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CHAPTER 4.  INSTRUMENTAL VARIABLES

1. INTRODUCTION

Consider the linear model y = Xβ + �, where y is n×1, X is n×k, β is k×1, and � is n×1.
Suppose that contamination of X, where some of the X variables are correlated with �, is suspected.
This can occur, for example, if � contains omitted variables that are correlated with the included
variables, if X contains measurement errors, or if X contains endogenous variables that are
determined jointly with y.

OLS Revisited: Premultiply the regression equation by X� to get 

(1)                                          X�y = X�Xβ + X��. 

One can interpret the OLS estimate bOLS as the solution obtained from (1) by first approximating X��
by zero, and then solving the resulting k equations in k unknowns,

(2)                                         X�y = X�XbOLS, 

for the unknown coefficients.  Subtracting (1) from (2), one obtains the condition

(3)                                         X�X(bOLS - β) = X��, 

and the error in estimating β is linear in the error caused by approximating X�� by zero.  If X�X/n
�p A positive definite and X��/n �p 0, (3) implies the result that bOLS �p β.  What makes OLS
consistent when X��/n �p 0 is that approximating X�� by zero is reasonably accurate in large samples.
On the other hand, if one has instead X��/n �p C � 0, then bOLS is not consistent for β, and instead
bOLS �p β + A-1C.

Instrumental Variables: Suppose there is a n×j array of variables W, called instruments, that
have two properties: (i) These variables are uncorrelated with �; we say in this case that these
instruments are clean.  (ii) The matrix of correlations between the variables in X and the variables
in W is of maximum possible rank (= k); we say in this case that these instruments are fully
correlated.  Call the instruments proper if they satisfy (i) and (ii).  The W array should include any
variables from X that are themselves clean.  To be fully correlated, W must include at least as many
variables as are in X, so that j � k.  Another way of stating this necessary condition is that the
number of instruments in W that are excluded from X must be at least as large as the number of
contaminated variables that are included in X.

Instead of premultiplying the regression equation by X� as we did for OLS, premultiply it by
R�W�, where R is a j×k weighting matrix that we get to choose.  (For example, R might select a
subset of k from the j instrumental variables, or might form k linear combinations of these variables.
The only restriction is that R must have rank k.) This gives
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(4)                                         R�W�y = R�W�Xβ + R�W��. 

The idea of an instrumental variables (IV) estimator of β is to approximate R�W�� by zero, and solve

(5)                                        R�W�y = R�W�X bIV

for bIV = [R�W�X]-1R�W�y.  Subtract (4) from (5) to get the IV analog of the OLS relationship (3),

(6)                                        R�W�X(bIV - β) = R�W��. 

If R�W�X/n converges in probability to a nonsingular matrix and R�W��/n �p 0, then bIV �p β.  Thus,
in problems where OLS breaks down due to correlation of right-hand-side variables and the
disturbances, you can use IV to get consistent estimates, provided you can find proper instruments.

The idea behind (5) is that W and � are orthogonal in the population, a generalized moment
condition.  Then, (5) can be interpreted as the solution of a generalized method of moments problem,
based on the sample moments W�(y - Xβ).  The properties of the IV estimator could be deduced as
a special case of the general theory of GMM estimators.  However, because the linear IV model is
such an important application in economics, we will give IV estimators an elementary self-contained
treatment, and only at the end make connections back to the general GMM theory.

2. OPTIMAL IV ESTIMATORS

If there are exactly as many instruments as there are explanatory variables, j = k, then the IV
estimator is uniquely determined, bIV = (W�X)-1W�y, and R is irrelevant.  However, if j > k, each R
determines a different IV estimator.  What is the best way to choose R? An analogy to the
generalized least squares problem provides an answer: Premultiplying the regression  equation by
W� yields a system of j > k equations in k unknown β's, W�y = W�Xβ + W��.  Since there are more
equations than unknowns, we cannot simply approximate all the W�� terms by zero simultaneously,
but will have to accommodate at least j-k non-zero residuals.  But this is just like a regression
problem, with j observations, k explanatory variables, and disturbances ν = W��.  Suppose the
disturbances � have a covariance matrix σ2Ω, and hence the disturbances ν = W�� have a non-scalar
covariance matrix σ2W�ΩW.  If this were a conventional regression satisfying E(ν�W�X) = 0, then
we would know that the generalized least squares (GLS) estimator of β would be BLUE; this
estimator is

(7)                            bGLSIV = [X�W(W�ΩW)-1W�X]-1X�W(W�ΩW)-1W�y.   

This corresponds to using the weighting matrix R = (W�ΩW)-1W�X.  In truth, the conditional
expectation of ν given W�X is not necessarily zero, but clean instruments will have the property that
(W�X)��/n �p 0 because W and � are uncorrelated in the population.  This is enough to make the
analogy work, so that (7) gives the IV estimator that has the smallest asymptotic variance among
those that could be formed from the instruments W and a weighting matrix R.

If one makes the usual assumption that the disturbances � have a scalar covariance matrix,
Ω = I, then the best IV estimator reduces to
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(8)                            b2SLS = [X�W(W�W)-1W�X]-1X�W(W�W)-1W�y. 

This corresponds to using the weighting matrix R = (W�W)-1W�X.  But this formula provides another
interpretation of (8).  If you regress each variable in X on the instruments, the resulting OLS
coefficients are (W�W)-1W�X, the same as R.  Then, the best linear combination of instruments WR
equals the fitted value X* = W(W�W)-1W�X of the explanatory variables from a OLS regression of
X on W.  Further, you have X�W(W�W)-1W�X = X�X* = X*�X* and X�W(W�W)-1W�y = X*�y, so that
the IV estimator (8) can also be written

(9)                             b2SLS = (X*�X)-1X*�y = (X*�X*)-1X*�y. 

This provides a two-stage least squares (2SLS) interpretation of the IV estimator:  First, a OLS
regression of the explanatory variables X on the instruments W is used to obtain fitted values X*, and
second a OLS regression of y on X* is used to obtain the IV estimator b2SLS.  Note that in the first
stage, any variable in X that is also in W will achieve a perfect fit, so that this variable is carried over
without modification in the second stage.

The 2SLS estimator (8) or (9) will no longer be best when the scalar covariance matrix
assumption E��� = σ2I fails, but under fairly general conditions it will remain consistent.  The best
IV estimator (7) when E��� = σ2Ω can be reinterpreted as a conventional 2SLS estimator applied to
the transformed regression Ly = LXβ + η using the instruments (L�)-1W, where L is a Cholesky array
that satisfies LΩL� = I.   When Ω depends on unknown parameters, it is often possible to use a
feasible generalized 2SLS procedure (FG2SLS): First estimate β using (8) and retrieve the residuals
u = y - Xb2SLS.  Next use these residuals to obtain an estimate Ω* of Ω.   Then find a Cholesky
transformation L satisfying LΩ*L� = I, make the transformations y = Ly, X = LX, and W = (L�)-1W,
and do a 2SLS regression of y on X using W as instruments.  This procedure gives a feasible form
of (7), and is also called three-stage least squares (3SLS).

3. STATISTICAL PROPERTIES OF IV ESTIMATORS

IV estimators can behave badly in finite samples.  In particular, they may fail to have
moments.  Their appeal relies on their behavior in large samples, although an important question is
when samples are large enough so that the asymptotic approximation is reliable.  We first discuss
asymptotic properties, and then return to the issue of finite-sample properties.  

We already made an argument that IV estimators are consistent, provided some limiting
conditions are met.  We did not show that IV estimators are unbiased, and in fact they usually are
not.  An exception where bIV is unbiased is if the original regression equation actually satisfies
Gauss-Markov assumptions.  Then, no contamination is present, IV is not really needed, and if IV
is used, its mean and variance can be calculated in the same way this was done for OLS, by first
taking the conditional expectation with respect to �, given X and W.  In this case, OLS is BLUE, and
since IV is another linear (in y) estimator, its variance will be at least as large as the OLS variance.

We show next that IV estimators are asymptotically normal under some regularity conditions,
and establish their asymptotic covariance matrix.  This gives a relatively complete large-sample
theory for IV estimators.  Let σ2Ω be the covariance matrix of �, given W, and assume that it is finite
and of full rank.  Make the assumptions:
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[1] rank(W) = j � k
[2a] W�W/n �p H, a positive definite matrix
[2b] W�ΩW/n �p F, a positive definite matrix
[3] X�W/n �p G, a matrix of rank k
[4] W��/n �p 0
[5] n-1/2W���d N(0,σ2F)

Assumption [1] can always be met by dropping linearly dependent instruments, and should be
thought of as true by construction.  Assumption [1] implies that W�W/n and W�ΩW/n are positive
definite; Assumption [2] strengthens these to hold in the limit.   Proper instruments have X�W/n of
rank k from the fully correlated condition and E(W��/n) = 0 by the clean condition.  Assumption [3]
strengthens the fully correlated condition to hold in the limit.  Assumption [4] will usually follow
from the condition that the instruments are clean by applying a weak law of large numbers.   For
example, if the � are independent and identically distributed with mean zero and finite variance,
given W, then Assumption [2a] plus the Kolmogorov WLLN imply Assumption [4].  Assumption
[5] will usually follow from Assumption [2b] by applying a central limit theorem.  Continuing the
i.i.d. example, the Lindeberg-Levy CLT implies Assumption [5].  There are WLLN and CLT that
hold under much weaker conditions on the �'s, requiring only that their variances and correlations
satisfy some bounds, and these can also be applied to derive Assumptions [4] and [5].  Thus, the
statistical properties of IV can be established in the presence of many forms of heteroskedasticity and
serial correlation.

Theorem: Assume that [1], [2b], [3] hold, and that an IV estimator is defined with a weighting
matrix Rn that may depend on the sample n, but which converges to a matrix R of rank k.  If [4]
holds, then bIV �p β.  If both [4] and [5] hold, then

(10)                         n1/2(bIV - β) �d N(0, σ2(R�G�)-1R�FR(GR)-1). 

Suppose Rn = (W�W)-1W�X and [1]-[5] hold.  Then the IV estimator specializes to the 2SLS
estimator b2SLS given by (8) which satisfies b2SLS �p β and 

(11)                        n1/2(b2SLS - β) �d N(0, σ2(GH-1G�)-1(GH-1FH-1G�)(GH-1G�)-1). 

Suppose Rn = (W�ΩW)-1W�X and [1]-[5] hold.  Then the IV estimator specializes to the  GLSIV
estimator bGLSIV given by (7) which satisfies bGLSIV �p β and 

(12)                           n1/2(bGLSIV - β) �d N(0, σ2(GF-1G�)-1). 

Further, the GLSIV estimator is the minimum asymptotic variance estimator; i.e.,
σ2(R�G�)-1R�FR(GR)-1 - σ2(GF-1G�)-1 is positive semidefinite.  If Ω = I, then the 2SLS and GLSIV
estimators are the same, and the 2SLS estimator has limiting distribution (12) and is
asymptotically best among all IV estimators that use instruments W.
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The first part of this theorem is proved by dividing (6) by n and using assumptions [2], [3],
and [4], and then dividing (6) by n1/2 and applying assumptions [2], [3], and [5].  Substituting the
definitions of R for the 2SLS and GLSIV versions then gives the asymptotic properties of these
estimators.  Finally, a little matrix algebra shows that the GLSIV estimator has minimum asymptotic
variance among all IV estimators: Start with the matrix I - F-1/2G�(GF-1G�)-1GF-1/2 which equals its
own square, so that it is idempotent, and therefore positive semidefinite.  Premultiply this idempotent
matrix by (R�G�)-1R�F1/2, and postmultiply it by the transpose of this matrix; the result remains
positive semidefinite, and equals (R�G�)-1R�FR(GR)-1 - (GF-1G�)-1.  This establishes the result.

In order to use the large-sample properties of bIV for hypothesis testing, it is necessary to find
a consistent estimator for σ2.  The following estimator works:  Define IV residuals 

                      u = y - XbIV = [I - X(R�W�X)-1R�W�]y = [I - X(R�W�X)-1R�W�]�,

the Sum of Squared Residuals SSR = u�u, and s2 = u�u/(n-k).  If ���/n �p σ2, then s2 is consistent for
σ2.  To show this, simply write out the expression for u�u/n, and take the probability limit:

(13)                       plim u�u/n = plim ���/n - 2 plim [��W/n]R([X�W/n]R)-1[X��/n] 
                                   + [��W/n]R([X�W/n]R)-1[X�X/n](R�[W�X/n])-1R�[W��/n]

                      = σ2 - 2�0�R�(GR)-1C + 0�R�(GR)-1A(R�G�)-1R��0 = σ2. 

We could have used n-k instead of n in the denominator of this limit, as it makes no difference in
large enough samples.  The consistency of the estimator s2 defined above holds for any IV estimator,
and so holds in particular for the 2SLS or GLSIV estimators.  Note that this consistent estimator of
σ2 substitutes the IV estimates of the coefficients into the original equation, and uses the original
values of the X variables to form the residuals.  When working with the 2SLS estimator, and
calculating it by running the two OLS regression stages, you might be tempted to estimate σ2 using
a regression program printed values of SSR or the variance of the second stage regression, which is
based on the residuals û = y - X*b2SLS.  It tuns out that this estimator is not consistent for σ2:  A few
lines of matrix manipulation shows that û�û/n �p σ2 + β�[A - GF-1G�]β.  The second term is positive
semidefinite, so this estimator is asymptotically biased upward.

Suppose E��� = σ2I, so that 2SLS is best among IV estimators using instruments W.  The sum
of squared residuals SSR = u�u, where u = y - Xb2SLS, can be used in hypothesis testing in the same
way as in OLS estimation.  For example, consider the hypothesis that β2 = 0, where β2 is a r×1
subvector of β.  Let SSR0 be the sum of squared residuals from the 2SLS regression of y on X with
β2 = 0 imposed, and SSR1 be the sum of squared residuals from the unrestricted 2SLS regression of
y on X.  Then, [(SSR0 - SSR1)/m]/[SSR1/(n-k)] has an approximate F-distribution under the null with
m and n-k degrees of freedom.  There are several cautions to keep in mind when considering use of
this test statistic.  This is a large sample approximation, rather than an exact distribution, because
it is derived from the asymptotic normality of the 2SLS estimator.  Its actual size in small samples
could differ substantially from its nominal (asymptotic) size.  Also, the large sample distribution of
the statistic assumed that the disturbances � have a scalar covariance matrix.  Otherwise, it is
mandatory to do a FGLS transformation before computing the test statistic above.  For example, if
y = Xβ + � represents a stacked system of equations such as structural equations in a simultaneous
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equations system, or if � exhibits serial correlation, as may be the case in time-series or panel data,
then one should estimate β consistently using 2SLS, retrieve the residuals u = y - Xb2SLS and use them
to make an estimate Ω* of Ω = E���, make the transformations y = Ly, X = LX, ν = L�, and W =
(L�)-1W where L is a Cholesky matrix such that LΩ*L� is proportional to an identity matrix, and
finally apply 2SLS to the regression y = Xβ + ν with W as instruments and carry out the hypothesis
testing using this model.  The reason for the particular transformation of W is that one has W�ν =
W��, so that the original property that the instruments were uncorrelated with the disturbances is
preserved.  The 3SLS procedure just described corresponds to estimating β using a feasible version
of the GLSIV estimator.

What are the finite sample properties of IV estimators? Because you do not have the
condition E(��X) = 0 holding in applications where IV is needed, you cannot  get simple expressions
for the moments of bIV = [R�W�X]-1R�W�y = β + [R�W�X]-1R�W�� by first taking expectations of �
conditioned on X and W.  In particular, you cannot conclude that bIV is unbiased, or that it has a
covariance matrix corresponding to its asymptotic covariance matrix.  In fact, bIV can have very bad
small-sample properties.  To illustrate, consider the case where the number of instruments equals the
number of observations, j = n.  (This can actually arise in dynamic models, where often all lagged
values of the exogenous variables are legitimate instruments.  It can also arise when the candidate
instruments are not only uncorrelated with �, but satisfy the stronger property that E(��w) = 0.  In
this case, all functions of w are also legitimate instruments.)  In this case, W is a square matrix, and
 

b2SLS = [X�W(W�W)-1W�X]-1X�W(W�W)-1W�y 
= [X�WW-1W�-1W�X]-1X�WW-1W�-1W�y = [X�X]-1X�y = bOLS. 

We know OLS is inconsistent when E(��X) = 0 fails, so clearly the 2SLS estimator is also biased
if we let the number of instruments grow linearly with sample size.  This shows that for the IV
asymptotic theory to be a good approximation, n must be much larger than j.  One rule-of-thumb for
IV is that n - j should exceed 40, and should grow linearly with n in order to have the large-sample
approximations to the IV distribution work well.

Considerable technical analysis is required to characterize the finite-sample distributions of
IV estimators analytically; the names associated with this problem are Nagar, Phillips, and Mariano.
However, simple numerical examples provide a picture of the situation.  Consider first a regression
y = xβ + � where there is a single right-hand-side variable, and a single instrument w, and assume
x, w, and � have the simple joint distribution given in the table below, where λ is the correlation of
x and w, ρ is the correlation of x and �, and 0 � λ,ρ and λ + 2ρ < 1:

x w � Prob
1 1 1 (1+λ)/8
-1 1 1 (1-λ)/8
1 -1 1 (1-λ+2ρ)/8
-1 -1 1 (1+λ-2ρ)/8
1 1 -1 (1+λ)/8
-1 1 -1 (1-λ)/8
1 -1 -1 (1-λ-2ρ)/8
-1 -1 -1 (1+λ+2ρ)/8
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These random variables then satisfy Ex = Ew = E� = 0, Ex� = ρ, Exw = λ, and Ew� = 0, and their

products have the joint distribution

xw w� x� Prob
1 1 1 (1+λ+ρ)/4
-1 -1 1 (1-λ+ρ)/4
-1 1 -1 (1-λ-ρ)/4
1 -1 -1 (1+λ-ρ)/4

Least squares is biased if ρ � 0, and IV is consistent if λ � 0.   Suppose n = 2.  Then the exact
distribution of the relevant random variables is

�xw �w� �x� bOLS-β bIV-β Prob
2 2 2 1 1 (1+λ+ρ)2/16 
0 0 2 1 0 ((1+ρ)2-λ2)/8
0 2 0 0 +� (1-(λ+ρ)2)/8
2 0 0 0 0 ((1+λ)2-ρ2)/8
-2 -2 2 1 1 (1-λ+ρ)2/16
-2 0 0 0 0 ((1-λ)2-ρ2)/8
0 -2 0 0 -� (1-(λ-ρ)2)/8
-2 2 -2 -1 -1 (1-λ-ρ)2/16
0 0 -2 -1 0 ((1-ρ)2-λ2)/8
2 -2 -2 -1 -1 (1+λ-ρ)2/16

Note first that there is a positive probability that bIV is not defined; hence, technically it has no finite
moments.  Collecting terms from this table, the exact CDF of bOLS - β and bIV - β satisfy

c Prob(bOLS-β�c) Prob(bIV-β�c)
-� 0 (1-(λ-ρ)2)/8
-1 (1-ρ)2/4 (1-λ(1-ρ))/4
0 (1-ρ)(3+ρ)/4 (3-λ(1-ρ))/4
1 1 (λ+ρ)2/2

+� 1 1

Also, Prob(�bIV-β� > �bOLS-β�) = (1-λ2-ρ2)/4.  Then for this small sample there is a substantial
probability that the IV estimator will be further away from the true value than the OLS estimator.
As an exercise, carry through this example for n = 3, and show that in this case bIV will always exist,
but there continues to be a large probability that bOLS is closer to β than bIV.  As n increases, the
probability that bOLS is closer than bIV shrinks toward zero, but there is always a positive probability
that the IV estimator is worse than the OLS estimator, and for n odd a positive probability that the
IV estimator is infinite, so it never has any finite moments.
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The second example is the one-variable model y = xβ + � with one instrument w where
(x,w,�) are jointly normal with zero means, unit variances, Ewx = λ, Ex� = ρ, and Ew� = 0.  A
difficult technical analysis can be used to derive the exact distribution of the IV estimator in terms
of a non-central Wishart distribution.  However, for purposes of getting an idea of how IV performs,
it is much simpler to do a small computer simulation.  For the values ρ = .2 and λ = .8, the table
below gives the results of estimating a true value β = 1 in 1000 samples of sizes n = 5, 10, 20, or 40.
Because the denominator in the IV estimator is small with some probability, the IV estimator tends
to produce large deviations that lead to a large mean square error (MSE).  In this example, the
probability that the IV estimator is closer to β than the OLS estimator exceeds 0.5 only for samples
of size 20 or greater, and the IV estimator has a smaller MSE only for samples of size 40 or larger.
The smaller ρ or λ, the larger the sample size needed to make IV better than OLS in terms of MSE.

Sample Mean Bias Mean Bias MSE MSE Frequency of
Size in bOLS in bIV of bOLS of bIV bIV as good as bOLS

(1000 samples) (1000 samples) (1000 samples) (1000 samples) (1000 samples)
5 0.18 -0.15 0.25 63.5 39.6%
10 0.19 -0.04 0.15 0.70 45.7%
20 0.20 -0.02 0.09 0.10 54.6%
40 0.20 -0.00 0.07 0.04 69.2%

In practice, in problems where sample size minus the number of instruments exceeds 40, the
asymptotic approximation to the distribution of the IV estimator is reasonably good, and one can use
it to compare the OLS and IV estimates.  To illustrate, continue the example of a regression in one
variable, y = xβ + �.   Suppose as before that x and � have a correlation coefficient ρ � 0, so that OLS
is biased, and suppose that there is a single proper instrument w that is uncorrelated with � and has
a correlation λ � 0 with x.  Then, the OLS estimator is asymptotically  normal with mean β + ρσ

�
/σx

and variance σ
�

2/nσx
2.  The 2SLS estimator is asymptotically normal with mean β and variance

σ
�

2/nσx
2
 λ2.  The mean squares of the two estimators are then, approximately,

                                 MSEOLS = (ρ2 + 1/n)σ
�

2/σx
2

                                 MSE2SLS = σ
�

2/nσx
2

 λ2.

Then, 2SLS has a lower MSE than OLS when

                                1 < ρ2λ2n/(1-λ2) 	 (b2SLS-bOLS)2/(V(b2SLS)-V(bOLS)),

or approximately n > (1 - λ2)/ρ2λ2.  When λ = 0.8 and ρ = 0.2, this asymptotic approximation suggests
that a sample size of about 14 is the tip point where bIV should be better than b in terms of MSE.
However, the asymptotic formula underestimates the probability of very large deviations arising from
a denominator in bIV that is near zero, and as a consequence is too quick to reject bOLS.  The
right-hand-side of this approximation to the ratio of the MSE is the Hausman test statistic for
exogeneity, discussed below; for this one-variable case, one should reject the null hypothesis of
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exogeneity when the statistic exceeds one.  Under the null, the statistic is approximately chi-square
with one degree of freedom, so that this criterion corresponds to a type I error probability of 0.317.

4. RELATION OF IV TO OTHER ESTIMATORS 

The 2SLS estimator can be interpreted as a member of the family of Generalized Method of
Moments (GMM) estimators.  You can verify by differentiating to get the first-order condition that
the 2SLS estimator of the equation Ly = LXβ + L� using the instruments (L�)-1W, where E��� = σ2Ω
and L is a Cholesky matrix satisfying LΩL� = I, solves

(14)                                  Minβ (y-Xβ)�W(W�ΩW)-1W�(y-Xβ). 

In this quadratic form objective function, W�(y-Xβ) is the moment that has expectation zero in the
population when β is the true parameter vector, and (W�ΩW)-1 is a "distance metric" in the center
of the quadratic form.  Define P = (L�)-1W(W�ΩW)-1W�(L)-1, and note that P is idempotent, and thus
is a projection matrix.  Then, the GMM criterion chooses β to minimize the length of the vector L(y-
Xβ) projected onto the subspace spanned by P.  The properties of GMM hypothesis testing
procedures follow readily from the observation that L(y-Xβ) has mean zero and  a scalar covariance
matrix.  In particular, Minβ (y-Xβ)�W(W�ΩW)-1W�(y-Xβ)/σ2 is asymptotically chi-squared
distributed with degrees of freedom equal to the rank of P.

It is possible to give the 2SLS estimator a pseudo-MLE interpretation.   Premultiply the
regression equation by W�L-1 to obtain W�y = W�Xβ + W��.  Now treat W�� as if it were normally
distributed with mean zero and j×j covariance matrix λ2W�ΩW, conditioned on W�X.  Then, the log
likelihood of the sample would be

 L = - (j/2) log 2π - (j/2) (½) log λ2 - (½) log det(W�ΩW) 
- (1/2λ2)(W�y-W�Xβ)�(W�ΩW)-1(W�y-W�Xβ). 

The first-order condition for maximization of this pseudo-likelihood is the same as the condition
defining the 2SLS estimator.  

5. TESTING EXOGENEITY

Sometimes one is unsure whether some potential instruments are clean.  If they are, then there
is an asymptotic efficiency gain from including them as instruments.  However, if they are not,
estimates will be inconsistent.  Because of this tradeoff, it is useful to have a specification test that
permits one to judge whether suspect instruments are clean or not.  To set the problem, consider a
regression y = Xβ + �, an array of proper instruments Z, and an array of instruments W that includes
Z plus other variables that may be either clean or contaminated.

Several superficially different problems can be recast in this framework: 
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(1) The regression may be one in which some right-hand-side variables are known to be
exogenous and others are suspect, Z is an array that contains the known exogenous variables and
other clean instruments, and W contains Z and the variables in X that were excluded from Z
because of the possibility that they might be dirty.  In this case, 2SLS using W reduces to OLS,
and the problem is to test whether the regression can be estimated consistently by OLS.  
(2) The regression may contain known endogenous and known exogenous variables, Z is an array
that contains the known exogenous variables and other clean instruments, and W is an array that
contains Z and additional suspect instruments from outside the equation.  In this case, one has
a consistent 2SLS estimator using instruments Z, and a 2SLS estimator using instruments W that
is more efficient under the hypothesis that W is exogenous, but inconsistent otherwise.   The
question is whether to use the more inclusive array of instruments.  
(3) The regression may contain known endogenous, known exogenous, and suspect
right-hand-side variables, Z is an array that contains the known exogenous variables plus other
instruments from outside the equation, and W is an array that contains Z plus the suspect
variables from the equation.  The question is whether it is necessary to instrument for the suspect
variables, or whether they are clean and can themselves be used as instruments.

In the regression y = Xβ + �, you can play it safe and use only the Z instruments.  This gives
bQ = (X�QX)-1X�Qy, where Q = (L�)-1Z(Z�ΩZ)-1Z�(L)-1.  Alternately, you use W, including the suspect
instruments, taking a chance with inconsistency to gain efficiency.  This gives 

                          bP = (X�PX)-1X�Py, where P = (L�)-1W(W�ΩW)-1W�(L)-1.

If the suspect instruments are clean and both estimators are consistent, then bQ and bP should be close
together, as they are estimates of the same β; further, bP is efficient relative to bQ, implying that the
covariance matrix of (bQ - bP) equals the covariance matrix of bQ minus the covariance matrix of bP.
However, if the suspect instruments are contaminated, bP is inconsistent, and (bQ - bP) has a nonzero
probability limit.  This suggests a test statistic of the form 

(15)                                   (bQ - bP)�[V(bQ) - V(bP)]
(bQ - bP), 

where [�]
 denotes a generalized inverse, could be used to test if W is clean.  This form is the
exogeneity test originally proposed by Hausman.  Under the null hypothesis that W is clean, this
statistic will be asymptotically chi-square with degrees of freedom equal to the rank of the
covariance matrix in the center of the quadratic form.

Another formulation of an exogeneity test is more convenient to compute, and can be shown
(in one manifestation) to be equivalent to the Hausman test statistic.  This alternative formulation
has the form of an omitted variable test, with appropriately constructed auxiliary variables.  We
describe the test in the case E��� = σ2I and leave as an exercise the extension to the case .E��� = σ2Ω.

First do an OLS regression of X on Z and retrieve fitted values X* = QX, where Q =
Z(Z�Z)-1Z�.  (This is necessary only for variables in X that are not in Z, since otherwise this step just
returns the original variable.)  Second, using W as instruments, do a 2SLS regression of y on X, and
retrieve the sum of squared residuals SSR1.  Third, do a 2SLS regression of y on X and a subset of
m columns of X* that are linearly independent of X, and retrieve the sum of squared residuals SSR2.
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Finally, form the statistic [(SSR1 - SSR2)/m]/[SSR2/(n-k)].  Under the null hypothesis that W is clean,
this statistic has an approximate F-distribution with m and n-k degrees of freedom, and can be
interpreted as a test for whether the m auxiliary variables from X* should be omitted from the
regression.  When a subset of X* of maximum possible rank is chosen, this statistic turns out to be
asymptotically equivalent to the Hausman test statistic.  Note that if W contains X, then the 2SLS
in the second and third steps reduces to OLS.

We next show that this test is indeed an exogeneity test.  Consider the 2SLS regression 

                                                 y = Xβ + X1
*γ + η, 

where X1
* is a subset of X* = QX such that [X,X1

*] is of full rank.  The 2SLS estimates of the
parameters in this model, using W as instruments, satisfy

     =  =  . 
bP

cP

X�PX X�QX1

X1�QX X1�QX1

�1 X�Py
X1�Qy

β
0

�

X�PX X�QX1

X1�QX X1�QX1

�1 X�P�
X1�Q�

But X�Q�/n �p plim(X�Z/n)�(plim(Z�Z/n))-1�plim(Z��/n) = 0 by assumptions [1]-[4] when Z is clean.
Similarly, X�P�/n �p GH-1�plim(W��/n) = 0 when W is clean, but X�P�/n �p GH-1�plim(W��/n) � 0
when W is contaminated.  Define

      = . 
X�PX/n X�QX1/n

X1�QX/n X1�QX1/n

�1 A11 A12

A21 A22

From the formula for a partitioned inverse,

A11 = (X�[P - QX1(X1�QX1)-1X 1�Q]X/n)-1

A22 = (X 1�Q[I - X(X�PX)-1X�]QX1/n)-1

A21 = -(X 1�QX1)-1X 1�QX�A11 = -A22(X 1�QX)(X�PX)-1 = A12 �

   Hence,

(16)                      cP = A22�{X1�Q�/n - (X1�QX)(X�PX)-1�X�P�/n}. 

If W is clean and satisfies assumptions [4] and [5], then cP �p 0 and n1/2cP is asymptotically normal.
On the other hand, if W is contaminated, then cP has a non-zero probability limit.  Then, a test for
γ = 0 using cP is a test of exogeneity.  

The test above can be reinterpreted as a Hausman test involving differences of bP and bQ.
Recall that bQ = β + (X�QX)-1X�Q� and bP = β + (X�PX)-1X�P�.  Then

(17)               (X�QX)(bQ - bP) = {X�Q�/n - (X�QX)(X�PX)-1�X�P�/n}. 

Then in particular for a linearly independent subvector X1 of X,

   A22(X1�QX)(bQ - bP) = A22{X1�Q�/n - (X1�QX)(X�PX)-1�X�P�/n} = cP.
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Thus, cP is a linear transformation of (bQ - bP).  Then, testing whether cP is near zero is equivalent to
testing whether a linear transformation of (bQ - bP) is near zero.  When X1 is of maximum rank, this
equivalence establishes that the Hausman test in its original form is the same as the test for cP.

6. EXOGENICITY TESTS ARE GMM TESTS FOR OVER-IDENTIFICATION

The Hausman Exogeneity Test.  Consider the regression model y = Xβ + �, and suppose one
wants to test the exogeneity of p variables X1 in X.  Suppose R is an array of instruments, including
X2; then Z = PRX1 are instruments for X1.  Let W = [Z X] be all the variables that are orthogonal to
� in the population under the null hypothesis that X and � are uncorrelated.  As in the omitted
variables problem, consider the test statistic for over-identifying restrictions, 2nQn = minbu�PWu/σ2,
where u = y - Xb.  Decompose PW = PX + (PW - PX).  Then u�(PW - PX)u = y�(PW - PX)y and the

minimizing b sets u�PXu = 0, so that 2nQn = y�(PW - PX)y/σ2.  Since PW - PX = , one also hasPQXW

2nQn = y� y.  This statistic is the same as the test statistic for the hypothesis that thePQXW

coefficients of Z are zero in a regression of y on X and Z; thus the test for over-identifying
restrictions is an omitted variables test.  One can also write 2nQn = ��W - �X�

2/σ2, so that a
computationally convenient equivalent test is based on the difference between the fitted values of
y from a regression on X and Z and a regression on X alone.  Finally, we will show that the statistic
can be written

2nQn = (b1,2SLS - b1,OLS)[V(b1,2SLS) - V(b1,OLS)]-1(b1,2SLS - b1,OLS). 

In this form, the statistic is the Hausman test for exogenicity in the form developed by Hausman and
Taylor, and the result establishes that the Hausman test for exogeneity is equivalent to a GMM test
for over-identifying restrictions.

Several steps are needed to demonstrate this equivalence.  Note that b2SLS =
(X�PMX)-1X�PMy, where M = [Z X2].  Write

b2SLS - bOLS = (X�PMX)-1X�PMy - (X�X)-1X�y 
= (X�PMX)-1[X�PM - X�PMX(X�X)-1X�]y 

= (X�PMX)-1X�PMQXy.   

Since X2 is in M, PMX2 = X2, implying X�PMQX =  =  = . 
X1�PMQX

X2�PMQX

X1�PMQX

X2�QX

X1�PMQX

0

Also, X�PMX =  = .  Then  = (X�PMX)(b2SLS

X1�PMX1 X1�PMX2

X2�PMX1 X2�PMX2

X1�PMX1 X1�X2

X2�X1 X2�X2

X1�PMQXy

0
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- bOLS) � .   From the second block of equations, one obtains
X1�PMX1 X1�X2

X2�X1 X2�X2

b1,2SLS � b1,OLS

b2,2SLS � b2,OLS

the result that the second subvector is a linear combination of the first subvector.  This implies that
a test statistic that is a function of the full vector of differences of 2SLS and OLS estimates can be
written equivalently as a function of the first subvector of differences.  From the first block of
equations, substituting in the solution for the second subvector of differences expressed in terms
of the first, one obtains

[X1�PMX1 - X1�X2(X2�X2)-1X2�X1](b1,2SLS - b1,OLS) = X1�PMQXy 

The matrix on the left-hand-side can be rewritten as X1�PM PMX1, so that QX2

b1,2SLS - b1,OLS = (X1�PM PMX1)-1X1�PMQXy. QX2

Next, we calculate the covariance matrix of b2SLS - bOLS, and show that it is equal to the
difference of V(b2SLS) = σ2(X�PMX)-1 and V(bOLS) = σ2(X�X)-1.  From the formula b2SLS - bOLS =
(X�PMX)-1X�PMQXy, one has V(b2SLS - bOLS) = σ2(X�PMX)-1X�PMQXPMX(X�PMX)-1.
On the other hand,

V(b2SLS) - V(bOLS) = σ2(X�PMX)-1{X�PMX - X�PMX(X�X)-1X�PMX}(X�PMX)-1

= σ2(X�PMX)-1{X�PM[I - X(X�X)-1X�]PMX}(X�PMX)-1 
= σ2(X�PMX)-1X�PMQXPMX(X�PMX)-1. 

Thus, V(b2SLS - bOLS) = V(b2SLS) - V(bOLS).  This is a consequence of the fact that under the null
hypothesis OLS is efficient among the class of linear estimators including 2SLS.  Expanding the
center of this expression, and using the results PMX2 = X2 and hence QXPMX2 = 0, one has

X�PMQXPMX = . 

X1�PMQXPMX1 0

0 0

Hence, V(b2SLS) - V(bOLS) is of rank p; this also follows by noting that b2,2SLS - b2,OLS could be written
as a linear transformation of b1,2SLS - b1,OLS.

Next, use the formula for partitioned inverses to show for N = M or N = I that the northwest

corner of is .  Then, 
X1�PNX1 X1�X2

X2�X1 X2�X2

�1

(X1�PNQX2
PNX1)

�1

V(b1,2SLS - b1,OLS) = σ2(X1�PM PMX1)-1X1�PMQXPMX1(X1�PM PMX1)-1. QX2
QX2

Using the expressions above, the quadratic form can be written

(b1,2SLS - b1,OLS)V(b1,2SLS - b1,OLS)-1(b1,2SLS - b1,OLS)
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= y�QXPMX1(X1�PMQXPMX1)-1X1�PMQXy/σ2. 

Finally, one has, from the test for over-identifying restrictions,

2nQn = y�(PW - PX)y/σ2 = /σ2y�PQXWy

� y�QXPMX1(X1�PMQXPMX1)-1X1�PMQXy/σ2, 

so that the two statistics coincide.

A Generalized Exogenicity Test: Consider the regression y = X1β1 + X2β2 + X3β3 + �, and the
null hypothesis that X1 is exogenous, where X2 is known to be exogenous, and X3 is known to be
endogenous.  Suppose N is an array of instruments, including X2, that are sufficient to identify the
coefficients when the hypothesis is false.  Let W = [N X1] be the full set of instruments available
when the null hypothesis is true.   Then the best instruments under the null hypothesis are Xo = PWX
� [X1  X2  X3*], and the best instruments under the alternative are Xu = PNX � [X1*  X2  X3*].  The

test statistic for over-identifying restrictions is 2nQn = y�( - )y/σ2, as in the previous cases.PXo
PXu

This can be written 2nQn = (  - )/σ2, with the numerator the difference in sum ofSSRXo
SSRXu

squared residuals from a OLS regression of y on Xu and a OLS regression of y on Xo.  Also, 2nQn

= �  - �2/σ2, the difference between the fitted values of y from a regression on Xu and a�Xo
�Xu

regression on Xo.  Finally,

2nQn = - ) - )]
 - ), (b2SLSo
b2SLSu

)�[V(b2SLSu
V(b2SLSo

(b2SLSo
b2SLSu

an extension of the Hausman-Taylor exogeneity test to the problem where some variables are suspect
and others are known to be exogenous.  One can show that the quadratic form in the center of this
quadratic form has rank equal to the rank of X1, and that the test statistic can be written equivalently
as a quadratic form in the subvector of differences of the 2SLS estimates for the X1 coefficients, with
the ordinary inverse of the corresponding submatrix of differences of variances in the center of the
quadratic form.  

7. INSTRUMENTAL VARIABLES IN TIME-SERIES MODELS

The treatment of IV estimation up to this point applies in principle to observations made
either in cross section or over time.  For example, if the observations correspond to time periods and
E(����W) = σ2Ω with Ω either known or estimated, the 2SLS estimator (2) or the two-stage feasible
generalized least squares estimator (10) with Ω estimated using residuals obtained by application of
(2), can be applied to problems where the structure of Ω comes from serial correlation. However, for
time series applications it is useful to examine in more detail the structure of W and the orthogonality
conditions used in forming IV estimators.  In particular, one should  ask how conventional sources



     1The situation in which all the variables in a model follow the same AR process does has some chance of arising in stationary
state equilibria, because equilibrium pressures may force all variables to move nearly in lock-step along a dynamic path
determined by the largest root of the system.
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of contamination in explanatory variables such as omitted variables or measurement error and
conventional sources of serial correlation such as behavioral lags in adjustment are likely to affect
the serial correlation structure of disturbances and the correlation of contemporaneous disturbances
with explanatory variables for various transformations of the model.

Start with the example of a linear model with measurement error in explanatory variables,
and suppose that in the absence of this measurement error problem the disturbance in the equation
would follow an AR1 process.  Let zt denote the ideal variables without measurement error, and xt
= zt + ηt denote the observed explanatory variables.  Then, the model can be written

yt = ztβ + �t with �t = ρ�t-1 + νt, 
or

(18)     yt = xtβ + νt - ηtβ  + ρνt-1 + ρ2νt-2 + ...,

where the νt are i.i.d. innovations and ρ2 < 1.  This model can also be written

(19)     yt = yt-1ρ + xtβ - xt-1βρ + (νt - ηtβ + ηt-1βρ).

The form (19) removes the serial correlation in the ideal equation disturbance, but in doing so
introduces a moving average of the measurement errors.  Only in the unlikely case that all
components of ηt follow an AR1 process with the same ρ as the �t process will serial correlation be
fully removed.1  Application of OLS to either (18) or (19) will then in general result in inconsistent
estimates.  The issue for application of IV methods is whether proper instruments can be found.  In
(18), the variables in xt that are measured with error would require instrumenting.  If the zt are
serially correlated, and the ηt are not, then xt-1, xt-2,... are potential clean instruments for xt.  However,
if there is serial correlation in the measurement errors, one would need to find proper instruments
from outside the model.  In (19), all of the explanatory variables yt-1, xt, and xt-1 are contaminated,
but if the zt  are correlated with a sufficiently long lag and the ηt are uncorrelated, then xt-2, xt-3, xt-4,...
are potential clean instruments.  It is important to not introduce x's with too high lags as instruments,
because this requires truncating the sample in order to observe the instruments for each date used
in the estimation, and the good statistical properties of the IV method begins to break down as the
number of instruments ceases to be small relative to the remaining sample size.

Omitted variables leads to models similar to (18) and (19).  In this case, interpret the
disturbance in the model yt= xtβ + �t as including the omitted variables.  If these omitted variables
are themselves serially correlated, then they will induce serial correlation in �t, perhaps adding to
serial correlation in a disturbance component that arises for reasons other than omitted variables.
A transformation of the model in this case may be able to remove serial correlation in the
disturbance, but does not remove the contamination.  The issue will be to find proper instruments.
If the included x's are themselves serially correlated and the final disturbance is AR1, then the
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equation yt = yt-1ρ + xtβ - xt-1βρ + �t - ρ�t-1 obtained by partial differencing will have yt-1, xt-1, xt-2,...
as potential clean instruments.  For this to work, the AR1 specification for �t must be correct, and
xt must not have the same AR1 process.

The preceding examples illustrate several important points about the use of IV methods in
time-series models.  First, there is likely to be an interaction between the source of the contamination
and the nature of the serial correlation in the model.  Second, the process followed by the explanatory
variables will determine what variables are clean (i.e., uncorrelated with the contemporaneous
disturbance) and  what variables might be available as instruments.  Third, choice of instruments is
not clear-cut, and may involve the question of what variables are potential clean instruments and how
many potential instruments to introduce given the fairly poor  small sample properties of IV.  The
use of lags of yt or xt as instruments exacerbates the sample size problem, since it decreases the
operating sample size as the number of instruments rises.  Further, lagged variables may fail to be
proper instruments, either because assumptions of zero correlation are not robust and fail due to a
more complex pattern of serial correlation than the econometrician assumes, or because these lagged
variables are not correlated with the variables they are instrumenting.  Together, these observations
suggest that careful consideration of  the nature of contamination and serial correlation is needed in
time-series applications of IV, and that this method be used with caution.

8. INSTRUMENTAL VARIABLES IN NONLINEAR MODELS

The method of instrumental variables in its most commonly used 2SLS form is applied to
models linear in variables and in parameters, y = Xβ + �.  If there are proper instruments W for X
and if E(��W) = σ2I, then the 2SLS estimator (2) is consistent for β and efficient among all IV
estimators using these instruments; see the theorem in Section 3.  However, the orthogonality
conditions invoked to justify the IV method  do not necessarily extend to nonlinear transformations,
because expectations are not preserved.  For example, economic applications may postulate a zero
correlation between variables for behavioral reasons, such as the rational expectations  hypothesis
that intertemporally optimized consumption is a random walk whose  innovations are uncorrelated
with history.  This is not sufficient to guarantee that innovations in a nonlinear transformation of
consumption are uncorrelated with  history.  To investigate what happens without linearity, consider
three cases of nonlinearity:

(a) Models nonlinear in parameters only:  y = xβ(θ) + �
(b) Models nonlinear in variables only:  y = f(x)β + �
(c) Models nonlinear in both variables and parameters:  y = h(x,θ) + �

A case such as (a) might arise for example when partial differencing is done to handle AR1 serial
correlation.  In this case, y = xα + η and η = ρη-1 + ν with ν i.i.d., and transformation yields y = ρy-1
+ xα - x-1αρ + ν, a model that has i.i.d. disturbances, but the parameters α and ρ appearing in
nonlinear combination.  Suppose in the model (a) that one first does an OLS regression of x on
proper instruments w, and retrieves fitted values x*, and second does a nonlinear least squares
regression for the model y = x*β(θ) + �*.  Examine the first-order conditions for the last  regression,



     2The usual limiting regularity conditions are assumed to hold, as in Section 3, and the parameter θ is assumed to be identified
in the sense the mapping from θ to β is one-to-one for β in its range.
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and show as an exercise that orthogonality of the instruments and the disturbances in the original
regression implies consistency, just as in the fully linear case.2 , It is the linearity of the first-order
condition in the instruments and in � that guarantees that the initial condition that the instruments
be uncorrelated with � continues to suffice.

Next consider the case y = f(x)β + � with nonlinear transformation of the explanatory
variables but linearity in parameters.  If instruments w are available that are uncorrelated with � and
fully correlated with f(x), then GMM estimation using the criterion function

(20)  � � ,�
N

i�1
wi(yi � f(xi)β)

'

�
N

i�1
wiwi�

�1

�
N

i�1
wi(yi � f(xi)β)

will be consistent; see Chapter 3.  Solution of this GMM problem can be given a 2SLS
interpretation:  First do an OLS regression of f(xi) on wi, and retrieve fitted values f*, then do an OLS
regression of yi on f*.  Then, the form and computation of the IV estimator are not affected by
nonlinearity in variables.  However, there are substantial issues regarding specification of the
instruments.  In particular, given an initial set of "raw" instruments z, should they be given nonlinear
transformations to improve the efficiency of the IV estimator?  An initial issue is  whether postulated
orthogonality of z and � will be preserved for nonlinear transformations of z.  This will depend on
the economic application and the nature of z.  If the application can guarantee only that z is
uncorrelated with �, this property will not in general be preserved under nonlinear transformation,
and the only clean instruments w will be the untransformed z.  However, if the application can
guarantee that z is statistically independent of �, then any nonlinear transformation of z will be
uncorrelated with �, and is a potential clean instrument.   For the remainder of this section, assume
that z and � are statistically independent.

What transformations of z make good instruments?  In some cases it is feasible to apply the
nonlinear transformation f to zi, and tempting to use f(zi) to instrument f(xi).  For example, if xi is
a variable measured with error, and zi is an independent measurement of the same variable, then
provided one is persuaded that the error in zi is statistically independent of �i, f(zi) seems to be a
reasonable instrument for f(xi); e.g., log(zi) seems to be a natural instrument for log(xi).   This is a
practical thing to do, and will often give a more precise IV estimator than one that just uses the raw
instruments.  However, it will not in general yield the most efficient possible IV estimator.  The
reason for this is the proposition that expectations are not preserved under nonlinear transformations.

The best instruments are given by the conditional expectation of f(xi) given zi:  w* � ω(zi) =
E(f(xi)�zi).  To see this, first observe that the asymptotic covariance matrix for the IV estimator using
instruments wi that are any specified transformations of zi is

 σ2[(Ew�f(x))�(Ew�w)-1(Ew�f(x))]-1.  But Ew�f(x) =  Ezw�Ex�zf(x) = Ezw�w*.  

The asymptotic covariance matrix of this IV estimator can be  written
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 σ2[(Ew�w*)�(Ew�w)-1(Ew�w*)]-1.  

If w = w*, this covariance matrix reduces to  σ2(Ew*�w*)-1.  It is a standard exercise to show that w
= w* minimizes the asymptotic variance.  Let F = Ew*�w*, G = Ew�w*, and H = Ew�w.  Then the
quadratic form

          [I  -G�H-1]� �[I  -G�H-1]� = F - G�H-1G
F G�

G H

is positive semidefinite, which implies that [G�H-1G]-1 - F-1 is positive semidefinite.  From this result,
the IV estimator using the instruments w* is called the best nonlinear 2SLS estimator (BN2SLS). 

In general, the BN2SLS estimator is not practical in applications because computation of the
conditional expectation Ex�zf(x) is intractable.  Obviously, in any application where direct
computation of Ex�zf(x) is tractable, it should be used.  In the remaining cases, it is possible to
approximate Ex�wf(x).  A method proposed by Kelejian (1971) and Amemiya (1974) is to make an
approximation in terms of low-order polynomials in the raw instruments z; i.e., regress f(xi) on zi,
squares and cross-products of components of zi, third-order interactions, and so forth.  One
interpretation of this procedure is that one is making a series approximation using the leading terms
in a Taylor's expansion of Ex�wf(x), or in other words the low order conditional moments of x given
w.  This method can be implemented in the LSQ procedure in TSP by expanding the list of specified
instruments in the command to include the desired low-order polynomials in the raw instruments.
Viewed more generally, the expression Ex�zf(x) can be written as

(21)     Ex�zf(x) = f(x)�g(x�z)�dx � ψ(z),�x

where g(x,z) is the joint density of x and z, and g(x�z) is the conditional density of x given z.  If
g(x�z) is known (or can be estimated consistently as a parametric function), but analytic computation
of the integral is intractable, it may be possible to use simulation methods, drawing a
"pseudo-sample" xij from g(x�zi) for j = 1,...,J and estimating Ex�zf(x) as the mean of f(xij) in this
pseudo-sample.  If the pseudo-sample size J grows at a sufficient rate with sample size (typically,
faster than N1/2), then IV using this approximation will have the same asymptotic  covariance matrix
as BN2SLS.  If the conditional density is itself not known or tractable, it may be possible to estimate
it nonparametrically, say using a kernel estimator; see Chapter 7.  Alternately, viewing ψ(z) as a
nonparametric function of  z, the problem can be approached as a nonparametric regression f(xi) =
ψ(zi) + ζi, and ψ estimated by a variety of nonparametric procedures; again see Chapter 7.  In
particular, one approach to nonparametric regression is series approximation, where ψ(zi) is
approximated by a linear combination of initial terms in a series approximation.  In particular, the
Kelejian-Amemiya method falls within this class,  and nonparametric estimation theory provides a
guide to choice of the truncation level as a function of sample size.  The bottom line is that by
simulation or nonparametric procedures, one may be able to "adaptively" achieve the asymptotic
covariance matrix of the BN2SLS estimator without having to solve an intractable problem of
determining Ex�zf(x) analytically.  Existing software may not be sufficiently "adaptive" to
automatically achieve the BN2SLS asymptotic efficiency  level, so that it is up to the user to specify
instruments in a form that achieves this adaptation.  In practice, the issue of adaptiveness has no real
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bite in determining a good set of instruments in a given finite data set, and the properties of the
asymptotic approximation may not tell you much about the actual finite-sample distribution of your
estimators.  Bootstrap methods, discussed in Chapter 7, may be one useful way to give a better
approximation to finite-sample distributions and guide choice among estimators using different sets
of instruments.

Finally, consider models that are nonlinear in both variables and parameters, y = h(x,θ) + �.
First observe that if there are proper raw instruments z, then minimizing the GMM criterion

(22)  �� -1��
N

i�1
zi(yi � h(xi,θ)) �

N

i�1
zizi� �

N

i�1
zi(yi � h(xi,θ))

in θ will produce a consistent initial estimator θN for θ.  There is an iterative procedure that can be
used to calculate θN.  From starting values θ(0), suppose one has reached θ(r).  Linearize the model
about θ(r), obtaining

(23)  yi - h(xi,θ(r)) = f(r)(xi)�(θ - θ(r)) + υi,

where f(r)(xi) = θh(xi,θ(r)) and υi is a disturbance that includes the remainder from the linear
approximation.  Apply conventional 2SLS to this model, with the instruments zi.  The estimated
coefficients provide the adjustments that produce the next iterate θ(r+1).  For a suitably chosen starting
point, the iterates θ(r) will converge to a limit at θN.  It may be necessary to consider alternative
starting values to obtain convergence to the minimand of the GMM criterion.

Start from the consistent initial estimator θN, and the linearized model (23) evaluated at θN,
with fN(x) = θh(xi,θN).  Treating θN as a vector of constants, (23) now has the same form as the
model that is nonlinear in variables but linear in parameters that was discussed above.  As in the
previous case, estimate this model using 2SLS and an approximation to the best instruments
Ex�zfN(x); this will approximate the BN2SLS estimator.  This procedure, with the best instruments
approximated by user-specified combinations of the raw instrumental variables, is used by the LSQ
command in TSP.  It is possible to iterate the procedure described in this paragraph, but the first
application of the procedure is already asymptotically equivalent to the BN2SLS estimator (provided
the approximation to the best instruments is adaptive), and there is no further gain in (first-order)
asymptotic efficiency from iteration.

Exercise 1.  The usual asymptotic analysis of IV estimators assumes that the full correlation
condition holds in the limit (see Section 3, assumption [3]).  In some applications, the degree of
correlation of instruments and explanatory variables is so weak that this is a poor asymptotic
approximation, and a better one is X�W/n - G1 - G2/n1/2 �p 0, where G1 is a matrix of rank less than
k, but for each finite n, G1 + G2/n1/2 is of full rank k.  What is the limiting distribution of the IV
estimator under this “asymptotically weak instrument” assumption?  Do the analysis for the simple
case of a single explanatory variable that is contaminated and a single instrument.

Exercise 2.  An econometrician implements an IV procedure by first running a OLS regression of
the contaminated explanatory variables on a subset of the available instruments that excludes some
uncontaminated explanatory variables, then a second stage OLS.  Is this consistent?


