �
ρf(z)dz = �ρ Prob(�Z� > �), or Prob(�Z� > �) � E�Z�ρ/�ρ.� ��z���

(When ρ = 2, this is the conventional Chebyshev inequality.  When ρ = 1, one has Prob(�Z� > �) �
E�Z�/�.)  Taking Z = Yn - Yo, one has limn�� Prob(�Yn - Yo� > �) � �-ρ

�limn�� E�Yn - Yo�
ρ.   Hence,

convergence in ρ-mean (for any ρ > 0) implies convergence in probability. However, convergence
almost surely or in probability does not necessarily imply convergence in ρ-mean.  Suppose the
sample space is the unit interval with uniform probability, and Yn(s) = en� for s � n-2, zero otherwise.
Then Yn �as 0 since Prob(Ym � 0 for any m > n) � n-2, but E�Yn�

ρ = eρn/n2 � +� for any ρ > 0.  
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FIGURE 4.2.  RELATIONS BETWEEN STOCHASTIC LIMITS
(Section numbers for details are given in parentheses)

                          (1.8)                            (1.9) 

1 Yn �as Yo          |���       Yn �p Yo      |���      Yn �d Yo

      �                                     �                                �                            
   (1.4)                                (1.3)                           (1.10)
      �                                     �                                � 

2 Yn - Yo �as 0    |���    Yn - Yo �p 0    ����    Yn - Yo �d 0
                         (1.8)                          (1.10)

3 Yn �d c (a constant) ���� Yn �p c            (1.10)

4 Yn �d Yo ���� Eg(Yn) � Eg(Yo) for all bounded continuous g       (1.11)    
5 �Yn - Yo�ρ � 0 for some ρ > 0 |��� Yn �p Yo     (1.12)

6 �Yn - Yo�ρ � M ( all n) & Yn �p Yo |��� �Yn - Yo�λ � 0 for 0 < λ < ρ      (1.13) 
7 Yn �p Yo |���  �as Yo for some subsequence nk, k = 1,2,...     (1.14)Ynk

8
P(�Yn - Yo� > �) < +� for each � > 0 |��� Yn �as Yo     (1.15) �

�
n�1

9
 E�Yn - Yo�

ρ < +� (for some ρ > 0) |��� Yn �as Yo     (1.15) �
�
n�1

10 Yn �d Yo & Zn - Yn �p 0 |��� Zn �d Yo     (1.16)

11 Yn �p Yo |��� g(Yn) �p g(Yo) for all continuous g     (1.17)

12 Yn �d Yo |��� g(Yn) �d g(Yo) for all continuous g     (1.18) 
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4.1.13. Adding a condition of a uniformly bounded ρ-order mean E�Yn�
ρ � M to convergence

in probability Yn �p Yo yields the result that E�Yo�
λ exists for 0 < λ � ρ, and E�Yn�

λ � E�Yo�
λ for 0

< λ < ρ.  This result can be restated as "the moments of the limit equal the limit of the moments" for
moments of order λ less than ρ.  Replacing Yn by Yn - Yo and Yo by 0 gives the result in Figure 4.2.
  To prove these results, we will find useful the property of moments that  E�Y�λ  �  (E�Y�ρ)λ/ρ for
0 < λ < ρ.  (This follows from Holder�s inequality (2.1.11), which states E�UV� � (E�U�r)1/r(E�V�s)1/s

for r,s > 0 and r-1 + s-1 = 1,  by taking U = �Y�λ, V = 1, and r = ρ/λ.)  An immediate implication is
E�Yn�

λ � Mλ/ρ .  Define g(y,λ,k) = min (�y�λ,kλ), and note that since it is continuous and bounded, the
Healy-Bray theorem implies Eg(Yn,λ,k) � Eg(Yo,λ,k).  Therefore, 

Mλ/ρ � E�Yn�
λ � Eg(Yn,λ,k) = �y�λfn(y)dy + kλ�Prob(�Yn� > k) �

k

�k

�  �y�λfo(y)dy + kλProb(�Yo� > k).  �
k

�k

Letting k � � establishes that  E�Yo�
λ exists for 0 < λ � ρ.  Further, for λ < ρ,

 0 � E�Yn�
λ - Eg(Yn,λ,k) � �y�λfn(y)dy � kλ-ρ  �y�ρfn(y)dy � kλ-ρM.�|y|>k �|y|>k

Choose k sufficiently large so that kλ-ρM < �.  The same inequality holds for Yo.  Choose n
sufficiently large so that �Eg(Yn,λ,k) � Eg(Yo,λ,k)� < �.  Then
 

�E�Yn�
λ-E�Yo�

λ���E�Yn�
λ-Eg(Yn)�+�Eg(Yn)-Eg(Yo)�+�Eg(Yo)-E�Yo�

λ� � 3�. 
  
This proves that E�Yn�

λ � E�Yo�
λ.  

An example shows that E�Zn�
λ � 0 for λ < ρ does not imply E�Zn�

ρ bounded.  Take Zn discrete
with support {0,n} and probability log(n)/n at n.  Then for λ < 1, E�Zn�

λ = log(n)/n1-λ � 0, but E�Zn�
1

= log(n) � +�.  

4.1.14. If Yn �p Yo, then Prob(Wn) � 0.  Choose a subsequence nk such that � 2-k.Prob(Wnk
)

Then Prob( � � 2-k� = 2-k, implying  �as Yo. �k�>kWnk�
) �k�>k Prob(Wnk�

) �k�>k Ynk
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4.1.15. Conditions for a.s. convergence follow from this basic probability theorem:

Theorem 4.2. (Borel-Cantelli) If Ai is any sequence of events in a probability space (S,F,P),

P(Ai) < +� implies that almost surely only a finite number of the events Ai occur.  If Ai is�
�
n�1

a sequence of independent events, then P(Ai) = +� implies that almost surely an infinite�
�
n�1

number of the events Ai occur.

Apply the Borel-Cantelli theorem to the events Ai = {s
S� |Yi - Yo| > �} to conclude that

P(Ai) < +� implies that almost surely only a finite number of the events Ai  occur, and�
�
n�1

hence |Yi - Yo| � � for all i sufficiently large.  Thus, Yn - Yo �as 0, or Yn �as Yo . For the next result

in the table, use (1.12) to get Prob( � Prob(Wm) �  E�Ym - Yo�
ρ.�m�nWm) �m>n �

�ρ�m>n

Apply Theorem 4.2 to conclude that if this right-hand expression is finite, then Yn �as Yo.  The
example at the end of (1.12) shows that almost sure convergence does not imply convergence in
ρ-mean.  Also, the example mentioned in 1.8 which has convergence in probability but not almost
sure convergence can be constructed to have ρ-mean convergence but not almost sure convergence.

4.1.16. A result termed the Slutsky theorem which is very useful in applied work is that if two
random variables Yn and Zn have a difference which converges in probability to zero, and if Yn
converges in distribution to Yo, then Zn �d Yo also.  In this case, Yn and Zn are termed asymptotically
equivalent.  The argument demonstrating this result is similar to that for 4.1.9.  Let Fn and Gn be the
CDF's of Yn and Zn respectively.  Let y be a continuity point of Fo and define the following events:
 
  An = {s�Zn(s) < y}, Bn = {s�Yn(s) � y - �}, Cn = {s�Yn(s) � y + �}, Dn = {s� �Yn(s) - Zn(s)� > �}.
  
Then An � Cn	Dn and Bn � An	Dn, implying Fn(y-�) - Prob(Dn) � Gn(y) � Fn(y+�) + Prob(Dn).  
Given δ > 0, one can choose � > 0 such that y-� and y+� are continuity points of Fn, and such that
Fo(y+�) - Fo(y-�) < δ/3.  Then one can choose n sufficiently large so that Prob(Dn) < δ/3, �Fn(y+�) -
Fo(y+�)� < δ/3 and �Fn(y+�) - Fo(y+�)� < δ/3.  Then �Gn(y) - Fo(y)� < δ.  
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4.1.17 A useful property of convergence in probability is the following result: 

Theorem 4.3.  (Continuous Mapping Theorem) If g(y) is a continuous function on an open set
containing the support of Yo, then Yn �p Yo implies g(Yn) �p g(Yo).  The result also holds for vectors
of random variables, and specializes to the rules that if Y1n �p Y10, Y2n �p Y20, and Y3n �p Y30 then
(a)  Y1n�Y2n + Y3n �p Y10�Y20 + Y30, and (b) if Prob(�Y20� < �) = 0 for some � > 0, then Y1n/Y2n �p
Y10/Y20.  In these limits,  Y10, Y20, and/or Y30 may be constants.  

Proof: Given � > 0, choose M such that P(�Yo� > M) < �. Let Ao be the set of y in the support of Yo
that satisfy �y� � M.  Then Ao is compact.  Mathematical analysis can be used to show that there
exists a nested sequence of sets Ao � A1 � A2 � A3 with A3 an open neighborhood of Ao on which
g is continuous, A2 compact, and A1 open.  From 4.16, liminfn�� Fn(A1) � Fo(A1) � 1-� implies there
exists n1 such that for m > n1, Fm(A1) � 1-2�.  The continuity of g implies that for each y 
 A2, there
exists δy > 0 such that  �y�-y� < δy � �g(y�) - g(y)� < �.  These δy-neighborhoods cover A2.  Then A2
has a finite subcover.  Let δ be the smallest value of δy in this finite subcover.  Then, g is uniformly
continuous:  y 
 A2 and �y�-y� < δ imply �g(y�) - g(y)� < �.   Choose n > n1 such that for m > n, P(�Ym
- Yo� > δ) < �/2.  Then for m > n, P(�g(Ym) - g(Yo)� > �) �  P(�Yn - Yo� > δ) + P(�Yo� > M) + 1 -
Fm(A1) � 4�.  �

4.1.18 The preceding result has an analog for convergence in distribution.  This result establishes,
for example, that if Yn �d Yo, with Yo standard normal and g(y) = y2, then Yo is chi-squared, so that
that Yn

2 converges in distribution to a chi-squared random variable.

Theorem 4.4.  If g(y) is a continuous function on an open set containing the support of Yo, then
Yn �d Yo implies g(Yn) �d g(Yo).  The result also holds for vectors of random variables.
  
Proof:  The Skorokhod representation given in Theorem 4.1 implies there exist Yn� and Yo� that have
the same distributions as Yn and Yo, respectively, and satisfy Yn� �as Yo�.  Then, Theorem 4.3 implies
g(Yn�) �as g(Yo�), and results 4.1.8 and 4.1.9 above then imply g(Yn�) �d g(Yo�).  Because of the
common distributions, this is the result in Theorem 4.4.  For this reason, this result is also sometimes
referred to as (part of) the continuous mapping theorem.  The Slutsky theorem, result 4.1.10, is a
special case of the continous mapping Theorems 4.3 and 4.4.  For clarity, I also give a direct proof
of Theorem 4.4. Construct the sets Ao � A1 � A2 � A3 as in the proof of Theorem 4.3.  A theorem
from mathematical analysis (Urysohn) states that there exists a continuous function r with values
between zero and one that satisfies r(y) = 1 for y 
 A1 and r(y) = 0 for y � A3.  Then g*(y) = g(y)�r(y)
is continuous everywhere.  From the Healy-Bray theorem, Yn �d Yo ���� E h(Yn) � E h(Yo) for all
continuous bounded h ��� E h(g*(Yn)) � E h(g*(Yo)) for all continuous bounded h, since the
composition of continuous bounded functions is continuous and bounded ���� g*(Yn) �d g*(Yo).
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But P(g*(Yn) � g(Yn)) � P(Yn � A1) � 2� for n sufficiently large, and g*(Yo) = g(Yo).  Then, 4.1.16
and g*(Yn) - g(Yn) �p 0 imply g*(Yn) �d g*(Yo).   �

4.1.19. Convergence properties are sometimes summarized in a notation called Op(�) and op(�)
which is very convenient for manipulation.  (Sometimes too convenient; it is easy to get careless and
make mistakes using this calculus.)  The definition of op(�) is that a random sequence Yn is op(nα) if
n-αYn converges in probability to zero; and one then writes Yn = op(nα).  Then, Yn �p Yo is also written
Yn = Yo + op(1), and more generally n-α(Yn- Yo) �p 0 is written Yn - Yo = op(nα).   Thus op(�) is a
notation for convergence in probability to zero of a suitably normalized sequence of random
variables.  When two sequences of random variables Yn and Zn are asymptotically equivalent, so that
they satisfy Yn - Zn = op(1), then they have a common limiting distribution by Slutsky�s theorem, and
this is sometime denoted Yn ~a Zn.

The notation Yn = Op(1) is defined to mean that given � > 0, there exists a large M (not depending
on n) such that Prob(�Yn� > M) < � for all n.  A sequence with this property is called stochastically
bounded.  More generally, Yn = Op(nα) means Prob(�Yn� > M�nα) < � for all n.  A sequence that is
convergent in distribution is stochastically bounded:  If Yn �d Yo, then one can find M and no such
that ± M are continuity points of Yo, Prob(�Yo� � M) > 1-�/2, |Fn(M) - Fo(M)| < �/4 and |Fn(-M) - Fo(-
M)| <  �/4 for n > no.  Then Prob(�Yn� > M) < � for n > no.  This implies Yn = Op(1).  On the other
hand, one can have Yn = Op(1) without having convergence to any distribution (e.g., consider Yn 
 0
for n odd and Yn standard normal for n even).  The notation Yn = Op(nα) means n-αYn = Op(1).

Most of the properties of Op(�) and op(�) are obvious restatements of results from Figure 4.2.  For
example, n-αYn = op(1), or n-αYn �p 0, immediately implies for any � > 0 that there exists no such that
for n > no, Prob(|n-αYn| > �) < �.  For each n � no, one can find Mn such that Prob(|n-αYn| > Mn) < �.
Then, taking M to be the maximum of � and the Mn for n � no, one has Prob(|n-αYn| > M) < � for all
n, and hence n-αYn = Op(1).  The results above can be summarized in the following string of
inplications:

n-αYn converges in
probability to 0

���� n-αYn = op(1) |��� n-αYn converges in
distribution to 0

|��� n-αYn = Op(1)

An abbreviated list of rules for op and Op is given in Figure 4.3.  We prove the very useful rule
6 in this figure:  Given � > 0, Yn = Op(nα) ��� � M > 0 such that Prob(�n-αYn� > M) < �/2.  Next
Zn = op(nβ) implies � no such that for n > no, Prob(�n-βZn� > �/M) < �/2.  Hence  Prob(�n-α-βYnZn� >
�) � Prob(�n-αYn� > M) + Prob(�n-βZn� > �/M) < �.  Demonstration of the remaining rules is left as
an exercise.  
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FIGURE 4.3.  RULES FOR Op(����) AND op(����)

   Definition: Yn = op(nα) ������������ Prob(����n-αYn����>����) ���� 0 for each ���� > 0.
   Definition: Yn = Op(nα) ������������ for each ���� > 0, there exists M > 0

                                              such that Prob(����n-αYn����>M) < ���� for all n

1   Yn = op(nα) ��� Yn = Op(nα) 

2   Yn = op(nα) & β > α ��� Yn = op(nβ) 

3   Yn = Op(nα) & β > α ��� Yn = op(nβ) 

4   Yn = op(nα) & Zn = op(nβ) ��� Yn�Zn = op(nα+β) 

5   Yn = Op(nα) & Zn = Op(nβ) ��� Yn�Zn = Op(nα+β) 

6   Yn = Op(nα) & Zn = op(nβ) ��� Yn�Zn = op(nα+β) 

7   Yn = oo(nα) & Zn = op(nβ) & β � α ��� Yn + Zn = op(nβ) 

8   Yn = Op(nα) & Zn = Op(nβ) & β � α ��� Yn + Zn = Op(nβ) 

9   Yn = Op(nα) & Zn = op(nβ) & β > α ��� Yn + Zn = op(nβ) 

10  Yn = Op(nα) & Zn = op(nβ) & β < α ��� Yn + Zn = Op(nα) 

11  Yn = Op(nα) & Zn = op(nα) ��� Yn + Zn = Op(nα) 

4.2. INDEPENDENT AND DEPENDENT RANDOM SEQUENCES

4.2.1. Consider a sequence of random variables Y1,Y2,Y3,...  .  The joint distribution (CDF) of
a finite subsequence (Y1,...,Yn), denoted F1,...,n(y1,...,yn), is defined as the probability of a state of
Nature such that all of the inequalities Y1 � y1,...,Yn � yn hold.  The random variables in the sequence
are mutually statistically independent if for every finite subsequence Y1...,Yn, the joint CDF factors:

F1,...,n(y1,...,yn) 
 F1(y1)�...�Fn(yn). 

The variables are independent and identically distributed (i.i.d.) if in addition they have a common
univariate CDF F1(y).  The case of i.i.d. random variables leads to the simplest theory of stochastic
limits, and provides the foundation needed for much of basic econometrics.  However, there are
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many applications, particularly in analysis of economic time series, where i.i.d. assumptions are not
plausible, and a limit theory is needed for dependent random variables.  We will define two types
of dependence, martingale and mixing, that will cover a variety of econometric time series
applications and require a modest number of tools from probability theory.  We have introduced a
few of the needed tools in Chapter 3, notably the idea of information contained in σ-fields of events,
with the evolution of information captured by refinements of these σ-fields, and the definitions of
measurable functions, product σ-fields, and compatability conditions for probabilities defined on
product spaces. There are treatments of more general forms of dependence than martingale or
mixing, but these require a more comprehensive development of the theory of stochastic processes.

4.2.2. Consider a sequence of random variables Yk with k interpreted as an index of (discrete)
time.  One can think of k as the infinite sequence k 
 K = {1,2,...}, or as a doubly infinite sequence,
extending back in time as well as forward, k 
 K = {...,-2,-1,0,1,2,...} .  The set of states of Nature

can be defined as the product space S = ×i�K �, or S = �K, where � is the real line, and the

�complete information� σ-field of subsets of S defined as FK = ����i�K B , where B is the Borel σ-field
of subsets of the real line; see 3.2.  (The same apparatus, with K equal to the real line, can be used
to consider continuous time.  To avoid a variety of mathematical technicalities, we will not consider
the continuous time case here.)  Accumulation of information is described by a nondecreasing

sequence of σ-fields ... � G-1� G0 � G1 � G2 �... , with Gt = (����i�t B)�(����i>t{φ,S}) capturing the idea
that at time t the future is unknown.  The monotone sequence of σ-fields Gt, i = ...,-1,0,1,2,... is
called a filtration. The sequence of random variables Yt is adapted to the filtration if Yt is
measurable with respect to Gt for each t.  Some authors use the notation σ(...,Yt-2,Yt-1,Yt) for Gt to
emphasize that it is the σ-field generated by the information contained in Ys for s � t.  The sequence
...,Y-1,Y0,Y1,Y2,... adapted to Gt for k 
 K is termed a stochastic process.  One way of thinking of
a stochastic process is to recall that random variables are functions of states of Nature, so that the
process is a function Y:S×K � �.  Then Y(s,k) is the realization of the random variable in period k,
Y(s,�) a realization or time-path of the stochastic process, and Y(�,k) the random variable in period
k.  Note that there may be more than one sequence of σ-fields in operation for a particular process.
These might correspond, for example, to the information available to different economic agents.  We
will need in particular the sequence of σ-fields Ht = σ(Yt,Yt+1,Yt+2,...) adapted to the process from
time t forward; this is a nonincreasing sequence of σ-fields... � H-t-1 � Ht � Ht+1 � ... .  Sometimes Gt
is termed the natural upward filtration, and Ht the natural downward filtration.  

Each subsequence (Ym,...,Ym+n) of the stochastic process has a multivariate CDF
Fm,..,m+n(ym,...,ym+n).  It is said to be stationary if for each n, this CDF is the same for every m.  A
stationary process has the obvious property that moments such as means, variances, and covariances
between random variables a fixed number of time periods apart are the same for all times m.
Referring to 4.2.1, a sequence i.i.d. random variables is always stationary.
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4.2.3. One circumstance that arises in some economic time series is that while the successive
random variables are not independent, they have the property that their expectation, given history,
is zero.  Changes in stock market prices, for example, will have this property if the market is
efficient, with arbitragers finding and bidding away any component of change that is predictable
from history. A sequence of random variables Xt adapted to Gt is a martingale if almost surely
E{Xt�Gt-1) = Xt-1.  If  Xt is a martingale, then Yt = Xt - Xt-1 satisfies E{Yt�Gt-1) = 0, and is called a
martingale difference (m.d.) sequence.  Thus, stock price changes in an efficient market form a m.d.
sequence.  It is also useful to define a supermartingale (resp., submartingale) if almost surely
E{Xt�Gt-1) � Xt-1 (resp,, E{Xt�Gt-1) � Xt-1).  The following result, called the Kolmogorov maximal
inequality, is a useful property of martingale difference sequences.

Theorem 4.5. If random variables Yk are have the property that E(Yk�Y1.,,,.Yk-1) = 0,  or more
technically the property that Yk adapted to σ(...,Yk-1,Yk) is a martingale difference sequence, and if

EYk
2 = σk

2, then P(max1�k�n � Yi� > �) � σi
2/�2.�

k
i�1 �

n
i�1

Proof:  Let Sk = Yi.  Let Zk be a random variable that is one if Sj � � for j < k and Sk > �, zero�
k
i�1

otherwise.  Note that Zi � 1 and E( Zi) = P(max1�k�n � Yi� > �).  The�
n
i�1 �

n
i�1 �

k
i�1

variables Sk and Zk depend only on Yi for i � k. Then E(Sn - Sk�Sk,Zk) = 0.  Hence 

 Esn
2 � ESn

2�Zk = E[Sk + (Sn - Sk)]2�Zk � ESk
2�Zk � �2  EZk.  ��

n
k�1 �

n
k�1 �

n
k�1 �

n
k�1

4.2.4. As a practical matter, many economic time series exhibit correlation between different
time periods, but these correlations dampen away as time differences increase.  Bounds on
correlations by themselves are typically not enough to give a satisfactory theory of stochastic limits,
but a related idea is to postulate that the degree of statistical dependence between random variables
approaches negligibility as the variables get further apart in time, because the influence of ancient
history is buried in an avalance of new information (shocks).  To formalize this, we introduce the
concept of stochastic mixing.  For a stochastic process Yt, consider events A 
 Gt and B 
 Ht+s; then
A draws only on information up through period t and B draws only on information from period t+s
on.  The idea is that when s is large, the information in A is too �stale� to be of much use in
determining the probability of B, and these events are nearly independent.  Three definitions of
mixing are given in the table below; they differ only in the manner in which they are normalized, but
this changes their strength in terms of how broadly they hold and what their implications are.  When
the process is stationary, mixing depends only on time differences, not on time location.
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Form of Mixing  Coefficient Definition (for all A 
 Gt and B 
 Ht+s, and all t)

Strong α(s) � 0 |P(A�B) - P(A)�P(B)| � α(s)

Uniform �(s) � 0 |P(A�B) - P(A)�P(B)| � �(s)P(A)

Strict ψ(s) � 0 |P(A�B) - P(A)�P(B)| � ψ(s)P(A)�P(B)

There are links between the mixing conditions and bounds on correlations between events that are
remote in time: 

(1) Strict mixing ��� Uniform mixing ��� Strong mixing.  
(2) (Serfling) If the Yi are uniform mixing with EYi = 0 and EYt

2 = σt
2 < +�, then

�EYtYt+s� � 2φ(s)1/2σtσt+s. 
(3) (Ibragimov) If the Yi are strong mixing with EYt = 0 and E�Yt�

d < +� for some d > 2, then
�EYtYt+s� � 8α(s)1-2/dσtσt+s. 
(4) If there exists a sequence ρt with limt��ρt = 0 such that �E(U-EU)(W-EW)� �
ρt[(E(U-EU)2)(E(W-EW)2)]1/2 for all bounded continuous functions U = g(Y1,...,Yt) and  W =
h(Yt+n,...,Yt+n+m) and all t, n, m, then the Yt are strict mixing.  

An example gives an indication of the restrictions on a dependent stochastic process that produce
strong mixing at a specified rate.  First, suppose a stationary stochastic process Yt satisfies Yt = ρYt-1
+ Zt, with the Zt imdependent standard normal.  Then, var(Yt) = 1/(1-ρ2) and cov(Yt+s,Yt) = ρs/(1-ρ2),
and one can show with a little analysis that |P(Yt+s � a,Yt�b) - P(Yt+s � a)�P(Yt�b)| � ρs/π(1 - ρ2s)1/2.
Hence, this process is strong mixing with a mixing coefficient that declines at a geometric rate.  This
is true more generally of processes that are formed by taking stationary linear transformations of
independent processes.  We return to this subject in the chapter on time series analysis.

4.3.  LAWS OF LARGE NUMBERS 

4.3.1. Consider a sequence of random variables Y1,Y2,...  and a corresponding sequence of

averages Xn = Yi for n = 1,2,... .  Laws of large numbers give conditions under whichn�1�
n
i�1

the averages Xn converge to a constant, either in probability (weak laws, or WLLN) or almost surely
(strong laws, or SLLN).  Laws of large numbers give formal content to the intuition that sample
averages are accurate analogs of population averages when the samples are large, and are essential
to establishing that statistical estimators for many problems have the sensible property that with
sufficient data they are likely to be close to the population values they are trying to estimate.  In
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econometrics, convergence in probability provided by a WLLN suffices for most purposes.
However, the stronger result of almost sure convergence is occasionally useful, and is often
attainable without additional assumptions.

4.3.2 Figure 4.4 lists a sequence of laws of large numbers.  The case of independent identically
distributed (i.i.d.) random variables yields the strongest result (Kolmogorov I).  With additional
conditions it is possible to get a laws of large numbers even for correlated variable provided the
correlations of distant random variables approach zero sufficiently rapidly.

FIGURE 4.4.  LAWS OF LARGE NUMBERS FOR Xn = Yk          n�1�
n
k�1

WEAK LAWS (WLLN) 

1 (Khinchine) If the Yk are i.i.d., and E Yk = µ, then Xn �p µ 

2 (Chebyshev) If the Yk are uncorrelated with E Yk = µ and E(Yk - µ)2 = σk
2  satisfying 

     σk
2/k2 < +�, then Xn �p µ�

�
k�1

3 If the Yk have E Yk = µ, E(Yk-µ)2 
 σk
2, and �E(Yk-µ)(Ym-µ)� � ρkmσkσm with 

      σk
2/k3/2 < +� and limn�� ρkm < +�, then Xn �p µ �

�
k�1

1
n �

n

k�1
�

n

m�1

STRONG LAWS (SLLN) 

1  (Kolmogorov I) If the Yk are i.i.d., and E Yk = µ, then Xn �as µ 

2 (Kolmogorov II) If the Yk are independent, with E Yk = µ, and E(Yk-µ)2 = σk
2 satisfying

          σk
2/k2 < +�, then Xn �as µ �

�
k�1

3 (Martingale) Yk adapted to σ(...,Yk-1,Yk) is a martingale difference sequence, EYt
2 = σt

2,

and σk
2/k2 < +�, then Xn �as 0�

�
k�1

4  (Serfling) If the Yk have E Yk = µ, E(Yk-µ)2 = σk
2, and �E(Yk-µ)(Ym-µ)� � ρ|k-m|σkσm,

  with (log k)2σk
2/k2 < + � and ρ|k-m| < +�, then Xn �as µ�

�
k�1 �

�

k�1
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To show why WLLN work, I outline proofs of the first three laws in Figure 4.4. 
 

Theorem 4.6. (Khinchine) If the Yk are i.i.d., and E Yk = µ, then Xn �p µ .

Proof:  The argument shows that the characteristic function (c.f.) of Xn converges pointwise to the
c.f. for a constant random variable µ.  Let ψ(t) be the c.f. of Y1.  Then Xn has c.f. ψ(t/n)n.  Since EY1
exists, ψ has a Taylor�s expansion ψ(t) = 1 + ψ�(λt)t, where 0 < λ < 1 (see 3.5.12).  Then ψ(t/n)n =
[1 + (t/n) ψ�(λt/n)]n.  But ψ�(λt/n) � ψ�(0) = ιµ.  A result from 2.1.10 states that if a sequence of
scalars αn has a limit, then [1+αn/n]n � exp(lim αn).   Then ψ(t/n)n � eιµt.  But this is the c.f. of a
constant random variable µ, implying Xn �d µ, and hence Xn �p µ.  � 
.

Theorem 4.7. (Chebyshev)  If the Yk are uncorrelated with E Yk = µ and E(Yk - µ)2 = σk
2

satisfying      σk
2/k2 < +�, then Xn �p µ.�

�
k�1

Proof: One has E(Xn-µ)2 = .  Kronecker�s Lemma (see 2.1.9) establishes that�
n
k�1 σ

2
n/n 2

bounded implies  E(Xn-µ)2 � 0.  Then Chebyshev�s inequality implies Xn �p µ.  ��
�
k�1 σ

2
k/k 2

The condition bounded in Theorem 4.7 is obviously satisfied if σk
2 is uniformly�

�
k�1 σ

2
k/k 2

bounded, but is also satisfied if σk
2 grows modestly with k; e.g., it is sufficient to have σk

2(log K)/k
bounded. 

Theorem 4.8. (WLLN 3) If the Yk have E Yk = µ, E(Yk-µ)2 
 σk
2, and �E(Yk-µ)(Ym-µ)� �

ρkmσkσm with σk
2/k3/2 < +� and limn�� ρkm < +�, then Xn �p µ     �

�
k�1

1
n �

n
k�1 �

n
m�1

Proof: Using Chebyshev's inequality, it is sufficient to show that E(Xn-µ)2 converges to zero.  The
Cauchy-Schwartz inequality (see 2.1.11) is applied first to establish

� 1
n �

n

m�1
σmρkm

2
1
n �

n

m�1
σ2

m
1
n �

n

m�1
ρ2

km

and then to establish that

     E(Xn-µ)2 = = 1
n 2 �

n

k�1
�

n

m�1
σkσmρkm

1
n �

n

k�1
σk

1
n �

n

m�1
σmρkm



McFadden, Statistical Tools © 2000                                 Chapter 4-16, Page 104
______________________________________________________________________________

 � �    1
n �

n

k�1
σ2

k

1/2
1
n �

n

k�1

1
n �

n

m�1
σmρkm

2 1/2

1
n �

n

k�1
σ2

k

1/2
1
n �

n

m�1
σ2

m
1
n 2 �

n

k�1
�

n

m�1
ρ2

km

1/2

= = .1
n �

n

k�1
σ2

k
1
n 2 �

n

k�1
�

n

m�1
ρ2

km

1/2 1
n 3/2 �

n

k�1
σ2

k
1
n �

n

k�1
�

n

m�1
ρ2

km

1/2

The last form and Kronecker�s lemma (2.1.11) give the result.  �

The conditions for this result are obviously met if the σk
2 are uniformly bounded and the

correlation coefficients decline at a sufficient rate with the distance between observations; examples
are geometric decline with  ρkm bounded by a multiple of λ|k-m| for some λ < 1 and an arithmetic
decline with ρkm bounded by a multiple of |k-m|-1. 

The Kolmogorov SLLN 1 is a better result than the Kinchine WLLN, yielding a stronger
conclusion from the same assumptions.  Similarly, the Kolmogorov SLLN 2 is a better result than
the Chebyshev WLLN.  Proofs of these theorems can be found in C. R. Rao (1973), p. 114-115.  The
Serfling SLLN 4 is broadly comparable to WLLN 3, but Serfling gets the stronger almost sure
conclusion with somewhat stronger assumptions on the correlations and somewhat weaker
assumptions on the variances.  If variances are uniformly bounded and correlation coefficients
decline at least at a rate inversely proportional to the square of the time difference, this sufficient for
either the WLLN 3 or SLLN 4 assumptions.

The SLLN 3 in the table applies to martingale difference sequences, and shows that Kolmogorov
II actually holds for m.d. sequences. 

Theorem 4.9.  If Yt adapted to σ(...,Yk-1,Yk) is a martingale difference sequence with EYt
2 = σt

2

and σk
2/k2 < +�, then Xn �as 0.�

�
k�1

      
Proof:  The theorem is stated and proved by J. Davidson (1994), p. 314.  To give an idea why SLLN

work, I will give a simplified proof when the assumption σk
2/k2 < +� is strengthened�

�
k�1

to σk
2/k3/2 < +�.  Either assumption handles the case of constant variances with room to�

�
k�1

spare.  Kolmogorov�s maximal inequality (Theorem 4.5) with n = (m+1)2 and � = δm2 implies that

  P(maxm2
�k�(m+1)2 �Xk� > δ) � P(max1�k�n � Yi� > δm2) � σi

2/δ2m4.�
k
i�1 �

(m�1)2

i�1
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The sum over m of the right-hand-side of this inequality satisfies

σi
2/δ2m4 = σi

2/δ2m4 � 36  σi
2/i3/2δ2.�

�
m�1 �

(m�1)2

i�1 �
�
i�1 �

�

m�i 1/2
� �

�
i�1

Then P(supk �Xk� > δ) � 36  σi
2/i3/2δ2 < +�.  Theorem 4.2 gives the result.  ��

�
m�1 �

�
i�1

4.4.  CENTRAL LIMIT THEOREMS 

4.4.1. Consider a sequence of random variables Y1,...,Yn with zero means, and the associated

sequence of scaled averages Zn = n-1/2 Yi.  Central limit theorems (CLT) are concerned with�
n
i�1

conditions under which the Zn, or variants with more generalized scaling, converge in distribution
to a normal random variable Zo.  I will present several basic CLT, prove the simplest, and discuss
the remainder.  These results are summarized in Figure 4.5.

The most straighforward CLT is obtained for independent and identically distributed (i.i.d.)
random variables, and requires only that the random variables have a finite variance.  Note that the
finite variance assumption is an additional condition needed for the CLT that was not needed for the
SLLN for i.i.d. variables.

Theorem 4.10. (Lindeberg-Levy) If random variables Yk are i.i.d. with mean zero and finite
positive variance σ2, then Zn �d Zo ~ N(0,σ2).

Proof:  The approach is to show that the characteristic function of Zn converges for each argument
to the characteristic function of a normal.  The CLT then follows from the limit properties of
characteristic functions (see 3.5.12).  Let ψ(t) be the cf of Y1.  Then Zn has cf ψ(t�n-1/2)n.  Since EY1
= 0 and EY1

2 = σ2, ψ(t) has a Taylor�s expansion ψ(t) = [1 + ψ"(λt)t2/2], where 0 < λ < 1 and ψ" is
continuous with ψ"(0) = -σ2.  Then ψ(t�n-1/2)n = [1 + ψ"(λt�n-1/2)t2/2n]n.  Then the limit result 2.1.10
gives limn�� [1 + ψ"(λt�n-1/2)t2/2n]n = exp(-σ2 t2/2).  Thus, the cf of Zn converges for each t to the cf
of Zo~ N(0,σ2).  �  

4.4.2. When the variables are independent but not identically distributed, an additional bound
on the behavior of tails of the distributions of the random variables, called the Lindeberg condition,
is needed.  This condition ensures that sources of relatively large deviations are spread fairly evenly
through the series, and not concentrated in a limited number of observations.  The Lindeberg
condition can be difficult to interpret and check, but there are a number of sufficient conditions that
are useful in applications.  The main result, stated next,  allows more general scaling than by n-1/2.
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FIGURE 4.5.  CENTRAL LIMIT THEOREMS FOR Zn = n-1/2 Yi �
n

i�1

1  (Lindeberg-Levy) Yk i.i.d., EYk = 0, EYk
2 = σ2 positive and finite  ��� Zn �d Zo ~ N(0,σ2)

2
 (Lindeberg-Feller) If Yk independent, EYk = 0, EYk

2 = σk
2 
 (0,+�), cn

2 = σk
2, then�

n
k�1

cn
2� +�, limn�� max1�k�n σk/cn = 0, and Un = Yk/cn�d Uo ~ N(0,1) if and only if the�

n
k�1

Lindeberg condition holds: for each  � > 0, E Yk
2�1(|Yk| > �cn)/cn

2 � 0�
n
k�1

3
 If Yk independent, EYk = 0, EYk

2 = σk
2 
 (0,+�), cn

2 = σk
2 have cn

2� +� and  �
n
k�1

limn�� max1�k�n σk/cn = 0, then each of the following conditions is sufficient for the
Lindeberg condition:

   (i) For some r > 2, E |Yk|r/cn
r � 0.�

n
k�1

   (ii) (Liapunov) For some r > 2, E |Yk/σk|r is bounded uniformly for all n.
   (iii) For some r > 2, E |Yk|r is bounded, and ck

2/k is bounded positive, uniformly for all k.  

4 Yk a martingale difference sequence adapted to σ(...,Yk-1,Yk) with |Yk| < M for all t and

EYk
2 = σk

2  satisfying σk
2 � σo

2 > 0   ��� Zn �d Zo ~ N(0,σo
2)n�1�

n
k�1

5 (Ibragimov-Linnik) Yk stationary and strong mixing with E Yk = 0, E Yk
2 = σ2 
 (0,+�),

EYk+sYk = σ2ρs, and for some r > 2, E�Yn�
r < +� and α(k)1-2/r < +� ��� |ρs|�

�
k�1 �

�
s�1

< +� and Zn �d Zo ~ N(0,σ2(1+2 ρs))�
�
s�1
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Theorem 4.11. (Lindeberg-Feller) Suppose random variables Yk are independent with mean zero

and positive finite variances σk
2.  Define cn

2 = σk
2 and Un = Yk/cn.   Then cn

2 � �,�
n
k�1 �

n
k�1

limn�� max1�k�n σk/cn = 0, and Un �d Uo ~ N(0,1) if and only if the Yk satisfy the Lindeberg condition

that for � > 0, limn�� E Yk
2�1(|Yk| > �cn)/cn

2 = 0.�
n
i�1

A proof of Theorem 4.11 can be found, for example, in P. Billingsley (1986), p. 369-375.  It
involves an analysis of the characteristic functions, with detailed analysis of the remainder terms in
their Taylor�s expansion.  To understand the theorem, it is useful to first specialize it to the case that
the σk

2 are all the same.  Then cn
2 = nσ1

2, the conditions cn
2� � and limn�� max1�k�n σk/cn = 0 are met

automatically, and in the terminology at the start of this section, Un = Zn/σ1.  The theorem then says
Un �d Uo ~ N(0,1) if and only if the sample average of E Yk

2�1(|Yk| > �n1/2) converges to zero for each
� > 0.  The last condition limits the possibility that the deviations in a single random variable could
be as large in magnitude as the sum, so that the shape of the distribution of this variable makes a
significant contribution to the shape of the distribution of the sum.  An example shows how the
Lindeberg condition bites.  Consider independent random variables Yk that equal ±kr with probability
1/2k2r, and zero otherwise, where r is a positive scalar.  The Yk have mean zero and variance one,

and 1(|Yk| > �n1/2) = 1 if kr > �n1/2, implying E Yk
2�1(|Yk| > �n1/2) = max(0,1-�1/rn(1-2r)/2r).n�1�

n
i�1

This converges to zero, so the Lindeberg condition is satisfied iff r < 1/2.  Thus, the tails of the
sequence of random variables cannot �fatten� too rapidly.  

The Lindeberg condition allows the variances of the Yk to vary within limits.  For example, the
variables Yk = ±2k with probability 1/2 have σn/cn bounded positive, so that the variances grow too
rapidly and the condition fails.  The variables Yk = ±2-k with probability 1/2 have cn bounded, so that
σ1/cn is bounded positive, the variances shrink too rapidly, and the condition fails.  The next result
gives some easily checked sufficient conditions for the Lindeberg condition.  

Theorem 4.12.  Suppose random variables Yk are independent with mean zero and positive finite

variances σk
2 that satisfy  cn

2 = σk
2 � � and limn�� max1�k�n σk/cn = 0.  Then, each of the�

n
k�1

following conditions is sufficient for the Lindeberg condition to hold:

(i) For some r > 2, E |Yk|r/cn
r � 0.�

n
k�1

(ii) (Liapunov) For some r > 2, E |Yk/σk|r is bounded uniformly for all n.
(iii) For some r > 2, E |Yk|r is bounded, and ck

2/k is bounded positive, uniformly for all k.  

Proof:  To show that (i) implies the Lindeberg condition, write 
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E Yk
2�1(|Yk| > �cn)/cn

2 � (�cn)2-r E |Yk|r�1(|Yk| > �cn)/cn
2 � �2-r E |Yk /cn|r.�

n
k�1 �

n
k�1 �

n
k�1

For (ii), the middle expression in the string of inequalities above satisfies

 (�cn)2-r E |Yk|r�1(|Yk| > �cn)/cn
2 � �2-r(maxk�n E|Yk/σk|r)� σk

r/cn
r �

n
k�1 �

n
k�1

� �2-r(maxk�n E|Yk/σk|r)� (σk
2/cn

2)�(maxk�n (σk/cn)r-2),�
n
k�1

and the assumptions ensure that maxk�n E|Yk/σk|r is bounded and maxk�n (σk/cn)r-2 � 0.

Finally, if (iii), then continuing the first string of inequalities,

E |Yk|r/cn
r � cn

2-rn�(supk E |Yk|r)/n�(infn cn
2/n),  �

n
i�1

and the right-hand-side is proportional to cn
2-r, which goes to zero.  �

4.4.3. The following theorem establishes a CLT for the scaled sum Zn = n-1/2 Yi  of�
n
i�1

martingale differences; or Zn = n-1/2(Xn-Xo).  The uniform boundedness assumption in this theorem
is a strong restriction, but it can be relaxed to a Lindeberg condition or to a �uniform integratability�
condition; see P. Billingsley (1984), p. 498-501, or J. Davidson (1994), p. 385.  Martingale
differences can display dependence that corresponds to important economic applications, such as
conditional variances that depend systematically on history.

Theorem 4.13. Suppose Yk is a martingale difference adapted to σ(...,Yk-1,Yk), and Yk satisfies

a uniform bound |Yk| < M.  Let EYk
2 = σk

2, and assume that σk
2 � σo

2 > 0.  Then Zn �dn�1�
n
k�1

Zo ~ N(0,σo
2).

4.4.4. Intuitively, the CLT results that hold for independent or martingale difference random
variables should continue to hold if the degree of dependence between variables is negligible.  The
following theorem from I. Ibragimov and Y. Linnik, 1971, gives a CLT for stationary strong mixing
processes.  This result will cover a variety of economic applications, including stationary linear
transformations of independent processes like the one given in the last example.
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Theorem 4.14. (Ibragimov-Linnik) Suppose Yk is stationary and strong mixing with mean zero,
variance σ2, and covariances E Yk+sYk = σ2ρs. Suppose that for some r > 2, E�Yn�

r < +� and

α(k)1-2/r < +�.  Then, |ρs| < +� and Zn �d Zo ~ N(0,σ2(1+2 ρs)).�
�
k�1 �

�
s�1 �

�
s�1

4.5.  EXTENSIONS OF LIMIT THEOREMS 

4.5.1.  Limit theorems can be extended in several directions: (1) obtaining results for �triangular
arrays� that include weighted sums of random variables, (2) sharpening the rate of convergence to
the limit for "well-behaved" random variables, and (3) establishing "uniform" laws that apply to
random functions.  In addition, there are a variety of alternatives to the cases given above where
independence assumptions are relaxed.  The first extension gives limit theorems for random
variables weighted by other (non-random) variables, a situation that occurs often in econometrics.
The second extension provides tools that allow us to bound the probability of large deviations of
random sums.  This is of direct interest as a sharper version of a Chebychev-type inequality, and also
useful in obtaining further results.  To introduce uniform laws, first define a random function (or
stochastic process) y = Y(θ,s) that maps a state of Nature s and a real variable (or vector of variables)
θ into the real line.  This may also be written, suppressing the dependence on s, as Y(θ).  Note that
Y(�,w) is a realization of the random function, and is itself an ordinary non-random function of θ.
For each value of θ, Y(θ,�) is an ordinary random variable.  A uniform law is one that bounds sums
of random functions uniformly for all arguments θ.  For example, a uniform WLLN would say limn��

P(supθ � Yi(θ,�)� > �) = 0.  Uniform laws play an important role in establishing then�1�
n
i�1

properties of statistical estimators that are nonlinear functions of the data, such as maximum
likelihood estimates.

4.5.2 Consider a doubly indexed array of constants ain defined for 1 � i � n and n = 1,2,..., and

weighted sums of the form Xn = ainYi.  If the Yi are i.i.d., what are the limiting properties�
n
i�1

of Xn?  We next give a WLLN and a CLT for weighted sums.  The way arrays like ain typically arise

is that there are some weighting constants ci, and either ain = ci/ cj or ain = ci/[ cj]1/2.�
n
i�1 �

n
i�1

If ci = 1 for all i, then ain = n-1or n-1/2, respectively, leading to the standard scaling in limit theorems.
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Theorem 4.15.  Assume random variables Yi are independently identically distributed with mean

zero.  If an array ain satisfies limn�� �ajn� = 0 and limn�� maxj�n �ajn� = 0, then Xn �p 0.�
n
i�1

  
Proof: This is a weighted version of Khinchine's WLLN, and is proved in the same way.  Let ζ(t) be
the second characteristic function of Y1.  From the properties of characteristic functions we have
ζ�(0) = 0 and a Taylor's expansion ζ(t) = t�ζ�(λt)  for some 0 < λ < 1.  The second characteristic

function of Xn is then γ(t) = aint�ζ�(λinaint), implying �γ(t)� � �aint�ζ�(λinaint)� ��
n
i�1 �

n
i�1

�t��(maxi�n �ζ�(λinaint)�)� �ain�.  Then lim �ain� < � and lim (maxi�n �ain�) = 0 imply�
n
i�1 �

n
i�1

γ(t) ��� 0 for each t, and hence Xn converges in distribution, hence in probability, to 0.  �

Theorem 4.16.  Assume random variables Yi are i.i.d. with mean zero and variance σ2 
 (0,+�).

If an array ain satisfies limn�� maxj�n �ajn� = 0 and limn�� ain
2 = 1, then Xn �d Xo ~ N(0,σ2). �

n
i�1

Proof: The argument parallels the Lindeberg-Levy CLT proof.  The second characteristic function
of Xn has the Taylor's expansion γ(t) = -(1/2)σ2t2ain +[ζ"(λinaint)+σ2]�ain

2
 t2/2, where λin 
 (0,1) .   The

limit assumptions imply γ(t) + (1/2)σ2t2 is bounded in magnitude by 
 �ζ"(λinaint)+σ2��aint2/2 � [ ain

2
 t2/2]�maxi�n�ζ"(λinaint)+σ2�.  �

n
i�1 �

n
i�1

This converges to zero for each t since limn�� maxi�n�ζ"(λinaint)+σ2� � 0.  Therefore, γ(t) converges
to the characteristic function of a normal with mean 0 and variance σ2.  �

4.5.3. The limit theorems 4.13 and 4.14 are special cases of a limit theory for what are called
triangular arrays of random variables, Ynt with t = 1,2,...,n and n = 1,2,3,... .  (One additional level
of generality could be introduced by letting t range from 1 up to a function of n that increases to
infinity, but this is not needed for most applications.)  This setup will include simple cases like Ynt
= Zt/n or Ynt = Zt/n1/2, and more general weightings like Ynt = antZt with an array of constants ant, but
can also cover more complicated cases.  We first give limit theorems for Ynt that are uncorrelated
or independent within each row.  These are by no means the strongest obtainable, but they have the
merit of simple proofs.

Theorem 4.17.  Assume random variables Ynt for t = 1,2,...,n and n = 1,2,3,... are uncorrelated

across t for each n, with E Ynt = 0, E Ynt
2 = σnt

2.  Then, σnt
2 � 0 implies Ynt �p 0.�

n
i�1 �

n
i�1
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Proof:  Apply Chebyshev�s inequality.  �

Theorem 4.18. Assume random variables Ynt for t = 1,2,...,n and n = 1,2,3,... are independent

across t for each n, with E Ynt = 0, E Ynt
2 = σnt

2, σnt
2 � 1, E�Ynt�

3 � 0, and�
n
i�1 �

n
i�1

σnt
4 � 0.  Then Xn = Ynt �d Xo ~ N(0,1).�

n
i�1 �

n
i�1

Proof: From the properties of characteristic functions (see 3.5.12), the c.f. of Ynt has a Taylor�s
expansion that satisfies  �ψnt(s) - 1 + s2σnt

2/2� � �s�3E�Ynt�
3/6.  Therefore, the c.f. γn(s) of Xn satisfies

log γn(s) = log(1 - s2σnt
2/2 + λnt�s�3E�Ynt�

3/6), where |λnt| � 1.  From 2.1.10, we have the�
n
i�1

inequality that for �a� < 1/3 and �b� < 1/3, �Log(1+a+b) - a� < 4�b� + 3�a�2.  Then, the assumptions

guarantee that �log γn(s) + s2 σnt
2/2� � 4�s�3 E�Ynt�

3/6 + 3 s4 σnt
4/4.  The�

n
i�1 �

n
i�1 �

n
i�1

assumptions then imply that log γn(s) � -s2/2, establishing the result.  �

In the last theorem, note that if Ynt = n-1/2Zt, then E�Zt�
3 bounded is sufficient to satisfy all the

assumptions.  Another set of limit theorems can be stated for triangular arrays with the property that
the random variables within each row form a martingale difference sequence.  Formally, consider
random variables Ynt for t = 1,...,n and n = 1,2,3,... that are adapted to σ-fields Gnt that are a filtration
in t for each n, with the property that E{Ynt�Gn,t-1} = 0; this is called a martingale difference array.
A WLLN for this case is adapted from J. Davidson (1994), p. 299.

Theorem 4.19. If Ynt and Gnt for t = 1,...,n and n = 1,2,3,... is an adapted martingale difference

array with �Ynt� � M, E Ynt
2 = σnt

2, σnt  uniformly bounded, and σnt
2 � 0, then�

n
i�1 �

n
i�1

Ynt �p 0.�
n
i�1

The following CLT for martingale difference arrays is taken from D. Pollard (1984), p. 170-174.

Theorem 4.20. If Ynt and Gnt for t = 1,...,n and n = 1,2,3,... is an adapted martingale difference

array, λnt
2 = E(Ynt

2�Gn,t-1) is the conditional variance of Ynt, λnt
2   �p σ2 
 (0,+�), and if for�

n
i�1

each � > 0, E Ynt
2�1(|Ynt| > �) � 0, then Xn = Ynt �d Xo ~ N(0,σ2).�

n
t�1 �

n
i�1
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4.5.4. Chebyshev�s inequality gives an easy, but crude, bound on the probability in the tail of a
density.  For random variables with well behaved tails, there are sharper bounds that can be used to
get sharper limit theorems.  The following inequality, due to Hoeffding, is one of a series of results
called exponential inequalities that are stated and proved in D. Pollard (1984), p. 191-193:  If Yn are
independent random variables with zero means that satisfy the bounds -an � Yn � bn, then

P( Yi � �) � exp(-2n2
�

2/ (bi+ai)2).  Note that in Hoeffding�s inequality, if |Yn| �n�1�
n
i�1 �

n
i�1

M, then P(� Yi� � �) � 2�exp(-n�2/2M2).  The next theorem gets a strong law of largen�1�
n
i�1

numbers with weaker than usual scaling:

Theorem 4.21. If Yn are independent random variables with zero means and |Yn| � M, then Xn

=  Yi satisfies Xk�k1/2/log(k) �as 0.n�1�
n
i�1

 
Proof:  Hoeffding's inequality implies Prob(k1/2�Xk� > ��log k) < 2�exp(-(log k)�2/2M2), and hence

 Prob(k1/2�Xk� > ��log k) � 2�exp(-(log z)2
�

2/2M2)dz �
�

k�n�1 �
�

z�n

� (6/�)�exp(M2/2�2)�Φ(-��(log n)/M + M/�),

with the standard normal CDF Φ resulting from direct integration.  Applying Theorem 4.2, this
inequality implies n1/2�Xn�/log n �as 0.  �

If the Yi are not necessarily bounded, but have a proper moment generating function, one can get
an exponential bound from the moment generating function.

Theorem 4.22.  If i.i.d. mean-zero random variables Yi have a proper moment generating

function, then Xn =  Yi satisfies P(Xn > �) < exp(-τ�n1/2+κ), where τ and κ are positiven�1�
n
i�1

constants determined by the distribution of Yi.

Proof:  P(Z > �) = F(dz) � e(z-�)tF(dz) � e-�tEeZt for a random variable Z.  Let m(t) be the�z>� �z>�

moment generating function of Yi and τ be a constant such that m(t) is finite for �t� < 2τ.  Then one
has m(t) = 1 + m"(λt)t2/2 for some �λ� < 1, for each �t� < 2τ, from the properties of mgf (see 3.5.12).
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The mgf of Xn is m(t/n)n = (1 + m"(λt/n)t2/2n2)n, finite for �t�/n � 2τ.  Replace t/n by τn-1/2 and
observe that m"(λt/n) � m"(τn-1/2) and (1+m"(τn-1/2)τ2/2n)n � exp(m"(τn-1/2) τ2/2).  Substituting these
expressions in the initial inequality gives P(Xn > �) � exp(-τ�n1/2 + m"(τn-1/2) τ2/2 ), and the result
holds with κ = m"(τ)τ2/2.  �

Using the same argument as in the proof of Theorem 4.19 and the inequality P(Xn > �) <
exp(-τ�n1/2+κ) from Theorem 4.20, one can show that Xk�k1/2/(log k)2 �as 0, a SLLN with weak
scaling. 

4.5.5. This section states a uniform SLLN for random functions on compact set  Θ in a Euclidean
space �k.  Let (S,F,P) denote a probability space.  Define a random function as a mapping Y from
Θ×S into � with the property that for each θ 
 Θ, Y(θ,�) is measurable with respect to (S,F,P).  Note
that Y(θ,�) is simply a random variable, and that Y(�,s) is simply a function of θ 
 Θ.  Usually, the
dependence of Y on the state of nature is suppressed, and we simply write Y(θ).  A random function
is also called a stochastic process, and Y(�,s) is termed a realization of this process.  A random
function Y(θ,�) is almost surely continuous at θo 
 Θ if for s in a set that occurs with probability one,
Y(�,s) is continuous in θ at θo.  It is useful to spell out this definition in more detail.  For each � > 0,

define Ak(�,θo) = .  Almost sure continuity states that theses
S� sup
�θ�θo��1/k

�Y(θ,s)�Y(θo,s)�>�

sets converge monotonically as k� � to a set Ao(�,θo) that has probability zero.  
The condition of almost sure continuity allows the modulus of continuity to vary with s, so there

is not necessarily a fixed neighborhood of θo independent of s on which the function varies by less
than �.  For example, the function Y(θ,s) = θs for θ 
 [0,1] and s uniform on [0,1] is continuous at
θ = 0 for every s, but Ak(�,0) = [0,(-log �)/(log k)) has positive probability for all k.  The exceptional
sets Ak(�,θ) can vary with θ, and there is no requirement that there be a set of s with probability one,
or for that matter with positive probability, where Y(θ,s) is continuous for all θ.  For example,
assuming θ 
 [0,1] and s uniform on [0,1], and defining Y(θ,s) = 1 if θ � s and Y(θ,s) = 0 otherwise
gives a function that is almost surely continuous everywhere and always has a discontinuity.

Theorem 4.3 in Section 4.1 established that convergence in probability is preserved by
continuous mappings.  The next result extends this to almost surely continuous transformations; the
result below is taken from Pollard (1984), p. 70.

Theorem 4.23. (Continuous Mapping).  If Yn(θ) �p Yo(θ) uniformly for θ in Θ � �k,  random
vectors τo,τn 
 Θ satisfy τn �p τo, and Yo(θ) is almost surely continuous at τo,  then Yn(τn) �p Yo(τo).
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Consider i.i.d. random functions Yi(θ) that have a finite mean ψ(θ) for each θ, and consider the

average Xn(θ) =  Yi(θ).  Kolmogorov�s SLLN I implies that pointwise, Xn(θ) �as ψ(θ).n�1 �
n
i�1

However, we sometimes need in statistics a stronger result that Xn(θ) is uniformly close to ψ(θ) over
the whole domain Θ.  This is not guaranteed by pointwise convergence.  For example, the random
function Yn(s,θ) = 1 if n2��s - θ� � 1, and Yn(s,θ) = 0 otherwise, where the sample space is the unit
interval with uniform probability, has P(Yn(�,θ) > 0) � 2/n2 for each θ.  This is sufficient to give
Yn(�,θ) �as 0 pointwise.  However, P(supθ Yn(θ) > 0) = 1.
  

Theorem 4.24. (Uniform SLLN).  Assume Yi(θ) are independent identically distributed random
functions with a finite mean ψ(θ) for θ in a closed bounded set Θ � �k .  Assume Yi(�) is almost
surely continuous at each θ 
 Θ.  Assume that Yi(�) is dominated; i.e.,  there exists a random variable
Z with a finite mean that satisfies Z � supθ�Θ�Y1(θ)�.  Then ψ(θ) is continuous in θ and

Xn(θ) =  satisfies supθ�Θ�Xn(θ) - ψ(θ)� �as 0. 1
n �

n

i�1
Yi(θ)

Proof: We follow an argument of Tauchen (1985).  Let (S,F,P) be the probability space, and write
the random function Yi(θ,s) to make its dependence on the state of Nature explicit.  We have ψ(θ)

= Y(θ,s)P(ds).  Define u(θo,s,k) = �Y(θ,s) - Y(θo,s)�.  Let � > 0 be given.  Let�S
sup

�θ�θo��1/k

Ak(�/2,θo) be the measurable set given in the definition of almost sure continuity, and note that for
k = k(�/2,θo) sufficiently large, the probability of Ak(�/2,θo) is less than �/(4�E Z).   Then, 
 Eu(θo,�,k) � u(θo,s,k)P(ds) + u(θo,s,k)P(ds) �Ak(�/2,θo) �Ak(�/2,θo)c

� 2�Z(s)�P(ds) + (�/2)�P(ds) � � .�Ak(�/2,θo) �Ak(�/2,θo)c

Let B(θo) be an open ball of radius 1/k(�/2,θo) about θo.  These balls constructed for each θo 
 Θ
cover the compact set Θ, and it is therefore possible to extract a finite subcovering of balls B(θj) with
centers at points θj for j = 1,...,J.  Let µj = Eu(θj,�,k(�/2,θj)) � �.  For θ 
 B(θj), �ψ(θ) - ψ(θj)� � µj �
�.  Then 
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  �Xn(θ) - ψ(θ)� � �Xn(θ) - Xn(θj) - µj� + µj  +  �Xn(θj) - ψ(θj)� + �ψ(θj) - ψ(θ)�sup
θ�B(θj)

     � �  u(θj,�,k(�/2,θj)) - µj� + � + �Xn(θj) - ψ(θj)� + � .
1
n �

n

i�1

Apply Kolmogorov's SLLN to each of the first and third terms to determine a sample size nj such that

 P(  � u(θj,�,k(�/2,θj)) - µj� > �) < �/2Jsup
n�nj

n �1�
n

i�1

and

P(  �Xn(θj) - ψ(θj)� > �) < �/2J .sup
n�nj

With probability at least 1 - �/J,  �Xn(θ) - ψ(θ)� � 4�.  Then, with probability at least 1 - �,sup
θ�B(θj)

�Xn(θ) - ψ(θ)� � 4� for n > no = max(nj).  G supθ�Θ

The construction in the proof of the theorem of a finite number of approximating points can be
reinterpreted as the construction of a finite family of functions, the Y(θj,�), with the approximation
property that the expectation of the absolute difference between Y(θ,�) for any θ and one of the
members of this finite family is less than �.  Generalizations of the uniform SLLN above can be
obtained by recognizing that it is this approximation property that is critical, with a limit on how
rapidly the size of the approximating family can grow with sample size for a given �, rather than
continuity per se; see D. Pollard (1984).
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4.7 EXERCISES

1. The sequence of random variables Xn satisfy Xn(s) = sn, where s is a state of Nature in the sample space S = [0,1] with
uniform probability on S.  Does Xn have a stochastic limit, and if so in what sense (weak, strong, quadratic mean,
distribution)?  What about Yn = n�Xn or Zn = log(Xn)?

2. A sequence of random variables Zn are multivariate normal with mean zero, variance σ2n, and covariances E ZnZn+m
= σ2n for m > n.  (For an infinite sequence, this means that every finite subsequence is multivariate normal.)  Let Sn =

Zk.  Does Sn/n converge in probability?  Is there a scale factor α(n) such that Sn/α(n) converges in probability?�
n
k�1

Is there a scale factor β(n) such that Sn/β(n) is asymptotically normal?

3. Ignoring adjustments for family composition and location, an American family is said to be below the poverty line
if its annual income is less than $14,800 per year.  Let Yi be the income level of family i, drawn randomly and
independently from the American population, and let Qi be one if Yi is less than $14,800, zero otherwise.  Family income
can obviously never be larger than GDP, so that it is bounded above by a (very big) constant G, and cannot be negative.
Let µ denote the population mean annual income and π denote the population proportion below the poverty line.  Let
mn and pn denote the corresponding sample means in a simple random sample of size n.  Prove that sample mean annual
income mn converges in probability to population mean annual  income; i.e., show the requirements for a WLLN are
met.  Prove that n1/2(mn - µ) converges in distribution to a normal; i.e., show the requirements for a CLT are met.
Similarly, prove that pn converges in probability to π and n1/2(pn - π) converges in distribution to a normal with mean 0
and variance π(1-π).

4. Empirical illustration of stochastic limits:  On the computer, construct a simple random sample of observations Xk
by drawing independent uniform random variables Uk and Vk from (0,1) and defining Xk = 1 if Uk > 1/2 and Xk =
log(Vk) if Uk � 1/2.  Let mn be the sample mean of the Xk from a sample of size n for n = 10, 100, 1000.  (a) Does mn
appear to converge in probability?  To what limit?  (b) Draw 100 samples of size 10 by the procedure described above,
and keep the sample means from each of the 100 samples.  Calculate what are called "studentized  residuals" by
subtracting the mean of the 100 sample means, and dividing these differences by their sample standard deviation (i.e.,
the square root of the average of the squared deviations).  Sort these studentized residuals from low to high and plot
them against quantiles of the standard normal, Qk = Φ-1((k-0.5)/n).  This is called a normal probability plot, and
deviations from the 45-degree line reflect differences in the exact distribution of the sample means from normal, plus
random  noise.  Are there systematic deviations that suggest the normal approximation is not very good?  (c) Repeat part
(b) with 100 samples of size 100.  Has the normal approximation become more accurate? 


