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Chapter 6. ESTIMATION

1. Desirable Properties of Estimators

Consider data x that comes from a DGP which has a density f(x,θ ). In mosto

initial applications, we will think of x as a simple random sample of size n,

x = (x ,...,x ) drawn from a population in which x has a density f(x,θ ), so that the1 n o

DGP density is f(x,θ) = f(x ,θ )⋅...⋅f(x ,θ ). However, the notation f(x,θ ) can1 o n o o

also cover more complicated DGP, such as time-series data sets. Suppose that θ iso

unknown, but one knows that this DGP is contained in a family with densities f(x,θ)

indexed by θ. Let X denote the domain of x, and Θ denote the domain of θ. In the

case of a simple random sample where an observation x is a point in a space X, one

nhas X = X . The statistical inference task is to estimate θ . In Chapter 5, we sawo

that an estimator T(x) of θ was desirable from a Bayesian point of view if T(⋅)o

minimized the expected cost of mistakes. For typical cost functions where the larger

the mistake, the larger the cost, Bayes estimators will try to get "close" to the

true parameter value. That is, the Bayes procedure will seek estimators whose

probability densities are concentrated tightly around the true θ . Classicalo

statistical procedures lack the expected cost criterion for choosing estimators, but

also seek estimators whose probability densities are concentrated around the true θ .o

Listed below are some of the properties that are deemed desirable for

classical estimators. Classical statistics often proceeds by developing some

candidate estimators, and then using some of these properties to choose among the

candidates. It is often not possible to achieve all of these properties at the same

time, and sometimes they can even be incompatible. Some of the properties are

defined relative to a class of candidate estimators, a set of possible T(⋅) that we
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will denote by T. The density of an estimator T(⋅) will be denoted ψ(t,θ ), or wheno

it is necessary to index the estimator, ψ (t,θ ).T o

Sufficiency. Suppose there is a one-to-one transformation from the data x

1into variables (y,z). Then the DGP density f(x,θ) can be described in terms of the

density of (y,z), which we might denote g(y,z,θ) and write as the product of the

marginal density of y and the conditional density of z given y, g(y,z,θ) =

2g (y,θ)⋅g (zy,θ). Note that in general both the marginal and the conditional1 2

densities depend on θ. The variables y are said to be sufficient for θ if the

conditional distribution of z given y is independent of θ; i.e., g (zy,θ) = g (zy).2 2

In this case, all of the information in the sample about θ is summarized in y, and

once you know y, knowing z tells you nothing more about θ. (One way to convince

yourself of this is to form the posterior density of θ, given y and z, for any prior.

You will find that this posterior density, which is a complete description of what

you believe about θ, does not depend on z when y is sufficient.) Sufficiency of y is

equivalent to the factorization g(y,z,θ) = g (y,θ)⋅g (zy) of the density into one1 2

term depending only on y and θ and a second term depending only on z and y. This

characterization is useful for identifying sufficient statistics.

An implication of sufficiency is that there is no reason to consider

estimators T(x) that depend on x except through the sufficient statistics. Then, the

_________________________________

1 This is a known transformation, so it cannot depend on unknown θ.
2 The relationship of the density f(x,θ) and the density g(y,z,θ) comes from the
rules for transforming random variables; see Chapter 3.6. Let x = x(y,z) denote the
inverse of the one-to-one transformation from x to y and z, and let J denote the
Jacobian of this mapping; i.e., the determinant of the array of derivatives of x(y,z)
with respect to its arguments, signed so that it is positive. Then g(y,z,θ) =
f(x(y,z))⋅J. The Jacobian J does not depend on θ, so g(y,z,θ) factors into a term
depending only on y and θ and a term independent of θ if and only if f(x(y,z))
factors in the same way.
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search for a good estimator can be restricted to estimators T(y) that depend only on

sufficient statistics y. This observation is most useful when y is of low dimension.

In some problems, only the full sample x is a sufficient statistic, and you obtain no

useful restriction. In others there may be many different transformations of x into

(y,z) for which y is sufficient. Then, among the alternative sufficient statistics,

you will want to choose a y that is a minimal sufficient statistic. This will be the

case if there is no further one-to-one transformation of y into variables (u,v) such

that u is sufficient for θ and of lower dimension than y.

An example shows how sufficiency works. Suppose one has a simple random

sample x = (x ,...,x ) from an exponential distribution with an unknown scale1 n

parameter λ. The DGP density is the product of univariate exponential densities,

-λx -λx n -λ(x +...+x )1 n 1 nf(x,λ) = (λ⋅e )⋅...⋅(λ⋅e ) = λ e .

Make the one-to-one transformation y = x + ... + x , z = x ,..., z = x , and1 n 1 1 n-1 n-1

note that the inverse transformation implies x = y - z - ... - z . Substituten 1 n-1
n -λythe inverse transformation into f to obtain f(x(y,z)) = λ ⋅e . then, f factors

n n-1 -λyinto a gamma density λ y ⋅e /(n-1)! that involves only λ and y, and not z, and a

n-1term (n-1)!/y which does not depend on λ and is a trivial function of z. Then, y

is a sufficient statistic for λ, and one need consider only estimators for λ that are

functions of the univariate statistic y = x + ... + x . In this case, y is a1 n

minimal sufficient statistic.

In this exponential example, there are other sufficient statistics that are not

minimal. For example, any y whose components can be transformed to recover the sum

of the x’s is sufficient. Knowing only that one can restrict the search for an
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estimator to functions of such a y is not as useful as knowing that one only needs to

look at functions of a sum of the x’s.

Ancillarity. As in the discussion of sufficiency, suppose there is a one-to-one

transformation from the data x into variables (y,z). Then the DGP density can be

written the product of the marginal density of y and the conditional density of z

given y, g (y,θ)⋅g (zy,θ). Both g and g depend in general on θ. The data y are1 2 1 2

ancillary to θ if g does not depend on θ. In this case, all the information about θ1

that is contained in the data is contained in the conditional distribution of z given

y. This implies that the search for an estimator for θ can be confined to ones

derived from the conditional density of z given y. Ancillarity provides useful

restrictions when g (zy,θ) depends only on a low-dimensional part of y, or when this2

density is independent of unknown nuisance parameters that enter the marginal density

of y.

An example where ancillarity is useful arises in data x = (x ,...,x ) where the1 n
-λxix are independent observations from an exponential density λ⋅e and the samplei

n-1 -γsize n is random with a Poisson density γ ⋅e /(n-1)! for n = 1,2,.... The DGP

n -λ(x +...+x ) n-1 -γ1 ndensity is then λ ⋅e ⋅γ ⋅e /(n-1)!. This density factors into the

n n-1 -λydensity λ y ⋅e , with y = x +...+ x , that is now the conditional density of y1 n

given n, times a term that is a function of n, y, and γ, but not of λ. Then, the

principle of ancillarity says that to make inferences on λ, one should condition on n

and not be concerned with the nuisance parameter γ that enters the marginal density

of n.

Admissibility. An estimator T(⋅) from a class of estimators T is admissible

relative to T if there is no second estimator T′(⋅) in T with the property that for

2 2all θ , E (T′(x) - θ ) ≤ E (T(x) - θ ) , with inequality strict for at leasto xθ o xθ oo o
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one θ . This is the same as the definition of admissibility in statistical decisiono

theory, but with the cost of a mistake defined as mean squared error (MSE), the

square of the difference between the estimate and the true value of θ. An

inadmissible estimator is undesirable because there is an identified alternative

estimator that is more closely clustered around the true parameter value. A

limitation of admissibility is that there will often be many admissible estimators,

and this criterion does not choose between them.

Unbiasedness. An estimator T(⋅) is unbiased for θ if E T(x) ≡ θ for allo xθ oo
+∞
iθ ; i.e., θ ≡ 2 T(x)f(x2θ)dx. An estimator with this property is "centered" aroundo j

-∞
the true parameter value, and will not systematically be too high or too low.

Efficiency. An estimator T(⋅) is efficient relative to an estimator T′(⋅) if

2 2for all θ , E (T(x) - θ ) ≤ E (T′(x) - θ ) . The estimator T(⋅) is efficiento xθ o xθ oo o
relative to a class of estimators T if it is efficient relative to T′(⋅) for all

T′(⋅) in T. An efficient estimator provides estimates that are most closely

clustered around the true value of θ, by the squared distance measure, among all the

estimators in T. The limitation of efficiency is that for many problems and classes

of estimators T, there will be no efficient estimator, in that one cannot satisfy the

required inequality uniformly for all θ . The following theorem establishes ano

efficiency result for estimators that are functions of sufficient statistics:

Blackwell Theorem . If T′(⋅) is any estimator of θ from data x, and y is ao

sufficient statistic, then there exists an estimator T(⋅) that is a function solely

of the sufficient statistic and that is efficient relative to T′(⋅). If T′(⋅) is

unbiased, then so is T(⋅). If an unbiased estimator T(⋅) is uncorrelated with every
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unbiased estimator of zero, then T(⋅) has a smaller variance than any other unbiased

estimator.

Proof: Make a one-to-one transformation of the data x into (y,z), where y is

the sufficient statistic, and let g (y,θ)⋅g (zy) denote the DGP density. Define1 2

T(y) = E T′(y,z). Write T′(y,z) - θ = T′(y,z) - T(y) + T(y) - θ . Thenzy o o

2 2 2E(T′(y,z) - θ ) = E(T′(y,z) - T(y)) + E(T(y) - θ )o o
+ 2⋅E(T(y) - θ )⋅(T′(y,z) - T(y)) .o

But the last term satisfies

2⋅E(T(y) - θ )⋅(T′(y,z) - T(y)) = 2⋅E (T(y) - θ )⋅E (T′(y,z) - T(y)) = 0 .o y o zy

2 2Therefore, E(T′(y,z) - θ ) ≥ E(T(y) - θ ) .o o
If T′(y,z) is unbiased, then ET(y) = E E T′(y,z) = θ , and T(⋅) is alsoy zy o

unbiased. Finally, if T(⋅) is uncorrelated with any unbiased estimator of zero, and

T′(⋅) is any other unbiased estimator, this implies ET(x)⋅(T′(x) - T(x)) = 0.

Therefore,

2 2E(T′(x) - θ ) = E(T′(x) - T(x) + T(x) - θ )o o2 2= E(T′(x) - T(x)) + E(T(x) - θ ) + 2⋅ET(x)⋅(T′(x) - T(x))o2 2 2= E(T′(x) - T(x)) + E(T(x) - θ ) > E(T(x) - θ ) .o o

Thus, T′ has a larger variance than T. p

If T is a class of unbiased estimators, so that E T′(x) ≡ θ for everyxθ oo
estimator T′(⋅) in this class, then the efficiency criterion is the variance of the

estimator, and an efficient estimator is a minimum variance unbiased estimator

(MVUE).

There are many problems for which no MVUE estimator exists. We next give a

lower bound on the variance of an unbiased estimator. If a candidate satisfies this
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bound, then we can be sure that it is MVUE. However, the converse is not true:

There may be a MVUE, its variance may still be larger than this lower bound; i.e.,

the lower bound may be unobtainable.

Cramer-Rao Bound . Suppose a simple random sample x = (x ,...,x ) with f(x,θ )1 N o

the density of an observation x. Assume that log f(x,θ ) is twice continuouslyo

differentiable in θ, and that this function and its derivatives are bounded in

magnitude by a function that is independent of θ and has a finite integral in x.

Suppose an estimator T(x) has E T(x) ≡ θ + µ(θ), and that the bias µ(θ) isxθ
differentiable. Then, the variance of T(x) satisfies

2 2V (T(x)) ≥ (1 + µ′(θ)) /n⋅E [∇ log f(x,θ )] .xθ xθ θ o

If the estimator is unbiased, so µ(θ) ≡ 0, this bound is

2V (T(X)) ≥ 1/n⋅E [∇ log f(x,θ )] .xθ xθ θ o

2The expression E [∇ log f(x,θ )] is termed the Fisher information contained in anxθ θ o

observation; then, the Cramer-Rao bound states that the variance of an unbiased

estimator is at least as large as the reciprocal of the Fisher information in the

n
ssample. To demonstrate this result, let L(x,θ) = log f(x ,θ), so that the DGP
t i

i=1
L(x,θ)density is f(x,θ) = e . By construction,

+∞ +∞
i L(x,θ) i L(x,θ)1 ≡ 2 e dx and θ + µ(θ) ≡ 2 T(x)⋅e dx.
j j

-∞ -∞
Differentiate each integral with respect to θ to get

+∞ +∞
i L(x,θ) i L(x,θ)0 ≡ 2 ∇ L(x,θ)⋅e dx and 1 + µ′(θ) ≡ 2 T(x)⋅∇ L(x,θ)⋅e dx .
j θ j θ

-∞ -∞
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Combine these to get an expression for the covariance of T and ∇ L,θ
+∞
i L(x,θ)1 + µ′(θ) ≡ 2 [T(x) - θ]⋅∇ L(x,θ)⋅e dx .
j θ

-∞

Now, any covariance has the property that its square is no greater than the product

of the variances of its terms. This is called the Cauchy-Schwartz inequality. In

this case, the inequality can be written

( )22+∞ 2
2 2( )2 i L(x,θ) 2

21 + µ′(θ)2 = 2 2 [T(x) - θ]⋅∇ L(x,θ)⋅e dx2 ≤ V (T(x))⋅E [∇ L(x,θ)] .
j θ xθ xθ θ9 0 2 2

2-∞ 2
9 0

Dividing both sides by the Fisher information in the sample, which is simply the

variance of the sample score, E [∇ L(x,θ)], gives the Cramer-Rao bound. pxθ θ
Invariance. In some conditions, one would expect that a change in a problem

should not alter an estimate of a parameter, or should alter it in a specific way.

Generically, these are called invariance properties of an estimator. For example,

when estimating a parameter from data obtained by a simple random sample, the

estimate should not depend on the indexing of the observations in the sample; i.e.,

T(x ,...,x ) should be invariant under permutations of the observations.1 n

Sometimes a parameter enters a DGP in such a way that there is a simple

relationship between shifts in the parameter and the shifts one would expect to

observe in the data. For example, suppose the density of an observation is of the

form f(x 2θ) ≡ h(x -θ); in this case, θ is called a location parameter. If the truei i

value of θ shifts up by an amount ∆, one would expect observations on average to

shift up by an amount ∆. If T(x ,...,x ) is an estimator of θ in this problem, a1 n o

reasonable property to impose on T(⋅) is that T(x +∆,...,x +∆) = T(x ,...,x ) + ∆.1 n 1 n
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In this case, T(⋅) is invariant with respect to location. For this problem, one can

restrict attention to estimators with this invariance property.

Another example is invariance with respect to scale. Suppose the density of an

observation has the form f(x 2θ) ≡ θ⋅h(θx ). Then θ is called a scale parameter. Ifi i

θ is reduced by a proportion λ, one would expect observations on average to be scaled

up by λ. The corresponding invariance property on an estimator T(⋅) is that

T(λ⋅x ,...,λ⋅x ) = T(x ,...,x )/λ.1 n 1 n

To illustrate the use of invariance conditions, consider the example of a simple

random sample x = (x ,...,x ) from an exponential distribution with an unknown scale1 n
n -λ(x +...+x )1 nparameter λ, with the DGP density f(x,λ) = λ e . Then y = x + ... + x1 n

is sufficient and we need consider only estimators T(y). Invariance with respect to

scale implies T(y) = T(1)/y, and the scale-invariant estimator of λ must be inversely

proportional to y.

The next group of properties refer to the limiting behavior of estimators in a

sequence of larger and larger samples, and are sometimes called asymptotic

properties. The rationale for employing these properties is that when one is working

with a large sample, then properties that hold in the limit will also hold,

approximately, for this sample. The reason for considering such properties at all,

rather than concentrating on the sample you actually have, is that one can use these

approximate properties to choose among estimators in situations where the exact

finite sample property cannot be imposed or is analytically intractable to work out.

Application of asymptotic properties raises several conceptual and technical

issues. The first question is what it would mean to increase sample size

indefinitely, and whether various methods that might be used to define this limit
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correspond to approximations that are likely to be relevant to a specific problem.

There is no ambiguity when one is drawing simple random samples from an infinite

population. However, if one samples from a finite population, a finite sequence of

samples of increasing size will terminate in a complete census of the population.

While one could imagine sampling with replacement and drawing samples that are larger

than the population, it is not obvious why estimators that have some reasonable

properties in this limit are necessarily appropriate for the finite population. Put

another way, it is not obvious that this limit provides a good approximation to the

finite sample. The issue of the appropriate asymptotic limit is particularly acute

for time series. One can imagine extending observations indefinitely through time.

This may provide approximations that are appropriate in some situations for some

purposes, but not for others. For example, if one is trying to estimate the timing

of a particular event, a local feature of the time series, it is questionable that

extending the time series indefinitely into the past and future leads to a good

approximation to the statistical properties of the estimator of the time of an event.

Other ways of thinking of increasing sample sizes for time series, such as sampling

from more and more "parallel" universes, or sampling at shorter and shorter

intervals, have their own idiosyncrasies that make them questionable as useful

approximations. The second major issue is how the sequence of estimators associated

with various sample sizes is defined. A conceptualization introduced in Chapter 5

defines an estimator to be a functional of the empirical CDF of the data, T(F ).n

Then, it is natural to think of T(F(⋅,θ )) as the limit of this sequence ofo

estimators, and the Glivenko-Cantelli theorem stated in Chapter 5.1 establishes an

approximation property that the estimator T(F ) converges almost surely ton

T(F(⋅,θ )), as long as T(⋅) satisfies a continuity property at F(⋅,θ ). It iso o
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particularly important to avoid reliance on asymptotic arguments when is is clear

that the asymptotic approximation is irrelevant to the behavior of the estimator in

the range of sample sizes actually encountered. Consider an estimation procedure

which says "Ignore the data and estimate θ to be zero in all samples of size lesso

than 10 billion, and for larger samples employ some computationally complex but

statistically sound estimator". This procedure may technically have good asymptotic

properties, but this approximation obviously tells you nothing about the behavior of

the estimator in economic sample sizes of a few thousand observations.

Consistency. A sequence of estimators T (x) = T (x ,...,x ) for samples of sizen n 1 n

n are consistent for θ if the probability that they are more than a distance ε > 0o

from θ goes to zero as n increases; i.e., lim P(T (x ,...,x ) - θ  > ε) = 0. Ino n 1 n onL∞
the terminology of Chapter 4, this is weak convergence or convergence in probability,

pwritten T (x ,...,x ) ---------L θ . One can also talk about strong consistency, whichn 1 n o

holds when lim P( sup T (x ,...,x ) - θ  > ε) = 0, and corresponds to almost suren′ 1 n′ onL∞ n′≥n
asconvergence, T (x ,...,x ) ------------L θ .n 1 n o

Asymptotic Normality. A sequence of estimators T (⋅) for samples of size n aren

consistent asymptotically normal (CAN) for θ if there exists a sequence r ofo n

scaling constants such that r -----L +∞ and r ⋅(T (x ) - θ ) converges in distributionn n n n o

to a normally distributed random variable with some mean µ = µ(θ ) and varianceo
2 2 23σ = σ(θ ) . The mean µ is termed the asymptotic bias, and σ is termed theo

_________________________________

3 If Ψ (t) is the CDF of T (x ), then the CDF of Q = r ⋅(T (x ) - θ ) isn n n n n n n o
d 2Ψ (θ + q/r ). From Chapter 4, r (T (x ) - θ ) ---------L Z with Z ~ N(µ,σ ) if for each q,n o n n n n o

the CDF of Q satisfies lim Ψ (θ + q/r ) - Φ((t-µ)/σ) = 0. This is then n o nnL∞
conventional definition of convergence in distribution, with the continuity of the
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asymptotic variance. If µ = 0, the estimator is said to be asymptotically unbiased.

Often, when a sequence of estimators is said to be asymptotically normal, asymptotic

unbiasedness is taken to be part of the definition unless stated explicitly to the
q6======

contrary. The scaling term r can be taken to be en in almost all finite-parametern

problems, and unless it is stated otherwise, you can assume that this is the scaling

that is being used. When it is important to make this distinction clear, one can

speak of Root-N consistent asymptotically normal (RCAN) sequences of estimators.

Convergence in distribution to a normal is a condition that holds pointwise for

each θ . One could strengthen the property by requiring that this convergence beo

uniform in θ ; i.e., by requiring for each ε > 0 and q that there be a sample sizeο
n(ε,q) beyond which sup Ψ(θ + q/r ) - Φ((q-µ(θ ))/σ(θ )) < ε. If this form ofo n o oθo

2convergence holds, and in addition µ(θ) and σ(θ) are continuous functions of θ, then

the estimator is said to be consistent uniformly asymptotically normal (CUAN).

Asymptotic Efficiency. Consider a family T of sequences of estimators T (⋅)n

that are CUAN for a parameter θ and have asymptotic bias µ(θ) ≡ 0. An estimatoro
*T (⋅) is asymptotically efficient relative to class T if its asymptotic variance is

no larger than that of any other member of the family.

Asymptotic sufficiency. In some problems, sufficiency does not provide a useful

reduction of dimension in finite samples, but a weaker "asymptotic" form of

sufficiency will provide useful restrictions. This could arise if the DGP density

can be written g (y,θ)⋅g (zy,θ) for a low-dimensional statistic y, but both g and1 2 1

g depend on θ so y is not sufficient. However, g (zy,θ) may converge in2 2
_________________________________

normal CDF Φ permitting us to state the condition without excepting jump points in
the limit distribution.
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distribution to a density that does not depend on θ. Then, there is a large sample

rationale for concentrating on estimators that depend only on y.

2. General Estimation Criteria

It is useful to have some general methods of generating estimators that as a

consequence of their construction will have some desirable statistical properties.

Such estimators may prove adequate in themselves, or may form a starting point for

refinements that improve statistical properties. We introduce several such methods:

Analogy Estimators. Suppose one is interested in a feature of a target

population that can be described as a functional of its CDF F(⋅), such as its mean,

median, or variance, and write this feature as θ = µ(F). An analogy estimatoro

exploits the similarity of a population and of a simple random sample drawn from this

population, and forms the estimator T(x) = µ(F ), where µ is the functional thatn

produces the target population feature and F is the empirical distribution function.n

For example, a sample mean will be an analogy estimator for a population mean.

Moment Estimators. Population moments will depend on the parameter index in the

underlying DGP. This is true for ordinary moments such as means, variances, and

covariances, as well as more complicated moments involving data transformations, such

as quantiles. Let m(x) denote a function of an observation and E m(x) = γ(θ )xθ oo

denote the population moment formed by taking the expectation of m(x). In a sample

x = (x ,...,x ), the idea of a moments estimator is to form a sample moment1 n
n

1 s
------ m(x ) ≡ E m(x), and then to use the analogy of the population and sample momentsn t i n

i=1
4to form the approximation E m(x) ≈ E = γ(θ ). The moment estimator T(x) solvesn xθ oo

_________________________________

4 The sample average of a function m(x) of an observation can also be interpreted as
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E m(x) = γ(T(x)). When the number of moment conditions equals the number ofn

parameters, an exact solution is normally obtainable, and T(x) is termed a classical

methodofmomentsestimator. Whenthenumberofmomentconditionsexceedsthenumber

of parameters, it is not possible in general to find T(x) that sets them all to zero

at once. In this case, one may form a number of linear combinations of the moments

equal to the number of parameters to be estimated, and find T(x) that sets these

linear combinations to zero. The linear combinations in turn may be derived starting

from some metric that provides a measure of the distance of the moments from zero,

with T(x) interpreted as a minimand of this metric. This is called generalized

method of moments estimation.

Maximum likelihood estimators. Consider the DGP density f(x,θ) for a given

sample as a function of θ. The maximum likelihood estimator of the unknown true

value θ is the function θ = T(x) that maximizes f(x,θ). The intuition behind thiso

estimator is that if we guess a value for θ that is far away from the true θ , theno

the probability law for this θ would be very unlikely to produce the data that are

actually observed, whereas if we guess a value for θ that is near the true θ , theno

the probability law for this θ would be likely to produce the observed data. Then,

the T(x) which maximized this likelihood, as measured by the probability law itself,

should be close to the true θ. The maximum likelihood estimator plays a central role

in classical statistics, and can be motivated solely in terms of its desirable

classical statistical properties in large samples.

_________________________________

its expectation with respect to the empirical distribution of the sample; we use the
notation E m(x) to denote this empirical expectation.n
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When the data are a sample of n independent observations, each with density

n
pf(x,θ), then the likelihood of the sample is f(x,θ) = f(x ,θ). It is often
q i

i=1

convenient to work with the logarithm of the density, l(x,θ) ≡ Log f(x,θ). Then, the

N
sLog Likelihood of the sample is L(x,θ) ≡ Log f(x,θ) = l(x ,θ). The maximum
t i

n=1

likelihood estimator is the function t = T(x) of the data that when substituted for θ

maximizes f(x,θ), or equivalently L(x,θ).

The gradient of the log likelihood of an observation with respect to θ is

denoted s(x,θ) ≡ ∇ l(x,θ), and termed the score. The maximum likelihood estimator isθ
a zero of the sample expectation of the score, E s(x,T(x)). Then, the maximumn

likelihood estimator is a special case of a moments estimator.

Maximum likelihood estimators will under quite general regularity conditions be

consistent and asymptotically normal. Under uniformity conditions that rule out some

odd non-uniform "super-efficient" alternatives, they are also asymptotically

efficient. They often have good finite-sample properties, or can be easily modified

so that they do. However, their finite-sample properties have to be determined on a

case-by-case basis.

3. Estimation in Normally Distributed Populations

Consider a simple random sample x = (x ,...,x ) from a population in which1 n
2observations are normally distributed with mean µ and variance σ . Then, the density

2-1/2 -v /2of an observation is φ((x-µ)/σ)/σ, where φ(v) = (2π) e , and the log

n
2 n n 2 1 s 2 2likelihood of the sample is L(x,µ,σ ) = - ------⋅Log(2π) - ------⋅Log σ - ------⋅ (x -µ) /σ . We2 2 2 t i

i=1
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2will estimate the parameters µ and σ using the maximum likelihood method, and

establish some of the statistical properties of these estimators.

2 2The first-order-conditions for maximizing L(x,µ,σ ) in µ and σ are

n n
s 2 ^ ----- 1 s0 = (x -µ)/σ +++++⇒ µ = x ≡ ------ x ,
t i n t i

i=1 i=1

n n
2 s 2 4 ^2 1 s ----- 20 = -n/2σ + (x -µ) /2σ +++++⇒ σ = ------ (x -x) .

t i n t i
i=1 i=1

The maximum likelihood estimator of µ is then the sample mean, and the maximum

2 2 ^2likelihood estimator of σ is the sample variance. Define s = σ ⋅n/(n-1), the

sample variance with a sample size correction. The following results summarize the

properties of these estimators:

----- 2 2(1) (x,s ) are joint minimal sufficient statistics for (µ,σ ).

----- 2 2(2) x is an unbiased estimator for µ, and s an unbiased estimator for σ .

----- 2 2(3) x is a Minimum Variance Unbiased Estimator (MVUE) for µ; s is MVUE for σ .

----- 2(4) x is Normally distributed with mean µ and variance σ /n.

2 2(5) (n-1)s /σ has a Chi-square distribution with n-1 degrees of freedom.

----- 2(6) x and s are statistically independent.
q6====== -----(7) en(x - µ)/s has a Student’s-T distribution with n-1 degrees of freedom.

----- 2 2(8) n⋅(x - µ) /s has an F-distribution with 1 and n-1 degrees of freedom.

The following paragraphs comment on these properties and prove them.

Consider the sufficiency property (1). Factor the log likelihood function as

n
2 n n 2 1 s ----- ----- 2 2L(x,µ,σ ) = - ------⋅Log(2π) - ------⋅Log σ - ------⋅ (x -x + x-µ) /σ2 2 2 t i

i=1
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n n
n n 2 1 s ----- 2 2 1 s ----- 2 2= - ------⋅Log(2π) - ------⋅Log σ - ------⋅ (x -x) /σ - ------⋅ (x-µ) /σ2 2 2 t i 2 t

i=1 i=1

2 ----- 2n n 2 1 (n-1)s n (x-µ)= - ------⋅Log(2π) - ------⋅Log σ - ------⋅-------------------------------- - ------⋅--------------------------- .2 2 2 2 2 2σ σ

----- 2 2This implies that x and s are jointly sufficient for µ and σ . Because the

----- 2 2dimension of (x,s ) is the same as the dimension of (µ,σ ), they are obviously

minimal sufficient statistics.

n
----- ----- 1 sThe expectation of x is Ex = ------ Ex = µ, since the expectation of eachn t i

i=1
----- 2observation is µ. Hence x is unbiased. To establish the expectation of s , first

form the n×n matrix
q e
2 1-1/n -1/n ... -1/n -1/n 2
2 2
2 -1/n 1-1/n ... -1/n -1/n 2

M = I - 11′/n = 2 ... ... ... ... ... 2 ,
2 -1/n -1/n ... 1-1/n -1/n 2
2 2
2 -1/n -1/n ... -1/n 1-1/n 2
z c

where I is the identity matrix and 1 is a n×1 vector of ones. This matrix is

2idempotent, with M = M, and its trace satisfies

tr(M) = tr(I) - tr(11′/n) = n - tr(1′1/n) = n - 1 .

Let Z′ = (x -µ,...,x -µ) denote the vector of deviations of observations from the1 n
----- ----- 2population mean. Then, Z′M = (x - x,...,x - x) and s = Z′M⋅MZ/(n-1) = Z′MZ/(n-1).1 n

2Therefore, since with independent observations one has EZZ′ = σ I, one obtains

2Es = E(Z′MZ)/(n-1) = E tr(Z′MZ)/(n-1) = E tr(MZZ′)/(n-1)

2 2= tr(M⋅E(ZZ′))/(n-1) = σ ⋅tr(M)/(n-1) = σ .

2Hence, s is unbiased.
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----- 2The MVUE property of x and s is most easily proved by application of the

Blackwell theorem. We already know that these estimators are unbiased. Any other

unbiased estimator of µ then has the property that the difference of this estimator

-----and x, which we will denote by h(x), must satisfy Eh(x) ≡ 0. Alternately, h(x) could

2 2be the difference of s and any other unbiased estimator of σ . Then,

+∞
2

i L(x2µ,σ )0 ≡ Eh(x) ≡ 2 h(x)e dx,
j

-∞
implying

+∞
2

i -(x-µ)′(x-µ)/2σ0 ≡ 2 h(x)e dx .
j

-∞

Differentiate with respect to µ to get

+∞ +∞
2 2

i -(x-µ)′(x-µ)/2σ i -(x-µ)′(x-µ)/2σ0 ≡ 2 h(x)(x-µ)e dx ≡ 2 h(x)xe dx
j j

-∞ -∞
-----Hence, Eh(x)⋅x ≡ 0 for each component of x. Averaging then implies Eh(x)⋅x ≡ 0.i

Differentiate again with respect to µ to get

+∞ +∞
2 2

i -(x-µ)′(x-µ)/2σ i -(x-µ)′(x-µ)/2σ0 ≡ 2 h(x)x(x-µ)′e dx ≡ 2 h(x)(x-µ)(x-µ)′e dx .
j j

-∞ -∞

Pre-multiply and post-multiply this expectation by the idempotent matrix M to

conclude that Eh(x)M(x-µ)(x-µ)′M ≡ 0. Taking the trace of this expression and

2 ----- 2dividing by (n-1) yields Eh(x)s ≡ 0. Then, the estimators x and s are uncorrelated

with any unbiased estimator of zero. The Blackwell theorem then establishes that

they are minimum variance among all unbiased estimators.
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-----Next consider the distribution of x. We use the fact that linear

transformations of multivariate normal random vectors are again multivariate normal:

If Z ~ N(µ,Ω) and W = CZ, then W ~ N(Cµ,CΩC′). This result holds even if Z and W are

of different dimensions, or C is of less than full rank. (If the rank of CΩC′ is

less than full, then the random variable has all its density concentrated on a

-----subspace.) Now x = Cx, where C = (1/n,...,1/n) and x = (x ,...,x )′, and x is1 n
2multivariate normal with mean 1⋅µ and covariance matrix σ I, where 1 is a n×1 vector

----- 2 2of ones and I is the n×n identity matrix. Therefore, x ~ N(µC1,σ CC′) = N(µ,σ /n).

2Next consider the distribution of s . We will need the following fact about

statistical distributions: The sum of the squares of K independent standard normal

random variables has a Chi-Square distribution with K degrees of freedom. (To prove

this, first show that it holds for K = 1 by finding the density of the square of a

2standard normal random variable and noting that it coincides with the density of χ .
1

Then use the rules for moment generating functions to see that the sum of independent

2 2χ random variables is χ .) We also need the matrix result that any idempotent
1 K

matrix M of dimension n and rank r can be written as M = WW′, where W is n×r and

column-orthonormal (i.e., W′W = I ). (To prove this, write M in terms of itsr

singular value decomposition, and apply the conditions M = M′ and M⋅M = M.) Consider

M = I - 11′/n which has rank n-1 = tr(M), and the linear transformation

q e q e
2----- 2 2(1/n)1′2x - µ2 2 = 2 2(x - 1⋅µ) ≡ C(x - 1⋅µ) .

2 M 22 u 2
z cz c

The result of this transformation is then multivariate normal,

q e
2----- 2 2x - µ2 2 ~ N(0,σ CC′) .
2 u 2
z c
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q e
2(1/n) 02 -----But CC′ = 2 2, so that x - µ and u are uncorrelated, hence (for joint normals)
2 0 M2
z c

-----independent. Then x is independent of any function of u, and specifically of

2 2s = u′u/(n-1). The distribution of s is obtained by noting that u′u = ε′Mε
2= ε′WW′ε, where ε = (x - 1⋅µ). But z = W′ε ~ N(0,σ I ), by the matrix result aboven-1

2 2 2 2for idempotent matrices. Hence, (n-1)s /σ = u′u/σ = z′z/σ is the sum of squares

2of n-1 independent standard normal random variates, so that it is distributed χ .n-1
q6====== -----The results that en(x - µ)/s has a Student’s-T distribution with n-1 degrees of

----- 2 2freedom, and that n⋅(x - µ) /s has an F-distribution with 1 and n-1 degrees of

freedom follow from properties of distributions related to the normal, Chapter 3.9.

4. Large Sample Properties of Maximum Likelihood Estimates

This section provides a brief and informal introduction to the statistical

properties of maximum likelihood estimators and similar estimation methods in large

samples. Consider a simple random sample x = (x ,...,x ) from a population in which1 n

the density of an observation is f(x,θ ). The DGP density or likelihood of theo

sample is then f(x,θ) = f(x ,θ)⋅...⋅f(x ,θ), with θ the true value of θ. The log1 n o

likelihood of an observation is l(x,θ) = log f(x,θ ), and the log likelihood of theo
n

1 s 5sample is L (x,θ) = ------ l(x ,θ). The maximum likelihood estimator T (x) is a valuen n t n n
i=1

of θ which maximizes L (x,θ). The first-order condition for this maximum is that then

sample score,

_________________________________

5 For the purposes of this section, it will be convenient to scale the sample
likelihood by 1/n so that it is an average of the scores of the individual
observations. Obviously one can go from this definition to a definition of the
sample log likelihood without scaling simply by multiplying by n.
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n
1 s∇ L (x,θ) = ------ ∇ l(x ,θ) ,θ n n t θ i

i=1

equal zero at θ = T (x). The second order condition is that the sample hessiann

n
1 s∇ L (x,θ) = ------ ∇ l(x ,θ) ,θθ n n t θθ i

i=1

6be negative at θ = T(x).

Under very mild regularity conditions, the expectation of the score of an

observation is zero at the true parameter vector. Start from the identity

+∞
i l(x,θ)
2 e ⋅dx ≡ 1 and differentiate with respect to θ under the integral sign to
j

-∞
+∞
i l(x,θ)obtain the condition 2 ∇ l(x,θ)⋅e ⋅dx ≡ 0. (Regularity conditions are needed to
j θ

-∞
assure that one can indeed differentiate under the integral.) Then, at the true

parameter θ , it must be true that E ∇ l(x,θ ) = 0. This gives a population scoreo xθ θ oo

condition that E ∇ l(x,θ) = 0 when θ = θ . Another regularity condition requiresxθ θ oo

that E ∇ l(x,θ) = 0 only if θ = θ ; this has the interpretation of anxθ θ oo

identification condition. The maximum likelihood estimator can be interpreted as an

analogy estimator that chooses T (x) to satisfy a sample condition (that the samplen

score be zero) that is analogous to the population score condition (that the

population score of an observation is zero at the true parameter value). One could

sharpen the statement of this analogy by writing the population score as an explicit

_________________________________

6 When the parameter θ is more than one-dimensional, the second-order condition is
that the sample hessian is a negative definite matrix.
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function of the population DGP, µ(θ,F(⋅,θ )) ≡ E ∇ l(x,θ), and writing the sampleo xθ θo

score as µ(θ,F ) ≡ E ∇ l(x,θ). The mapping µ(θ,⋅) is linear in its second argument,n n θ
and this is enough to assure that it is continuous (in an appropriate sense) in this

argument. Then one has almost sure convergence of µ(θ,F ) to µ(θ,F(⋅,θ )) for eachn o

θ, from the Glivenko-Cantelli theorem. A few additional regularity conditions are

enough to ensure that this convergence is uniform in θ, and that a solution T (x)n

that sets the sample score to zero converges almost surely to the value θ that setso

the population score to zero.

The basic large sample properties of maximum likelihood estimators are that

under suitable regularity conditions, T converges in probability to the truen
q6======

parameter vector θ , and en(T - θ ) converges in distribution to a normal randomo n o

variable with mean zero and a variance which achieves the Cramer-Rao bound for an

unbiased estimator. These results imply that in large samples, T will become a moren

and more precise estimate of the true parameter. In large samples, the convergence

in distribution to a Normal permits one to use the properties of a Normal population

to construct hypothesis tests and confidence bounds, and get good approximations for

significance levels and power. The achievement of the Cramer-Rao lower bound on

variance indicates that in large samples there are no alternative estimators which

are uniformly more precise, so MLE is the "best" one can do.

We next list a series of regularity conditions under which the results stated

above can be shown to hold. Only the single parameter case will be presented.

However, the conditions and results have direct generalizations to the multiple

parameter case. This list is chosen so the conditions are easy to interpret and to

check in applications. Note that these are conditions on the population DGP, not on

a specific sample. Hence, "checking" means verifying that your model of the DGP and
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your assumptions on distributions of random variables are logically consistent with

the regularity conditions, rather than carrying out an empirical verification using

the data. There are alternative forms for the regularity conditions, as well as

weaker conditions, which give the same or similar results. These conditions are

quite generic and will be satisfied in many economic applications. However, it is a

serious mistake to assume without checking that the DGP you assume for your problem

is consistent with these conditions. While in many cases the mantra "I assume the

appropriate regularity conditions" will work out, you can be acutely embarrassed if

your DGP happens to be one of the exceptions that is logically inconsistent with the

regularity conditions, particularly if it results in estimators that fail to have

desirable statistical properties.

A.1 There is a single parameter θ which is permitted to vary in a closed

bounded set Θ. The true value θ is in the interior of Θ.o

A.2 The sample observations are realizations of independently identically

distributed random variables x ,...,x ,... with a common density f(x,θ ).1 n o

A.3 The density f(x,θ) is continuous in θ, and three times continuously

differentiable in θ, for each x, and is "well behaved" (e.g., measurable or

piecewise continuous or continuous) in x for each θ.

A.4 There exists a bound β(x) on the density and its derivatives, uniform in θ,

2satisfying l(x,θ) ≤ β(x), (∇ l(x,θ)) ≤ β(x), ∇ l(x,θ) ≤ β(x),θ θθ
+∞
i 2∇ l(x,θ) ≤ β(x), and 2 β(x) f(xθ )dx < + ∞.θθθ j o

-∞
A.5 The function λ(θ) = E l(x,θ) has λ(θ) < λ(θ ) and ∇ λ(θ) ≠ 0 for θ ≠ θxθ o θ oo

and J = -∇ λ(θ ) > 0.θθ o
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The expression J in A.5 is termed the Fisher information in an observation. The

first two assumptions mostly set the problem. The restriction of the parameter to a

closed bounded set guarantees that a MLE exists, and can be relaxed by adding

conditions elsewhere. Requiring θ interior to Θ guarantees that the first-ordero

condition E ∇ l(x,T (⋅)) = 0 for a maximum holds for large n, rather than ann θ n

inequality condition for a maximum at a boundary. This really matters because MLE at

boundaries can have different asymptotic distributions and rates of convergence than
q6======

the standard en convergence to the normal. The continuity conditions A.3 are

satisfied for most economic problems, and in some weak form are critical to the

asymptotic distribution results. Condition A.4 gives bounds that permit exchange of

the order of differentiation and integration in forming expectations with respect to

the population density. Condition A.5 is an identification requirement which implies

there cannot be a parameter vector other than θ that on average always explains theo

data as well as θ .o

The next result establishes that under these regularity conditions, a MLE is

consistent and asymptotically normal (CAN):

Theorem: If A.1-A.5 hold, then a MLE T satisfiesn

(1) T is consistent for θ .n o
q6====== d -1(2) T is asymptotically normal: en(T (x) - θ ) ---------L Z ~ N(0,J ), with J equaln n o o

2to the Fisher information in an observation, J = E ∇ l(x,θ ) .xθ θ oo
2 p p(3) E [∇ l(x,T )] ---------L J and -E ∇ l(x,T ) ---------L J.n θ n n θθ n

(4) Suppose T ′ is any sequence of estimators that solve equations of the formn

E g(x,θ) = 0, where g is twice continually differentiable, with E g(x,θ) = 0n xθo
2if and only if θ = θ ; E∇ g(x,θ ) ≠ 0; bounds g(x,θ) ≤ β(x), ∇ g(y,θ)  ≤o θ o θ
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2β(x), ∇ g(x,θ) ≤ β(x), and with Eβ(x) < + ∞; and R = -E∇ g(y,θ ) ≠ 0. Letθθ θ o
q6======2 p * dS = Eg(x,θ ) . Then T ′ ---------L θ and en(T ′ - θ ) ---------L Z ~ N(0,V), whereo n o n 1

-1 -1 -1V = R SR′ . Further, V ≥ J , so that the MLE T is efficient relative to T ′ ,n n

and cov(Z ,Z - Z ) = 0.0 1 0

Result (2) in this theorem implies that to a good approximation in large
q6======

samples, the expression en(T -θ ) has a normal distribution with a variance which isn o
-1the inverse of the Fisher information, J . Result 3 gives two ways of estimating

-1 -1the asymptotic variance J consistently since J is a continuous function of J for

J ≠ 0. Result (4) establishes that MLE is efficient relative to a broad class of

estimators called M-estimators.

An intuitive demonstration of the Theorem will be given rather than formal

proofs. Consider first the consistency result. The reasoning is as follows.

Consider the expected likelihood of an observation,

+∞
iλ(θ) ≡ E l(x,θ) = 2 l(x,θ)f(x,θ )dx.xθ j oo

-∞
We will argue that λ(θ) has a unique maximum at θ . Then we will argue that anyo

function which is uniformly very close to λ(θ) must have its maximum near θ .o

Finally, we argue by applying a uniform law of large numbers that the likelihood

function is with probability approaching one uniformly very close to λ for n

sufficiently large. Together, these results will imply that with probability

approaching one, T is close to θ for n large.n o

Assumption A.4 ensures that λ(θ) is continuous, and that one can reverse the

order of differentiation and integration to obtain continuous derivatives
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+∞
i∇ λ(θ) ≡ 2 ∇ l(x,θ)f(x,θ )dx ≡ E ∇ l(x,θ)θ j θ o xθ θo

-∞
+∞
i∇ λ(θ) ≡ 2 ∇ l(x,θ)f(x,θ )dx ≡ E ∇ l(x,θ)θθ j θθ o xθ θθo

-∞

Starting from the identity
+∞ +∞
i i l(x,θ)1 ≡ 2 f(x,θ)dx ≡ 2 e dx,
j j

-∞ -∞
one obtains by differentiation

+∞
i l(x,θ)0 ≡ 2 ∇ l(x,θ)e dx
j θ

-∞

+∞
i 2 l(x,θ)0 ≡ 2 [∇ l(x,θ) + ∇ l(x,θ) ]e dx
j θθ θ

-∞

Evaluated at θ , these implyo
20 = ∇ λ(θ ) and -∇ λ(θ ) = E ∇ l(x,θ) = J .θ o θθ o xθ θo

Assumption A.5 requires further that J ≠ 0, and that θ is the only root of ∇ λ(θ).o θ
Hence, λ(θ) has a unique maximum at θ , and at no other θ satisfies a first-ordero

condition or boundary condition for a local maximum.

We argue next that any function which is close enough to ∇ λ(θ) will have atθ
least one root near θ and no roots far away from θ . The figure on the followingo o

page graphs ∇ λ(θ), along with a "sleeve" which is a vertical distance δ from ∇ λ.θ θ
Any function trapped in the sleeve must have at least one root between θ - ε ando 1

θ + ε , where [θ -ε ,θ +ε ] is the interval where the sleeve intersects the axis,o 2 o 1 o 2

and must have no roots outside this interval. Furthermore, the uniqueness of the
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root θ of ∇ λ(θ) plus the condition ∇ λ(θ ) < 0 imply that as δ shrinks towardo θ θθ o

zero, so do ε and ε .1 2

The last step in the consistency argument is to show that L (x,θ) is withn

probability approaching one contained in a δ-sleeve around λ(θ). For fixed θ,

n
1 sL (x,θ) = ------ l(x ,θ) is a sample average of i.i.d. random variables l(x,θ) withn n t i

i=1
asmean λ(θ). Then Kolmogorov’s SLLN implies L (x,θ) ------------L λ(θ). This is not quiten

enough, because there is a question of whether L (x,θ) could converge non-uniformlyn

to λ(θ), so that for any n there are some values of θ where L (x,θ) is outside then
assleeve. However, assumptions A.1, A.3, and A.4 imply max L (x,θ) - λ(θ) ------------L 0.nθ∈Θ

This follows in particular because the differentiability of f(x,θ) in θ from A.3 and

the bound on ∇ l(x,θ) from A.4 imply that l(⋅,θ) is almost surely continuous on theθ
compact set Θ, so that the uniform SLLN in Chapter 4.4 applies. This establishes

asthat T ------------L θ .n o

We next demonstrate the asymptotic normality of T . A Taylor′s expansion aboutn

θ of the first-order condition for maximization of the log likelihood function giveso

~ 2(1) 0 = ∇ L (T ) = ∇ L (θ ) + ∇ L (θ )⋅(T -θ ) + ∇ L (T )⋅(T -θ ) /2 ,θ n n θ n o θθ n o n o θθθ n n n o
q6====== q6======~where T is some point between T and θ . Multiply this equation by en/(1+enT -θ )n n o n o

to obtain
q6======

B + C en(T - θ ) D Z (T - θ )n n n o n n n o
(2) 0 = -------------------------------------------------------------------------------------------- + -------------------------------------------------------------------

q6====== 21 + en⋅T - θ n o
with

n n
1 s 1 sB = ----------- ∇ l(y ,θ ) C = ------ ∇ l(y ,θ )n q6====== t θ i o n n t θθ i o
en i=1 i=1
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n
q6====== q6======1 s ~D = ------ ∇ l(y ,T) Z = en(T -θ )/(l + en⋅T -θ ).n n t θθθ i n n o n o

i=1

We make a limiting argument on each of the terms. First, ∇ l(y ,θ ) are iid randomθ i o
2variables with E∇ l(y ,θ ) = ∇ λ(θ ) = 0 and E[∇ l(y ,θ )] = - ∇ λ(θ ) = J. Henceθ i o θ o θ i o θθ o

dthe Lindeberg-Levy CLT implies B ---------L W ~ N(O,J). Second, ∇ l(Y ,θ ) are i.i.d.n O θθ i o
prandom variables with E∇ l(Y ,θ ) = -J. Hence the Khinchine WLLN implies C ---------L -J.θθ i o n

Third,

n n
1 s ~ 1 sD  ≤ ------ ∇ l(y ,T ) ≤ ------ β(y )n n t θθθ i n n t i

i=1 i=1

and Eβ(Y) < + ∞ by A.4. Hence, Khinchine′s WLLN implies D  is bounded by ann

expression which converges in probability to Eβ(Y) < + ∞. Thus, D = O (1).n p

Furthermore, Z  ≤ 1, implying Z = O (1). Since T is consistent, (T - θ ) =n n p n n o

o (1). Therefore, by rule 6 in Figure 4.3, D Z (T - θ )/2 = o (1).p n n n o p

Given J/2 > ε > 0, these arguments establish we can find n such that for n > no o

with probability at least 1-ε, we have D Z (T -θ )/2 < ε, C +J < ε and B  < Mn n n o n n
dfor a large constant M (since B ---------L W ⇒ B = O (1)). In this event, C  > J-ε,n o n p n

q6====== q6====== q6======
B + C en(T -θ ) < ε(1 + en⋅T -θ ), and B  ≤ M imply C enT -θ  - B  ≤n n n o n o n n n o n

q6====== q6======------B +C rnT -θ ) < ε⋅(1 - en⋅T -θ ), or (J - 2ε)en⋅T -θ  < M + ε. Thereforen n n o n o n o
q6====== *
en(T -θ ) = O (1); i.e., it is stochastically bounded. Therefore, by rule 6 inn p

q6====== q6======
Figure 3, multiplying (2) by 1 + en⋅T -θ  yields 0 = B + C en⋅T -θ  + o (1).n o n n n o p

p -1 p -1 -1 -1 ------But C L -J < 0 implies C L -J . By rule 6, (C +J )B = o (1) and rn (T -θ )n n n n p n o
-1 -1 d -1= J B + o (1). The limit rules in Figure 1 then imply J B ---------L Z ~ N(0,J ),n p n o

q6====== q6======-1 p d
en⋅T -θ  - J B ---------L 0, and hence en⋅T -θ  ---------L Z .n o n n o o

The third result in the theorem is that J is estimated consistently by
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n
1 s 2(3) J = ------ ∇ l(y ,T ) .n n t θ i n

i=1

To show this, make a Taylor′s expansion of this expression around θ ,o
n n

1 s 2 1 s ~ ~(4) J = ------ l (y ,θ ) + ------ 2 ∇ l(y ,T )⋅∇ l(y ,T )(T -θ ).n n t θ i o n t θ i n θθ i n n o
i=1 i=1

We have already shown that the first term in (4) converges in probability to J. The

psecond term is the product of (T - θ ) ---------L 0 and an expression which is bounded byn o
n

1 s 2 p 2
------ 2β(y ) ---------L 2E β(Y) < + ∞, by Khinchine′s WLLN. Hence the second term isn t i Y

i=1
po (1) and J ---------L J.p n

The final result in the theorem establishes that the MLE is efficient relative

n
sto any M-estimator T ′ satisfying g(y ,T ′ ) = 0, where g has the stated properties.n t i n

i=1
q6======

The first conclusion in this result is that T ′ is consistent and en(T ′ -θ ) isn n o

asymptotically normal. This is actually of considerable independent interest, since

many of the alternatives to MLE that are used in econometrics for reasons of

computational convenience or robustness are M-estimators. Ordinary least squares is

a leading example of an estimator in this class. The argument for the properties of

-θ are exactly the same as for the MLE case above, with g replacing ∇ l. The onlyθ
difference is that R and S are not necessarily equal, whereas for g = ∇ l in the MLEθ
case, we had R = S = J. To make the efficiency argument, consider together the

Taylor′s expansions used to get the asymptotic distributions of T and T ′ ,n n
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n n n
1 1 q6======s s 1 s0 = ----------- ∇ l(y ,T ) = ----------- ∇ l(y ,θ ) + ------ ∇ l(y ,θ )en(T -θ ) + o (1)
q6====== t θ i n q6====== t θ i o n t θθ i o n o p
en eni=1 i=1 i=1

n n n
1 1 q6======s s 1 s0 = ----------- g(y ,T ′ ) = ----------- g(y ,θ ) + ------ g (Y ,θ )en(T ′ -θ ) + o (1)
q6====== t i n q6====== t i o n t θ i o n o p
en eni=1 i=1 i=1

q6====== q6======
Solving these two equations in en(T -θ ) and en(T ′ -θ ) yieldsn o n o

q6====== -1
en(T -θ ) = J W + o (1)n o n p
q6====== -1
en(T ′ -θ ) = R U + o (1)n o n p

n n
1 1s swith W = ----------- ∇ l(y ,θ ) and U = ----------- g(y ,θ ). Consider any weighted averagen t θ i o n t i o------ ------
rn rni=1 i=1

of these equations,

q6====== -1 -1
en((1-γ)T + γT ′ - θ ) = J (1-γ)W + R γ U + o (1) .n n o n n p

The Lindeberg-Levy CLT implies that this expression is asymptotically normal with

mean zero and variance

-2 2 * 2 -2 2 * 2 -1 -1 * *Ω = J (1-γ) El (Yθ ) + R γ Eg(Y,θ ) + 2J R (1-γ)γEl (Yθ )g(Y,θ ) .θ θ
l(yθ)The condition 0 ≡ i g(y,θ)f(yθ)dy ≡ i g(y,θ)e dy, implies, differentiating

under the integral sign,

l(y,θ) l(y,θ)0 ≡ i g (y,θ)e dy + i ∇ l(y,θ)g(y,θ)e dy .θ θ

Evaluated at θ , this implies 0 ≡ -R + E∇ l(Yθ )g(Y,θ ). Hence,o θ o o

-1 2 -2 2 -1 -1 -1 -2 -1 2Ω = J (1-γ) + R S γ + 2(1-γ)γ J R R = J + [R S - J ]γ .
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-2 -1 -1Since Ω ≥ 0 for any γ, this requires V = R S ≥ J , and hence Ω ≥ J . Further, note

that

2Ω = var(Z +γ(Z -Z )) = var(Z ) + γ var(Z -Z ) + 2γ cov(Z ,Z -Z ) ,o 1 o o 1 o o 1 o
-1and var(Z ) = J , implyingo

22γ cov(Z , Z - Z ) ≥ -γ var(Z - Z ) .o 1 o 1 o

Taking γ small positive or negative implies cov(Z , Z - Z ) = 0.o 1 o


