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16.

Note that c is a median of a random variable X iff P(X < ¢) >
Note the following two facts:

P(X > 0) >

M1

1
2

e The definition of a median is equivalent to the statement that ¢ is a median

of X iff P(X <¢) <1 and P(X >¢) <1

e It can be shown that the set of all medians med(X) of X is a closed
interval (or generalized rectangle): that is, there exist medians ¢y, ¢; such
that for every median ¢, cop < ¢ < ¢;.!

We use the above two facts to show that F|X — ¢| is minimized by requiring
c € med(X):
Let d > ¢;. Let ¢ be a median of X. Therefore ¢y < ¢ < ¢;. We have

EIX —d|-E|X —¢ = />d(a: — d)dP(z) — /<d(m — d)dP(z)
—/m(x _ )dP(z) + /m(x _ 0)dP(z)

/ (d — 2)dP(x) + / (¢ —d+d—)dP(z)
z<d

z<c

+ /z>d(a: —d)dP(z) — /z>c(a} —d+d—c)dP(z)

_ /< _[@=a)dP@) + (@~ P(X <)

1t is clear that med(X) contains a maximal and a minimal element (it’s easy to construct
a proof by contradiction). It remains to show that med(X) doesn’t contain any “holes” or
gaps. Let co < ¢1 be medians. Then P(X < cg) > 3,P(X > ¢1) > 5. It follows that for
any ¢ such that ¢ < ¢ < e, P(X <¢) > %,P(X >c) > % Therefore c is also a median,
which shows that med(X) is a closed interval (if X is scalar-valued) or a closed rectangle if
X is multidimensional.
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Similarly, we can show
BIX—fI-E[X=c =2 [ (@=f)P@)+(c-NIPX 2~ P(X <] 20
f<e<e

for any f < cp.

22,

We have E(X +aZ)? = EX?+2aE[X Z|+a?EZ? > 0Wa € R. If E[Z?] = 0 then
E[X?] = E[XZ] = 0 and the Cauchy-Schwarz inequality holds with equality.
Now assume E[Z?] > 0. Note that if E(X +aZ)? > 0, the roots of E(X + aZ)?
are nonreal? and are given by

| “2B[XZ]+ JA(E[X 2))? — AE[Z2]E[X 7]
“= 2E[Z7] '

Complexity requires (E[X Z])? < E[Z?|E[X?].
Now Ve > 0 we have by Markov’s inequality that

E(X +aZ)?

Pl|X +aZ| > € < 5

€

If E(X +aZ)? = 0 it follows that for any scalar a, P(X = —aZ) = 1, so
(E[XZ])* = B[Z*]|B[X?].

25.

We assume that Cov(X,Z) = 2p for —1 < p < 1. Let

_| 1 2
==[ 2 %],

2Recall that if a > 0 and b — 4ac > 0, z = ZbkvbE—dac 3’:12_4“ will solve az? + bz + ¢ = 0;

otherwise ax2+bx+c>0<:>(\/6:v+2\b/a)2+% > 0 = 4ac — b2 > 0.




which implies that
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Also, let Y = { Z},u:{2}.Notethat

Y-wEy—p) = %+2(x—1)(z—2)(—4_22p2)+(:__4232
(z-2)?

1—p? 41—-p?)  4-4p?
_ 1 14 >, (2-2)°
—1—L(x— 2 _9)2
Therefore p(z, z) = p(x|2)p(z) 117P2 exp[—%%]% exp[—%%].
It follows that X|Z =z ~ N(1+ £(z —2),1—p?).
P(X|Z)P(Z)
Bayes’ theorem states that p(Z|X) = ToXlop)dz” We have
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so p(x,z) o< exp[—3(z —1)%] - s exp[— %%]_

We have [ p(z|2)p(z)dz = fp |:r (xzdz p(z) o exp[—3(z — 1)%]. There-

fore p(z|z) o ﬁexp[—%%], s0Z|IX =a ~ N2+2p(x—1),4—
4p?).
34.

Note that the moment-generating function of X — Y is given by Mx_y(t) =
Mx (t) My (—t). We show that Mx_y(t) is in fact the mgf of a member of the
class of logistic distributions.

If X is distributed as an extreme value (or Gumbel) random variable with
parameters a and b we have that

[ee]
1 _
Mx(t):/ e”-—exp[—w @ e




Let y = exp[—*3*]. Changing the variable of integration gives us

o0
Mx(t) = e“t/ y~te Vdy = e¥T(1 — bt),
0

assuming that ¢ < 7.
Now if Z is a logistic random variable with parameters a and b we have

o] 1 exp(afz
My (t) = oo b~ .
7 / b ren(5))2

— 00

Let y = m. Changing variables allows us to write
XPl—p—
1
My(t) = e“t/ y" (1 — y) Ptdy = e B(1 + bt,1 — bt) = e™T(1 + bt)T(1 — bt).
0

Therefore L = X — Y is distributed as a logistic random variable with density

exp[ 3]

l L &XPlF] . .

A Ew——=rE As expected, L has mean 0 and variance equal to twice the
2

variance of X and Y, namely (’Tg) :

37.

Let Z =logY. We have that Z ~ N(u,0?). One should check that ¥ does not
in fact have a mgf. However one can in fact derive an expression for E[Y?]:

Proceed by noting that the density of Y is given by transforming from the
density of a normal (u,0?) distribution:

1 1 1
p(ylu, 0%) o — expl——(logy — u)2]§-

202
Therefore
B = [ Lesl-giptogy — 'y
0o O 202
z(t— zl <
= [ el e,
oo o o

where ¢(z) = \/% exp(—gg—z).3 It follows that E[Y"'] = My(t) = exp[ut + 30°t7]
2

(i.e., the mgf for a N(u,0?) random variable). Therefore

E[Y] = ettso
2

VarlY] = @2HF20% _ 2uto® _ o2uto? (e —1).

3This is standard notation for the pdf of a N(0,1) random variable.



40.

Suppose

~ ’ 2 ’
Y Hy POy O X Oy

where —1 < p < 1. Proceeding as in Problem 25 above, one can show that

ag
EX|Y =y] = px+p—(y—py)
oy
Var[X[Y =y] = o%(1-p%),
(2
EY|X =] = py+p—(z—px),
ox
Var[Y|X =z] = o (1-p%).

So if ux =1,y =3 and 0% = 4,0} =9,p = 2, we have

) 11
XY =y~N1+3u—-3),75)
9 9
and 25 11
VI X=2~N3+—(x—-1),—).
4 4
Therefore
(a)
E2X -Y] = E(EQ2X -Y]Y)
= EQE[X|Y]-Y)
= FE21+ gY—s] -Y)
_o_
= X
(b)
Var2X —-Y] = Var(ER2X -Y|Y])+ E(Var2X -Y|Y))
1 11
_ Var(2+§0Y—6—Y)+E(4-§ _v)
(c)
E2X -Y|X =5 = 10— E[Y|X =5
25
= _3_22 .4
10-3 1
= -18;



Var2X —Y|X = 5]

Var[Y|X = 5]
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