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CHAPTER 7. ROBUST METHODS IN ECONOMETRICS

1. THE PARAMETERS OF ECONOMETRICS

Econometrics deals with complex multivariate relationships and employs non-experimental
or "field" data that are influenced by many factors.  Occasionally econometricians have data from
designed experiments in which treatments are randomized, and/or other factors are held constant, to
assure that there can be no confounding of the measured effects of treatments.  Almost as good are
“natural experiments”, also called “quasi-experiments”, in field data where a factor of direct interest
(or an instrument correlated with a factor of interest) has clearly operated in a manner that is
independent of confounding effects. The scientific value of such quasi-experiments is high, and
econometricians should actively seek designed or natural experiments that can illuminate economic
issues. That said, there remain important problems in economic theory and policy for which
experimental data are not available within the time frame in which answers are needed.  It is
imperative that econometricians deal with these problems using the best tools available, rather than
reverting to an orthodoxy that they are too "messy" for econometric treatment.  

Econometricians must make educated guesses about the structure of the data generation
processes in non-experimental data.  The studies that result rely on these structural assumptions can
be misleading if the assumptions are not realistic.  This has important implications for the conduct
of econometric analysis.  First, it is desirable to have large data sets in which the "signal" contained
in systematic relationships is strong relative to the "statistical noise".  Second, it is important to
"proof" econometric models, testing the plausibility of the specification both internally and against
other data and other studies, and avoiding complex or highly parametric formulations whose
plausibility is difficult to check.  Fourth, it is desirable to use statistical methods that are "robust" in
the sense that they do not force conclusions that are inconsistent with the data, or rely too heavily
on small parts of the data.

Most of classical econometric analysis, from linear regression models to maximum likelihood
estimation of non-linear models, lays out the assumptions under which the procedures will produce
good statistical results, and simply assumes that these postulates can be checked and will be checked
by users.  To some extent, the development of diagnostic and specification tests provides the capacity
to make these checks, and good econometric studies use these tests.  However, some basic
assumptions are difficult to check, and they are too often accepted in econometric studies without
serious examination.  Fortunately, in many economic applications, particularly using linear models,
the analysis is more robust than the assumptions, and sensibly interpreted will provide useful results
even if some assumptions fail.   Further, there are often relatively simple estimation alternatives that
provide some protection against failures, such as use of instrumental variables or
heteroskedasticity-consistent standard errors.  New developments in econometrics expand the menu
of procedures that provide protection against failures of classical assumptions.  This chapter
introduces three areas in which "robust" methods are available: the use of nonparametric and
semiparametric methods, the use of simulation methods and "indirect inference", and the use of
bootstrap methods.
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Econometrics first developed from classical parametric statistics, with attention focused on
linear systems.  This was the only practical alternative in an era when computation was difficult and
data limited.  Linear parametric models remain the most useful tool of the applied econometrician.
However, the assumption of known parametric functional forms and distributions interposes an
untidy veil between econometric analysis and the propositions of economic theory, which are mostly
abstract without specific dimensional or functional restrictions.  Buoyed by good data and computers,
contemporary econometricians have begun to attack problems which are not a priori parametric.
One major line of attack is to use general nonparametric estimation methods to avoid distributional
assumptions.  The second, closer to classical methods, is to use flexible forms to approximate
unknown functions, and specification tests to search for parsimonious representations.  The added
dimension in a modern rendition of the second approach is explicit recognition of the statistical
consequences of adding terms and parameters as sample sizes grow.

Many problems of econometric inference can be cast into some version of the following
setup: There is a random vector (Y,X) � �k×�m such that X has a (unknown) density g(x) and almost
surely Y has a (unknown) conditional density f(y�x).  There is a known transformation t(y,x) from
�k×�m into the real line �, and the conditional expectation of this transformation, θ(x) =
E(t(Y,x)�X=x), is the target of the econometric investigation.  Examples of transformations of
interest are (1) t(y,x) � y, in which case θ(x) = E(Y�X=x) is the conditional expectation of Y given
x, or the regression function of Y on x; (2) t(y,x) = yy�, in which case θ(x) = E(YY��X=x) is the
array of second conditional moments, and this function combined with the first example,
E(YY��X=x) - {E(Y�X=x)}{E(Y�X=x)}� is the conditional variance; and (3) t(y,x) = 1A(y), the
indicator function of the set A, in which case θ(x) is the conditional probability of the event A, given
X = x.  Examples of economic applications are Y a vector of consumer demands, and x the vector
of income and prices; or Y a vector of firm net outputs and x a vector of levels of fixed inputs and
prices of variable inputs.

Define the disturbance � = �(y,x) � t(y,x) - θ(x).  Then the setup above can be summarized
as a generalized regression model,

   t(y,x) = θ(x) + �,

where E(��x) = 0.  Econometric problems fitting this setup can be classified as fully parametric;
semiparametric; or nonparametric.  The model is fully parametric if the function θ and the
distribution of the disturbance � are both known a priori to be in finite-parameter families.  The
model is nonparametric if both θ and � have unknown functional forms, except possibly for shape
and regularity properties such as concavity or continuous differentiability.  The model is
semiparametric if it contains a finite parameter vector, typically of primary interest, but parts of θ
and/or the distribution of � are not restricted to finite-parameter families.  This is a rather broad
definition of semiparametric, which includes for example linear regression under Gauss-Markov
conditions where the distribution of the disturbances is not restricted to a parametric family, and only
the first two moments are parametric.  Some econometricians prefer to reserve the term
semiparametric for situations where the problem can be characterized as one with a
finite-dimensional parameter vector that is the target of the analysis and an infinite-dimensional
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vector of nuisance parameters (which might, for example, determine an unknown function), for it
is in this case that non-classical statistical methods are needed.

Where can an econometrician go wrong in setting out to analyze the generalized regression
relationship t(y,x) = θ(x) + �?  First, there is nothing in the formulation of this model per se that
assures that θ(x) has any causal or invariance properties that allow it to be used to predict the
distribution of values of t(y,x)  if the distribution of x shifts.  Put another way, the model will by
definition be descriptive of the conditional mean in the current population, but not necessarily
predictive under policy changes that alter the distribution of x.  Because econometricians are often
interested in conditional relationships for purposes of prediction or analysis of policy scenarios, this
is potentially a severe limitation.   The prescription for "robust" causal inference is to use statistical
methods and tests that can avoid or detect joint or "wrong-way" causality (e.g., instrumental
variables, Granger invariance tests in time series, exogeneity tests); avoid claiming causal inferences
where confounding of effects is possible; and avoid predictions that require substantial extrapolation
from the data.  Second, when θ(x) is approximated by a parametric family, there will be a
specification error if the parametric family fails to contain θ(x).  Specification errors are particularly
likely if the parametric family leaves out variables or variable interactions that appear in the true
conditional expectation.  Third, the only property that is guaranteed for the disturbances � when θ(x)
is correctly specified is the conditional first moment condition E(��x) = 0.  There is no guarantee that
the conditional distribution of � given x is independent of x, or for that matter that the variance of
� is homoskedastic.  In addition, there is no guarantee that the distribution of � has thin enough tails
so that higher moments exist, or are sufficiently well behaved so that estimates are not unduly (and
unstably) influenced by a small number of high influence observations.  In these circumstances,
statistical methods that assume well-behaved disturbances can be misleading, and better results may
be obtained using methods that bound the influence of tail information.  At minimum, it is often
worth providing estimates of estimator dispersion that are consistent in the presence of various likely
problems with the disturbances.

In statistics, there is a fairly clear division between nonparametric statistics, which worries
about the specification of θ(x) or about tests of the qualitative relationship between x and t, and
robust statistics, which worries about the properties of �.  In econometrics, both problems appear,
usually together, and it is useful to refer to the treatment of both problems in economic applications
as robust econometrics.

Despite the leading place of fully parametric models in classical statistics, elementary
nonparametric and semiparametric methods are used widely without fanfare.   Histograms are
nonparametric estimators of densities.  Contingency tables for data grouped into cells are one
approach to estimating a regression function nonparametrically.  Linear regression models, or any
estimators that rely on a finite list of moment conditions, can be interpreted as semiparametric, since
they do not require complete specification of the underlying distribution function.

2.  HOW TO CONSTRUCT A HISTOGRAM

One of the simplest examples of a nonparametric problem is that of estimating an unknown
univariate unconditional density g(x), given a random sample of observations xi for i = 1,...,n.
Assume, by transformation if necessary, that the support of g is the unit interval.  An elementary
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method of approximating g is to form a histogram:  First partition the unit interval into K segments
of length 1/K, so that segment k is (ck-1,ck] with ck = k/K for k = 0,...,K.  Then estimate g within a
segment by the share of the observations falling in this segment, divided by segment length.  If you
take relatively few segments, then the observation counts in each segment are large, and the variance
of the sample share in a segment will be relatively small.  On the other hand, if the underlying
density is not constant in the segment, then this segment average is a biased estimate of the density
at a point.  This bias is larger when the segment is longer.  Segment length can be varied to balance
variance against bias.  As sample size rises, the number of segments can be increased so that the
contributions of variance and bias remain balanced.

Suppose the density g has the following smoothness property:

   �g(x�) - g(x)� � L�x� - x�,

where L is a positive constant.  Then the function is said to satisfy a Lipschitz condition.  If g is
continuously differentiable, then this property will be satisfied.  Let nk be the number of observations
from the sample that fall in segment k.  Then, the histogram estimator of g at a specified argument
x is

�(x) = Knk/n  for x � (ck-1,ck].

Compute the variance and bias of this estimator.  First, the probability that an observation falls in

segment k is the segment mean of g, pk = K� g(x)dx.  Then, nk has a binomial distribution with�
ck

ck�1

probability pk/K, so that it has mean npk/K and variance n(pk/K)(1 - pk/K).  Therefore, for xo �
(ck-1,ck], �(xo) has mean pk and variance (K/n)pk(1 - pk/K).  The bias is BnK(x) = pk - g(x).  The mean
square error of the estimator equals its variance plus the square of its bias, or

MSE(x) = (K/n)pk(1 - pk/K) + (pk - g(x))2.

A criterion for choosing K is to minimize the mean square error.  Looking more closely at the bias,
note that by the theorem of the mean, there is some argument zk in the segment (ck-1,ck] such that pk/K

= g(x)dx = g(zk) dx = g(zk)/K.  Then, using the Lipschitz property of g,�
ck

ck�1 �
ck

ck�1

�pk - g(x)� = �g(zk) - g(x)� � L�zk - x� � L/K,

Then, the MSE is bounded by 

MSE(x) � (K/n)pk(1 - pk/K) + L2/K2.

Approximate the term pk(1 - pk/K) in this expression by g(x), and then minimize the RHS in K.  The
(approximate) minimand is K = (2L2n/g(x))1/3, and the value of MSE at this minimand is
approximately (Lg(x)/2n)2/3.  Of course, to actually do this calculation, you have a belling-the-cat
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problem that you need to know g(x).  However, there are some important qualitative features of the
solution.  First, the optimal K goes up in proportion to the cube root of sample size, and MSE
declines proportionately to n-2/3.  Compare this with the formula for the variance of parametric
estimators such as regression slope coefficients, which are proportional to 1/n.  Then, the histogram
estimator is consistent for g, since the mean square error goes to zero.  However, the cost of not
being able to confine g to a parametric family is that the rate of convergence is lower than in
parametric cases.  Note that when L is smaller, so that g is less variable with x, K is smaller.

If you are interested in estimating the entire function g, rather than the value of g at a
specified point x, then you might take as a criterion the Mean Integrated Square Error (MISE),

MISE = E�(�(x) - g(x))2dx = E(�(x) - pk + pk - g(x))2dx�
K

k�1 �
ck

ck�1

=  E(Knk/n - pk)2/K + (pk - g(x))2dx�
K

k�1
�
K

k�1 �
ck

ck�1

= (1/n)pk(1 - pk/K) + (g(zk) - g(x))2dx�
K

k�1
�
K

k�1 �
ck

ck�1

� K/n + L2
�(zk - x)2dx � K/n + L2/3K2.�

K

k�1 �
ck

ck�1

The RHS of this expression is minimized at K = (2L2n/3)1/3, with MISE � (3L/2n)2/3.   Both
minimizing MSE at a specified x and minimizing MISE imply that the number of histogram cells
K grows at the rate n1/3.  When g(x) < 3, the optimal K for the MISE criterion will be smaller than
the optimal K for the MSE criterion; this happens because the MISE criterion is concerned with
average bias and the MSE criterion is concerned with bias at a point.  One practical way to
circumvent the belling-the-cat problem is to work out the value of K for a standard distribution; this
will often give satisfactory results for a wide range of actual distributions.  For example, the
triangular density g(x) = 2x on 0 � x � 1 has L = 2 and gives K = 2(n/3)1/3.   Thus, a sample of size
n = 81 implies K = 6, while a sample of size n = 3000 gives K = 20.

3.  KERNEL ESTIMATION OF A MULTIVARIATE DENSITY

One drawback of the histogram estimator is that it is estimating a continuous density by a
step function, and the constancy of this estimate within a cell and the steps between cells contribute
to bias.  There would seem to be an advantage to using an estimator that mimics the smoothness that
you know (believe?) is in the true density.  This section describes the commonly used kernel method
for estimating a multivariate density.

Suppose one is interested in estimating an unknown density g(x) for x = (x1,...,xm) in the
domain [0,1]m.  Suppose that g is not known to be in a parametric family, but is known to be strictly
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positive on the interior of [0,1]m and is known to have the following smoothness property: g is
continuously differentiable up to order p (where p � 0), and the order p derivatives satisfy a Lipschitz
condition.  Some notation is needed to make this precise.  Let r = (r1,...,rm) denote a vector of
non-negative integers, and �r� = � rj.  Let 

gr(x) =  	�r�g(x)

	x1
r1 � � � 	x

rm
m

denote the mixed partial derivative of g of order �r� with respect to the arguments in r.  The
assumption is that gr(x) exists and is continuous for all r satisfying �r� � p, and that there exists a
constant L such that �gr(x) - gr(y)� � L�x - y� for any r satisfying �r� = p.  In applications, the most
common cases considered are p = 0, where one is assuming g continuous and not too variable (e.g.,
Lipschitz), and p = 2, where one is assuming g twice continuously differentiable.

Define .  A function g that satisfies the smoothness condition above has a Taylor'sz r � z1
r1...zm

rm

expansion (in h) that satisfies

   g(x - hz) =  gr(x)�zr + λ�  �gr(x)�zr��L�z� �
p

q�0

(�h)q

q! �
�r��q

h p�1

p! �
�r��p

for some scalar λ � (-1,1).  

Exercise 1.  Verify that for m = 1, these smoothness conditions reduce to the requirement
that g be p-times continuously differentiable, with dpg(x)/dxp satisfying a Lipschitz condition, so the
Taylor's expansion is a textbook expansion in derivatives up to order p.  

Exercise 2.  Show that in the case p = 0, the expansion reduces to g(x - hz) = g(x) + λh�L�z�.

Suppose you have a random sample xi for i = 1,...,n drawn from the density g(x).   In
applications, it is almost always desirable to first do a linear transformation of the data so that the
components of x are orthogonal in the sample, with variances that are the same for each component.
Hereafter, assume that the x's you are working with have this property.  Suppose that you estimate
g using a kernel estimator,

   �(x) = K  .  
1

nh m �
n

i�1

x � xi

h

The function K(z) is the kernel, and the scalar h is the bandwidth.  The kernel K is a function on
(-
,+
)m with the properties that � K(z)dz = 1, and for some integer s with 0 � s � p, �zr

�K(z)dz =
0 for �r� � s and �zr

�K(z)dz = kr for �r� = s+1, where the kr are constants that are finite and not all
zero.  In words, K is a "density-like" function which integrates to one, but which is not necessarily
always non-negative.  All the moments of this function up through order s vanish, and moments of
order s + 1 exist and some do not vanish.  This is called a kernel of order s.  In applications, you will
encounter mostly first-order kernels satisfying �ziK(z)dz = 0 and �zi

2K(z)dz > 0; these are usually
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constructed as non-negative densities that are symmetric about zero.  Higher-order kernels, for s >
1, will be used to take advantage of problems where g is known to be differentiable to higher order
than two.   Higher order kernels will necessarily sometimes be negative.

An example of a first-order kernel is K(z) = (2π)-m/2
�exp[-z�z/2], a Gaussian kernel formed

by the product of univariate standard normal densities.  Forming products of univariate kernels in
this fashion is a convenient way to build up multivariate kernels.  Another example of a multivariate
kernel is the multivariate Epanechnikov kernel, K(z) = (½)cm�(m+2)�(1 - z�z)�1(z�z < 1), where cm
is the volume of a unit sphere in �m, which can be calculated recursively using the formulas c1 = 2,
c2 = π, and cn = cn-2�n/(n-1) for n > 2.  An example of a second-order kernel derived from a first-order
kernel K is

   K*(z) = [K(z) - γ3K(γz)]/(1-γ2), 

where γ is a scalar in (0,1).  (If K is symmetric about zero, then K* is actually a third-order kernel.)
Kernels to any order can be built up recursively as linear combinations of lower order kernels.

Mean and Variance of the Kernel Estimator

The mean of the kernel estimator is

   E�(x) = E K  =  K �g(y)dy .
1

nh m �
n

i�1

x � xi

h
1

h m �
x � y

h

Using the fact that the observation xi are independent, the variance of the kernel estimator is 

  V�(x) � E[�(x) - E�(x)]2 =   
1

n 2h 2m �
n

i�1
E K

x � xi

h

2

� E K
x � xi

h

2

  =  .
1

nh 2m � K x � y
h

2
g(y)dy � � K x � y

h
�g(y)dy

2

Consistency, Bias, and Mean Square Error
Require h  )� 0 and n�h2m  )� +
.  Then, E�(x) )� g(x) and V�(x) )� 0, so that �(x) converges

to g(x) in mean square error, and is hence consistent.  Note that for m large, these conditions require
that h fall quite slowly as n rises.  This is called the curse of dimensionality.

Next approximate the bias and variance of the estimator when h is small.  Assume that the
order of the kernel s is less than or equal to the degree of differentiability p.  Introduce the change
of variables y = x - hz in the expressions for the mean and variance of �(x), and then use the Taylor's
expansion for g(x - hz) up to order s, to obtain

  E�(x) =  K �g(y)dy =  K(z)�g(x - hz)dz 1
h m�

x � y
h �



8

  = g(x) +  gr(x)  K(z)�zrdz + λ�  gr(x)�  K(z)�zr
�L�z�dz �

p

q�0

(�h)q

q! �
h s�1

s! �
�r��s �

  = g(x) + λ��L�  �gr(x)��Cr ,
h s�1

s! �
�r��s

where Cr = ��K(z)�zr���z�dz is a positive constant determined by the kernel, and λ� is a scalar in
(-1,1).  Then,

   Bias(x) = λ��L�  �gr(x)|Cr .  
h s�1

s! �
�r��s

From this formula, one sees that the magnitude of the bias shrinks at the rate hs+1, where s is the order
of the kernel, as long as s � p.  Thus, when one knows that g has a high degree of differentiability,
one can use a higher order kernel and control bias more tightly.  The reason this works is that when
g is very smooth, you can in effect estimate and remove bias components that change smoothly with
x; e.g., bias terms that are linear in deviations from the target x.  However, if one uses a low order
kernel, the bias is determined by the order of the kernel, and is not reduced even if the function g is
very smooth.  At the other extreme, the bias is of order hp+1 for any kernel of order s � p, since the
Taylor's series cannot be extended beyond the order of differentiability of g, so nothing is gained on
the bias side by going to a kernel of order s > p.  For example, if p = 0, so that one knows only that
g is Lipschitz, then one cannot reduce the order of bias by using a symmetric kernel.

Next consider the variance.  Making the change of variables y = x - hz,

  V�(x) = E[�(x) - E�(x)]2 =  K(z)2
�g(x - hz)dz - 1

nh m �
1
n � K(z)�g(x � hz)dz 2

  =  K(z)2dz +  , 
g(x)
nh m �

D
n�h m�1

where D is a constant that depends on K and g.  As h )� 0, the first term in the variance will
dominate.  Then, the mean square error of the estimator � at x is bounded by

   MSE(x) = Bias(x)2 + V�(x) = L2
�   +  K(z)2dz + HOT, 

h 2(s�1)

(s!)2 �
�r��s

�g r(x)��Cr

2
g(x)
nh m �

where HOT stands for "Higher Order Terms".  The mean integrated square error (MISE) is then

MISE = �MSE(x)dx = L2
� �A +  K(z)2dz + HOT,h 2(s�1)

(s!)2

1
nh m�

where 
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A = dx  .  � �
�r��s

�g r(x)��Cr

2

The optimal bandwidth h minimizes MISE:

 hopt =  .
m(s!)2

2(s�1)n�A�L 2 � K(z)2dz
1

m�2(s�1)

Then, the bandwidth falls with n, at a slower rate the higher the dimension m or the higher the order
of the kernel s.  Intuitively, this is because when m is high, there are more dimensions where data
can "hide", so the sample is less dense and one has to look more widely to find sufficient neighboring
points.  Also, when the order of the kernel s high, more distant points can be used without adding
too much to bias because the function is smooth enough so that leading bias terms can be taken out.
 Increasing the order of derivatives typically increases A and/or L, and this also shrinks bandwidth.
In an applied problem, direct application of the formula for hopt is impractical because it depends on
functions of g that one does not know.

Substituting the optimal bandwidth in MISE yields

MISE(hopt) = � � �  .n
2(s�1)

m�2(s�1) 2(s�1)AL 2

m(s!)2

m
m�2(s�1)

� K(z)2dz
2(s�1)

m�2(s�1) m�2(s�1)
2(s�1)

Note first that MISE will always fall more slowly than 1/n.  This is due to the nonparametric nature
of the problem, which implies in effect that only local data is available to estimate the density at each
point.  Chuck Stone has shown that the rate above is not particular to kernel estimation, but is a best
rate that can be obtained by any estimation method.  Second, the higher the dimension m, the lower
the rate at which MISE falls with sample size, the curse of dimensionality.  If the problem is very
smooth, and one exploits this by using a higher-order kernel, one can offset some of the curse of
dimensionality.  In the limiting case, as s )� +
, the rate approaches the limiting 1/n rate.  However,
other terms in MISE also change when one goes to higher order kernels.  In particular, �K(z)2dz will
increase for higher order kernels, and the constant A will typically increase rapidly because higher
order derivatives are less smooth than lower order ones.

Least-Squares Cross-Validation
The idea behind cross-validation is to formulate a version of the MISE criterion that can be

estimated from the data alone.  Then, the bandwidth that minimizes this empirical criterion is close
to the optimal bandwidth.  The MISE criterion can be written 

  MISE = E  [�(x) - g(x)]2dx = E  �(x)2dx - 2�E  �(x)�g(x)dx +  g(x)2dx .� � � �
The approach is to obtain unbiased estimators of the terms involving �(x), and then to choose h

iteratively to minimize this estimated criterion.  Consider first the term E  �(x)2dx.  This�
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expression can be estimated using the kernel estimator �.  To get a convenient computational
formula, first define K(2)(z) = � K(w - z)�K(w)dw .  This is a convolution that defines a new kernel
starting from K, and is an expression that can often be determined analytically.  When K is a
probability density, K(2) has a simple interpretation: if W1 and W2 are independent random vectors
with density K, then the density of Z = W1 - W2 is K(2).  For example, if K is a product of univariate
standard normal densities, then K(2) is a product of univariate normal densities with mean 0 and
variance 2.  Using the definition of K(2), and making the transformation of variables w = (x - xi)/h,

  �(x)2dx =   K �K �dx �
1

n 2h 2m �
n

i�1 �
x � xi

h
x � xj

h

=  K(2)
 .

1
nh m �

n

i�1
�

n

j�1

xj � xi

h

This statistic converges to its expectation as n )� +
.

Next consider the term �(x)�g(x)dx =  K g(x)dx .  Replace�
1

n 2h 2m �
n

i�1 �
x � xi

h

the unknown g(x) in the expression K g(x)dx by the empirical density from the�
x � xi

h

sample, excluding xi; this puts probability 1/(n-1) at each data point xj for j � i.  This gives an

estimator �   K  for �(x)�g(x)dx.  1
nh m

1
n�1 �

n

i�1
�
j�i

xj � xi

h �

Exercise 3.  Show that  �(x)�g(x)dx and the estimator for it given above have the same�
expectation.

Putting together the estimators for the first two terms in the MISE, one obtains the empirical
criterion

   MISE�(h) =  K(2)
 - �  K  1

n 2h m �
n

i�1
�

n

j�1

xj � xi

h
2

nh m

1
n�1 �

n

i�1
�
j�i

xj � xi

h

   =  + .1
n 2h m �

n

i�1
�

n

j�1
K (2)(

xj�xi

h
)� 2n

n�1
K(

xj�xi

h
) 2K(0)

(n�1)h m

For application, use a nonlinear search algorithm to minimize this expression in h.   The minimand
hlsxv is the optimal bandwidth estimated by the cross-validation method.   An important theoretical
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result due to Chuck Stone is that if g is bounded, then MISE(hopt)/MISE(hlsxv) � 1 as n � +
, so that
asymptotically one can do as well using the bandwidth obtained by minimizing the empirical
criterion MISE�(h) as one can do using the optimal bandwidth.

4.  NONPARAMETRIC REGRESSION

Now consider the general problem of estimating θ(x) in the regression model ti = θ(xi) + �i,
where xi is of dimension m, ti = t(yi,xi) is a known transformation, θ is an unknown function, �i is a
disturbance satisfying E(�i�xi) = 0, but otherwise not restricted, and (yi,xi) for i = 1,...,n is a random
sample.  This is the general setup from the introduction.  Consider locally weighted estimators of the
form

   Tn(x) = wni(x;x1,...,xn)t(yi,xi),�
n

i�1

where the wni are scalars that put the most weight on observations with xi near x.   The weights do
not have to be non-negative, but their sum has to approach one as n � +
.  Here are some examples
of nonparametric estimation methods that are of this form, and their associated weight functions:

1.  Kernel Estimation: Suppose K is a kernel function from �m into �, and h is a bandwidth.  The
function K will be large near zero, and will go to zero at arguments far away from zero; common
examples for m = 1 are the uniform kernel, K(v) = 1[-1,+1](v); the normal kernel K(v) = φ(v), where
φ is the standard normal density; the triangular kernel K(v) = Max{1-�v�,0}; and the Epanechnikov
kernel K(v) = (3/4)(1-v2)1[-1,+1](v), which turns out to have an efficiency property.  The local weights
are

wni(x;x1,...,xn) = ,1
hn

m
K

x�xi

hn

� �
n

j�1

1
hn

m
K

x�xj

hn

where the bandwidth hn shrinks with sample size.  The kernel estimator of θ(x) is

Tn(x) = .

1
nh m �

n

i�1
t(yi,xi)K

x�xi

hn

1
nh m �

n

i�1
K

x�xi

hn

The denominator of this expression can be interpreted as an estimator of g(x), and the numerator as
an estimator of g(x)Ey�xt(y,x) = g(x)θ(x).  The kernel function K is typically defined so that �K(v)dv
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= 1, and is taken to be symmetric so that �vK(v)dv = 0.  If θ is known to be a smooth function, with
Lipschitz derivatives of order p, then there turns out to be an advantage (in large enough samples)
to using a higher-order kernel that satisfies �vjk(v)dv = 0 for j = 1,...,p.

2.  Nearest Neighbor Estimator.  For the given x, order the observations (y(i),x(i)) so that �x - x(1)� �
�x - x(2)� � ...  � �x - x(n)�.  To simplify discussion, rule out ties.  Define a sequence of scalars wn,(i)
that sum to one, and define

Tn(x) = wn,(i)t(y(i),x(i)) .�
n

i�1

If wn,(i) = 0 for i > r, this is termed a r-nearest neighbor estimator.  Examples of weights are uniform,
wn,(i) = 1/r for i � r and zero otherwise, and triangular, wn,(i) = 2(r-i+1)/r(r+1).  If θ is known to be a
smooth function with Lipschitz derivatives of order p, then it is advantageous to run a local

regression, in which t(yi,xi) is regressed on all points of the form xih
ph with ph � p, with�

m

h�1
�
m

h�1

weights wn,(i), and the fitted value of this regression at x is the estimator of θ(x).  This  extension
reduces bias by taking into account the fact that a smooth function must vary regularly in its
arguments, allowing larger neighborhoods so that variance as well as bias can be reduced.  

Uniform nearest neighbor and uniform kernel estimators have the following relationship: If
the bandwidth in a uniform kernel estimator is chosen as a function of the data, a variable kernel
method, so that exactly r observations fall in the interval where the kernel is positive, then this
estimator is a uniform nearest neighbor estimator.

3.  Other Nonparametric Methods.  There are several widely used nonparametric estimation methods
other than locally weighted estimators.  First, the function θ(x) may be approximated by sums of
standard functions, such as polynomials, with the number of terms in the sums growing with sample
size.  A traditional form of these series approximations is the use of Fourier or Laplace
approximations, or other series of orthogonal polynomials.  These series are truncated at some point,
depending on the sample size, the dimension of the problem, and the smoothness assumed on θ(x).
Once this is done, the problem is effectively parametric, and ordinary regression methods can be
used.  (Judicious choice of the series so that the terms are orthogonal results in computational
simplifications, as you do not have to invert very large matrices.)  This approach to nonparametric
regression is called, awkwardly, semi-nonparametric estimation.  The traditional econometric
practice of adding variables to regression models as sample sizes grow, and using some criterion
based on t-statistics to determine how many variables to keep in, can be interpreted as a version of
this approach to estimation.  What nonparametric econometrics adds is a mechanism for choosing
the number of terms in an "optimal" way, and an analysis that determines the statistical properties
of the result.

More recently it has become common to use a functional approximation approach with
functions whose determination is more local; popular functional forms are splines, neural nets, and
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wavelets.  This approach is called the method of sieves.   Loosely speaking, splines are piecewise
polynomials, neural nets are nested logistic functions, and wavelets are piecewise trigonometric
functions.  Another approach to nonparametric estimation is penalized maximum likelihood, in which
the log likelihood of the sample, written in terms of the infinite-dimensional unknown function, is
augmented with a penalty function that controls the "roughness" of the solution.

All the nonparametric estimation methods listed above will be consistent, in the sense that
the mean square error MSE(x) of Tn(x) at a given point x converges to zero, with asymptotically
normal distributions (although not at a root-n rate) under suitable regularity conditions and choices
of estimation tuning features such as bandwidth.  Further, the conditions on the underlying problem
needed to get this result are essentially the same for all the methods.  An important result, due to
Chuck Stone, is that given sample size, the dimensionality of a problem, and the smoothness that can
be assumed for the regression function, there is a maximum rate at which MSE(x) can decline.  Any
of the estimation methods listed above can achieve this maximum rate.  Thus, at least in terms of
asymptotic properties, one method is as good as the next.  In practical sample sizes, there are no
general results favoring one method over another.  Kernel methods are usually the easiest to compute
at a point, but become computationally burdensome when an estimator is needed for many points.
Nearest neighbor estimators require large sorts, which are time-consuming.  The method of sieves
involves more computational overhead, but has the advantage of being "global" so that once the
coefficients of the series expansion have been estimated, it is easy to produce forecasts for different
points.  The method of sieves is currently the most fashionable approach, particularly using neural
net or wavelet forms which have been spectacularly successful in recovering some complex test
functions.  On the whole, nonparametric methods in finite samples place a considerable burden on
the econometrician to decide whether nonlinearities in nonparametric estimators are true features of
the data generation process, or are the result of "over-fitting" the data.  

Consistency:

As in the case of the histogram estimator of a density, good large sample properties of a
locally weighted estimator are obtained by giving sufficient weight to nearby points to control
variance, while down-weighting distant points to control bias.  As sample size increases, distant
observations will be down-weighted more strongly, since there will be enough observations close
by to control the variance.   The following theorem, adapted from C.  Stone (1977), gives sufficient
conditions for consistency of a locally weighted estimator.

Theorem 1.  Assume (i) g(x) has a convex compact support B � �m; (ii) θ(x) satisfies a Lipschitz
property �θ(x�) - θ(x)� � L�x� - x� for all x�,x � B; (iii) the conditional variance of t(y,x) given
x, denoted Ω(x), satisfies Ωo � Ω(x) � Ω1, where Ωo and Ω1 are finite positive definite matrices;
(iv) a random sample i = 1,..,n is observed; and (v) as n � +
 the local weights wni satisfy 

   (a)   wni(x;x1,...,xn)2 � 0E{xi} �
n

i�1
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   (b)   wni(x;x1,...,xn) - 1 � 0 E{xi} �
n

i�1

   (c)   �wni(x;x1,...,xn)���x - xi� � 0 .E{xi} �
n

i�1

Then Tn(x) - θ(x) converges to zero in mean square.

Proof: The bias of the estimator is 

   Bn(x) = wni(x;x1,...,xn)[θ(xi) - θ(x)] + θ(x) ,E{xi} �
n

i�1
E{xi} �

n

i�1
wni(x;x1,...,xn) � 1

so that assumption (v), (b) and (c) imply

�Bn(x)� � L� �wni(x;x1,...,xn)���xi - x� + θ(x) � 0.E{xi} �
n

i�1
E{xi} �

n

i�1
wni(x;x1,...,xn) � 1

The variance of the estimator is, by assumption (v), (a),

Vn(x) = wni(x;x1,...,xn)2Ω(xi) � Ω1 wni(x;x1,...,xn)2.E{xi} �
n

i�1
E{xi} �

n

i�1

Then, MSE = Vn(x) + Bn(x)2 � 0, completing the proof.  #

It is useful to work out conditions on nearest neighbor and kernel estimators that satisfy the
sufficient conditions in Theorem 1.  First, consider a uniform nearest neighbor estimator, with rn
points included in the neighborhood at sample size n.  Then, wn(i) = 1/rn for the points in the
neighborhood.  The LHS of condition (v), (b) in Theorem 1 equals 1/rn, so the condition is satisfied
if rn � +
.  Next, we show that a sufficient condition for (v), (c) in Theorem 1 is rn/n � 0.  Let Nt(x)

denote a neighborhood of x of radius t.  For any λ > 0, define τn such that  = (1+λ)rn/n, andg(Nτn
)

note that rn/n � 0 and x � B implies τn � 0.  Let Rn denote the (random) number of observations in

the neighborhood ; then ERn = n  = (1+λ)rn and Var(Rn) = n [1 - ] �Nτn
g(Nτn

) g(Nτn
) g(Nτn

)
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(1+λ)rn.  Let Tn denote the (random) radius of the neighborhood that contains exactly rn of the
observations xi.   Then

P(Tn > τn) = P(Rn < rn) = P(Rn - ERn < rn - (1+λ)rn) = P(Rn - ERn < - λrn)   
� Var(Rn)/λ2rn

2 � (1+λ)/λ2rn,

with the first inequality obtained by applying Chebyshev's inequality to the sum of the independent

random indicators for the events xi � ; these indicators sum to Rn.  From this result, and aNτn

bound �x - x�� � M for x, x� � B implied by the compactness of B,

ETn � τn�P(Tn � τn) + M�P(Tn > τn) � τn + M(1+λ)/λ2rn � 0.
Then, 

   �wni(x;x1,...,xn)���x - xi� � ETn � 0,E{xi} �
n

i�1

establishing that (v), (c) in Theorem 1 holds.  The kernel estimator of θ(x) is

    Tn(x) =  .

1
n�h m �

n

i�1
t(yi,xi)�K

x � xi

h

1
n�h m �

n

i�1
K

x � xi

h

Note that this estimator is of the generic form Tn(x) = wint(yi,xi), where the wi are weights that�
n

i�1

sum to one.  Because the kernel K  is small unless xi is near x, the weights wi will be
x � xi

h

concentrated on points with xi near x.  Then, this estimator corresponds to intuition on how a
non-parametric estimator can be constructed.  You will recognize the denominator in the formula
for Tn(x) is simply a kernel estimator of g(x).  The numerator is an estimator of �t(y,x)�f(y�x)dy�g(x).
Then, Tn(x) can be interpreted as an estimator of �t(y,x)�f(y�x)dy = [�t(y,x)�f(y�x)dy�g(x)]/g(x).

Now suppose that θ(x) and g(x) are continuously differentiable to order p, with Lipschitz
order p derivatives, and that the kernel is of order s � p.  Also assume that σ2(x) is finite and
Lipschitz in x.  As in the case of density estimation, require that h � 0 and nhm � +
 as n � +
.  This
will ensure that the numerator of Tn(x) converges in mean square error to θ(x)�g(x) and that the
denominator converges in mean square error to g(x), so that the ratio is a consistent estimator of θ(x).

Arguments similar to those for density estimation are used to establish further statistical
properties of Tn(x).  Treat the numerator and the denominator separately.  The denominator is the
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earlier density estimator, where we found that the bias satisfied Biasdenom(x) = C�hs+1, where C is a
constant.  Make a Taylor's expansion of the function q(x - hz) � θ(x - hz)�g(x - hz) to order s:

q(x - hz) =  qr(x)�zr + λ�  �qr(x)�zr��L��z� .�
s

j�0

(�h)j

j! �
�r��j

h s�1

s! �
�r��s

Then, the numerator satisfies

 E t(yi,xi)�K  = �g(x-hz)�θ(x-hz)�K(z)dz = g(x)�θ(x) - λ��A��hs+1, 
1

nh m �
n

i�1

x � xi

h

where A� is a constant that depends on the order s derivatives of t, and on the Lipschitz constant L�.
Then, Biasnumer(x) = λ��A��hs+1.

The variance of the denominator, from the previous analysis, is  K(z)2dz + HOT.g(x)
nh m �

An analogous argument applied to the numerator establishes that its variance is

 + HOT.  The covariance of the numerator and denominator is zero.σ2(x)�g(x)
n�h m �K(z)2dz

Consider a ratio αn/βn of random variables αn and βn that have finite second moments, satisfy
αn�p α0 and βn�p β0 as n� +
, and have βn uniformly bounded and bounded away from zero.  Then,
Eαn � α0, Eβn � β0, and the ratio can be rewritten 

     - =  .
αn

βn

α0

β0

αn � Eαn

Eβn

�
α0

β0

�
βn � Eβn

Eβn

�
Eαn � α0

Eβn

�
α0

β0

�
Eβn � β0

Eβn

1 �
βn � Eβn

Eβn

The expectation of the square of this expression is the mean square error of αn/βn.  For n large, the
denominator is almost always very close to one, and is rarely close to zero.  The expectation of the
square of the numerator can be written

 + �  - �  +  
Vαn

β2
0

α0

β0

2 Vβn

β2
0

2α0

β0

cov(αn,βn)

β2
0

biasα
β0

�
α0�biasβ
β0

2

2

Applying this formula to the numerator and denominator of Tn(x), substituting the expressions just
derived for variances and biases, the mean square error in Tn(x) is

 MSE(x) =  K(z)2dz +  K(z)2dz + h2(s+1)
�  ,

σ2(x)
n�h m�g(x) �

θ(x)2

n�h m�g(x)�
C

g(x)2

where C is a constant depending on order s derivatives, Lipschitz constants, and K.   The hopt that
minimizes MSE(x), or the integral MISE of MSE(x) over a domain where g(x) is bounded positive,
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is proportional to n-1/(m+2(s+1)), and the mean square error criterion is proportional to n-2(s+1)/(m+2(s+1)), just
as in the case of density estimation.  Again, the precision of the estimator falls when dimensionality
m rises, and high-dimension problems require immense sample sizes to achieve accurate estimators.
A high degree of smoothness, exploited using high-order kernels can offset some of the negative
impacts of dimensionality, but can never get mean square error to fall at a 1/n rate.  As in the case
of density estimation, a least squares cross-validation procedure can be used to determine an
approximately optimal bandwidth in applications.  W. Hardle and O. Linton (1994) give the
formulas.

Optimal Rates
The number of observations included in a nearest neighbor estimator, or the bandwidth in

a kernel estimator, can vary over considerable ranges and still produce consistent estimators.
However, there are typically optimal values for these design parameters that minimize mean square
error.  These values depend on the properties of the function being estimated, but their qualitative
properties are of interest.   These notes mentioned earlier the result of Stone that there will be a best
rate at which MSE(x) declines, for any nonparametric method, and that all the standard methods can
achieve this rate.  This best rate of decline turns out to be very slow when the dimension m of x is
large.  This is called the curse of dimensionality, and is a consequence of the fact that when
dimensionality is high, data are more sparse.   (This proposition can be made precise by considering
the statistical problem of the expected radius of the largest sphere that can be circumscribed around
a data point without encountering any other data points.  For a given sample size, this expected
radius rises with dimension m at a rate that corresponds to the curse of dimensionality.)

I will give a rough outline of an argument that determines the optimal bandwidth for kernel
estimation in the case that θ(x) is Lipschitz, and after that a rough outline of an argument that
determines the optimal number of neighbors for nearest neighbor estimation.  These arguments draw
heavily from the demonstrations following the proof of Theorem 1, and parallel the arguments for
consistent kernel estimation of a multivariate density given earlier.

Kernel Estimation: From the earlier analysis, the variance of the estimator is approximately
proportional to K(0)/g(x)nhm, and the bias is approximately proportional to h.  Then, the
first-order-condition for minimization of variance plus squared bias is hn = D/n1/(m+2) for a constant
D, and the corresponding MSE declines at rate n-2/(2+m).  For m = 1, this is the same n-2/3 rate that was
achieved by the optimal histogram estimator of a Lipschitz density.

Nearest Neighbor Estimation: From the earlier analysis, if there are r observations in the
neighborhood, with r � +
 and r/n � 0, then the estimator is a (weighted) average of r observations,
so that its variance is approximately D0/r, where D0 is a constant that does not depend on r.  The
volume of a sphere of radius t in �m is Cmtm, where Cm is a constant depending only on m.  Then, for
g(x) > 0, the radius τn of a neighborhood that is expected to contain (1+λ)r points satisfies (1+λ)r/n

= g ) � g(x)Cmτn
m and the random radius Tn of a neighborhood that contains exactly r points(Nτn

satisfies ETn � τn + D1/r � D2(r/n)1/m + D1/r for some constant D2.  Suppose for the moment that we
omit the D1 term.  Then, the first-order-condition for minimizing the sum of variance and squared
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bias is D0/rn = (D2/m)rn�n-2/m, which implies that the optimal rn is proportional to n2/(2+m).  Substituting
this into the formula for the bias shows that at this rate the D1 term becomes negligible relative to
the D2 term, justifying its omission.  Finally, when rn is proportional to n2/(2+m), the MSE declines at
the rate n-2/(2+m).

The common rate n-2/(2+m) at which MSE declines for the "best" nearest neighbor and kernel
estimators of a Lipschitz nonparametric regression is in fact the maximum rate found by Stone for
a problem of m dimensions with Lipschitz θ that has no further known smoothness properties.
Hence the rates above for the number of neighbors and for bandwidth are also "best".  Note that for
m even moderately large, the rate of decline of MSE is agonizingly slow.  When m = 8 for example,
to reduce MSE by a factor of 10, it is necessary to increase sample size by a factor of 100,000.  This
is the curse of dimensionality in action.  The only way to circumvent this problem is to assume (and
justify the assumption) that θ is differentiable to high order, and use this in constructing the
nonparametric estimator, or to assume that θ depends only on low-dimensional interactions of the
variables, e.g., θ is a sum of functions of the variables taken two at a time.

Asymptotic Normality

Returning to the general family of locally weighted estimators, we look for conditions, in
addition to those guaranteeing consistency, that are sufficient to establish that the nonparametric
estimator is asymptotically normal.  The following theorem gives a general result; the added
conditions are (iv) and in (vi), strengthened conditions (b) and (c), and new conditions (d)-(f):

   Theorem 2.  Assume (i) g(x) has a convex compact support B � �m; (ii) θ(x) satisfies a
Lipschitz property �θ(x�) - θ(x)� � L�x� - x� for all x�,x � B; (iii) the conditional variance of
t(y,x) given x, denoted Ω(x), satisfies Ωo � Ω(x) � Ω1, where Ωo and Ω1 are finite positive
definite matrices; (iv) Ey�x�t(y,x) - θ(x)�3 � A�Ω(x)�3/2 for some constant A; (v) a random sample
i = 1,..,n is observed; and (vi) as n� +
 the local weights wni satisfy 

(a)   wni
2(x;x1,...,xn) � 0 �

n

i�1
E{xi}

(b)    � 0�
n

i�1
E{xi}

w 2
ni(x;x1,...,xn)Ω(xi)

�1/2

E{xi} �
n

i�1
wni(x;x1,...,xn) � 1

(c) �wni(x;x1,...,xn)���x - xi�� 0�
n

i�1
E{xi}

w 2
ni(x;x1,...,xn)Ω(xi)

�1/2

E{xi} �
n

i�1



19

(d)    � 0  
E{xi} �

n

i�1
|wni(x;x1,...,xn)|

3

E{xi} �
n

i�1
wni(x;x1,...,xn)

2
3/2

(e)   � 0 
E{xi}�

n

i�1
|wni(x;x1,...,xn)|.|x � xi|

2

E{xi}�
n

i�1
wni(x;x1,...,xn)

2|Ω(xi)|

(f)   � 0 
E{xi}�

n

i�1
wni(x;x1,...,xn) � 1

2

E{xi}�
n

i�1
wni(x;x1,...,xn)

2|Ω(xi)|

Then {Tn(x) - θ(x)} converges in distribution to N(0,I).E{xi�
n

i�1
wni(x;x1,...,xn)

2Ω(xi)
�1/2

Proof: We make use of the following central limit theorem, which is a corollary of the
Lindeberg-Feller theorem for triangular arrays; see Serfling (1980, 1.9.3, Corollary, p.  32): For each
n, let ζni for i � n be independent random variables  with mean zero, finite variances σni

2, and for

some ν > 2, / � 0.  Then, / �d N(0,I).  �
n

i�1
E�ζni�

ν �
n

i�1
σ2

ni

ν/2

�
n

i�1
ζni �

n

i�1
σ2

ni

1/2

Assume that Tn(x) is a scalar, or else consider a fixed linear combination of components.

Define ζni = wni[t(yi,xi) - θ(xi)]; then for each n, the ζni are independent with finite variances σni
2 =

wni
2Ω(xi).  Hypotheses (iv) and (vi), (d) imply

   /  �
n

i�1
E{xi}

�wni�
3�t(Y,xi) � θ(xi)�

3 �
n

i�1
σ2

ni

3/2

       � A /�
n

i�1
E{xi}

�wni�
3�Ω(xi)�

3/2 �
n

i�1
E{xi}

w 2
niΩ(xi)

3/2
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       � A(�Ω1�/�Ωo�) / � 0.�
n

i�1
E{xi}

�wni�
3 �

n

i�1
E{xi}

w 2
ni

3/2

Finally, consider the scaled bias term 

[ Tn(x) - θ(x)] �
n

i�1
E{xi}

w 2
niΩ(xi)

�1/2

E{xi}

 = . �
n

i�1
E{xi}

w 2
niΩ(xi)

�1/2

�
n

i�1
E{xi}

wni[θ(xi) � θ(x)] � θ(x)[�
n

i�1
E{xi}

wni � 1]

This converges to zero by (vi), (e) and (f).  Then, the limiting distribution has mean zero.  #

Consider the "best" kernel and nearest neighbor estimators.  The assumptions on these
estimators made in the discussion of consistency and best rates, along with assumptions (i)-(v) in
Theorem (ii), are sufficient to establish (vi), (a)-(d).   These in turn are sufficient to establish
consistency and asymptotic normality, but possibly with a non-zero mean.  A device introduced by
Herman Bierens allows one to get this asymptotic mean to zero while preserving the "best" rate.  I
will explain the trick for a nearest neighbor estimator.  Suppose rn = Dn2/(2+m) and rn� = 2mrn are two
cutoff numbers for nearest neighbor estimation, both growing at the "best" rate, where D is some
constant.  Let Tn(x) and Tn�(x) be the corresponding estimators.  Since rn� > rn, the estimator Tn�(x)
will have a larger bias and a smaller variance than Tn(x).  Now consider an estimator T*(x) = 2Tn(x)
- Tn�(x).   This estimator is also a locally weighted estimator, with weights that are the {2,-1} linear
combination of the weights for the two original estimators.  It is easy to check that these weights
satisfy the same properties in Theorems 1 and 2 as do the original weights, so that T*(x) is consistent
for θ(x).  These combined weights increase at the "best" rate n1/(2+m), so that T*(x) is again a "best"
estimator.   Recall from the discussion of optimal rates that except for terms that are negligible in
large samples, the bias for a nearest neighbor estimator with r = Cn2/(2+m) points is proportional to
(r/n)1/m = C1/mn-1/(2+m).  For Tn(x), C = D, while for Tn�(x), C = 2mD.  Therefore, except for higher-order
terms, the bias in T*(x) is proportional to 2D1/mn-1/(2+m) - (2mD)1/mn-1/(2+m) = 0.  Then, there is a "best"
nearest neighbor estimator that is asymptotically normal with mean zero.  The weights for the
estimator T*(x) can be interpreted as "higher order" weights that remove more bias; note that these
weights are sometimes negative.  This trick has reduced bias, at the expense of increasing variance,
since the variance of T*(x) is greater than that of Tn(x), while leaving the "best" rate unchanged.  A
similar device works for kernel estimators, using a higher-order kernel that is a linear combination
of two kernels whose bandwidths differ by a multiplicative constant.  

Exercise 4.  Find the appropriate constants for a second-order kernel that removes asymptotic
bias from the estimator so that its asymptotic distribution is centered at zero.
.
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5.  SEMIPARAMETRIC ANALYSIS

Semiparametric methods provide estimates of finite parameter vectors without requiring that
the complete data generation process be assumed in a finite-dimensional family.  By avoiding bias
from incorrect specification, such estimators gain robustness, although usually at the cost of
decreased precision.  The most familiar semiparametric method in econometrics is ordinary least
squares, which  estimates the parameters of a linear regression model without requiring that the
distribution of the disturbances be in a finite-parameter family.  The recent literature in econometric
theory has extended semiparametric methods to a variety of nonlinear models.  Four overlapping
major areas are models for censored duration data (e.g., employment duration); limited dependent
variable (partial observability) models for discrete or censored data (e.g., employment status or
employment hours); models for data with (natural or intentional) endogenous sample selection (e.g.,
wage determination among self-selected workers, or case-control sampling); and models for additive
non-parametric effects.  The following table summarizes some applications.

Model Applications

Regression and Single Index Models for
Censored Duration Data: Y�x � Y�x�β

Employment Duration, Innovation
Lags, Mobility

Limited Dependent Variable Models 
(E.g., Discrete response or censored response) 
Y* = x�β - �, ��x ~ F(�), 
observability transformation Y = Ψ(Y*) 
E.g., Discrete: Y = sgn(Y*), Censored: Y = Min(Yc,Y*) 

Discrete: Employment Status,
Brand Choice 
Censored: Employment Hours,
Expenditure Levels

Endogenous Sample Selection 
Y = x�β - �, ��x ~ f(�), x ~ g(�), 
Natural: (Y,x) observed iff Y > 0 
Intentional: (Y,x) sampled iff Y > 0

P(Y,x�Obs) =   f(Y�x�β)g(x)1(Y>0)

�
��

z��� �
��

y�0
f(y�z�β)g(z)dydz

P(Y�x,Obs) = f(Y-x�β)/ �
��

y�0
f(y�x�β)dy

Natural: Self-selected Workers,
Self-selected Homeowners 

Intentional: Case-Control Sample
Designs

Additive Non-Parametric Effects: Y = x�β + H(z) + � Robust policy analysis

In most cases, the primary focus of semiparametric analysis is estimation of coefficients of
covariates that index the location of the distribution of a dependent variable; then, the unknown
distribution is a (infinite-dimensional) nuisance parameter.  There are also applications where some
functional of the unknown distribution, such as the expectation of the dependent variable conditioned
on covariates, is of primary interest.  The final objective may be point estimates or confidence
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intervals for the objects of interest, or hypothesis tests involving these parameters.  Usually, it is
important to have measures of precision for the estimates of interest, including convergence rates,
asymptotic distributions, and bootstrap or other indicators of finite-sample precision and accuracy
of asymptotic approximations.

These notes will not survey the full range of semiparametric models in econometrics, or
develop the properties of semiparametric estimator except for illustrative cases.  A good survey of
the foundations of semiparametric analysis can be found in Powell (1994).  These notes will instead
survey two areas of application.   The first is the analysis of censored employment duration data,
perhaps the leading case of applied semiparametric work.  The second is the analysis of data on
stated willingness-to-pay for natural resources.

Censored Employment Duration
The main focus of the literature on employment duration has been the effect of covariates

such as sex, race, age, and education on the hazard of leaving a job.   Data on employment duration
is typically censored because employment spells start before a panel study is initiated (and the start
date may not be recovered accurately using retrospective questions) and/or continue past the end of
the panel study, or because of attrition from the panel.  In this chapter, we consider only right-
censoring before the end of a spell.  Parametric analysis of the duration problem has typically used
exponential or Weibull survival curves, or the Cox proportional hazards model, which qualifies as
one semiparametric formulation.  

Horowitz and Newmann (1987) make perhaps the first empirical application of
semiparametric censored regression methods to data on employment duration.  To provide some
context for the economic application, consider the hazards that may lead to termination of a spell of
employment.  First, termination may be initiated either by the employee (quits), or the employer
(layoffs, separations).  The quit decision of an employee is presumably influenced by nonpecuniary
job features (e.g., safety, variety, and work rules), wage opportunity cost, and worker characteristics
such as education, race, and loyalty.  The termination decision of the firm is influenced by the
expected productivity of the worker, net of wages.  The worker's job-specific human capital
influences both wage opportunity cost and expected productivity.  Wage opportunity cost is also
influenced by expected unemployment insurance benefits and duration of unemployment.
Macroeconomic and product cycles influence expected productivity.  Several aspects of this
description are important for modeling employment duration:  

 1.  Quits and separations are competing risks, with overlapping but not identical covariates.
Structural estimates of duration must distinguish these two hazards.  Data on whether
employment spells end in quits would greatly aid identification and estimation of the separate
hazards.  
2.  Important covariates such as the level of macroeconomic activity and job-specific human
capital vary in elapsed or chronological time, so a structural model must accommodate
time-varying covariates.  To do this is fairly easy in discrete time using heterogeneous Markov
models, and quite difficult in continuous time.  
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3.  Unobserved variables such as worker loyalty are heterogeneous in the population and are
selected by survival.  Thus, it is necessary for structural modeling of duration to determine the
distribution of these unobservables.  The presence of unobserved heterogeneity also selects the
subpopulation that start employment spells during the interval of observation.  The
subpopulation starting employment spells near the beginning of the observation interval will be
less loyal on average than all workers.  Those whose first observed employment spell start comes
near the end of the observation period will be more loyal on average if the panel is long enough.
4.  In a structural model of employment duration, the hazard must depend solely on the history
of economic variables, and not directly on elapsed time.  Thus, models that postulate a
reduced-form "baseline" hazard are removing variation that must have a structural source.  From
the standpoint of structural estimation of the economic determinants of duration, emphasis on
the effect of covariates with the baseline hazard treated as a nuisance parameter is misplaced. 
5.  Economic theory provides neither a tight specification of functional forms or the distributions
of unobservables; the assumption that observables enter in a parametric additive combination
must be justified as an approximation.   Consequently, analyses that assume observables appear
in an exact additive combination within unknown transformations or distributions in fact assume
too much on the structure of the additive combination, and perhaps too little on the unknown
transformations, which may be approximable to comparable accuracy using flexible
finite-parameter families.  

The duration data generation process can be characterized by a survival curve q(t�x) stating
the proportion of a population with spells starting at time zero who survive at elapsed time t, given
an observed covariate process x(�).  If there are unobserved covariates ξ distributed in the initial
population with density ν(��x,0), and the "structural" survival curve is q(t�x,ξ), then the data
generation process satisfies 

(1)   q(t�x) = q(t�x,ξ)�ν(ξ�x,0)dξ.  �
��

��

The density of the unobserved covariates, conditioned on survival, is modified over time by
selection, satisfying 

(2)   ν(ξ�x,t) = ν(ξ�x,0)q(t�x,ξ)/q(t�x).  

The survival curve can also be described by the hazard rate, 

(3)   h(t�x,ξ) = - �tLn(q(t�x,ξ)).

The average hazard rate in the surviving population is 

(4)   h*(t�x) = - �tLn(q(t�x)) 
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     = /q(t�x) = h(t�x,ξ)ν(ξ�x,t)dξ .�
��

��
h(t�x,ξ)q(t�x,ξ)ν(ξ�x,0)dξ �

��

��

Equation (3) can be inverted to obtain

(5)   q(t�x,ξ) = exp  � exp ;��
t

0
h(s�x,ξ)ds �Λ(t�x,ξ)

with Λ(t�x,ξ) termed the integrated hazard.  The mean duration of completed spells is

(6)   E(t�x,ξ) = - t �t q(t�x,ξ)dt = q(t�x,ξ)dt,�
�

0 �
�

0

with the second formula obtained using integration by parts.  
When the observation interval is finite, some spells are interrupted or right-censored; the

survivor function defined up to the censoring point continues to characterize the data generation
process.  The mean duration of all spells whether ended naturally (at t) or by censoring (at tc) is

(7)   E(Min(t,tc)) = - t �tq(t�x,ξ)dt + tcq(tc�x.ξ) = q(t�x,ξ)dt.�
t c

0 �
t c

0

Analogous formulas hold for the average hazard rate.
With sample attrition, the censoring time becomes a random variable, with an associated

censoring survivor function r(tc�x,ξ).  Then the probability that a spell is observed to extend to t is
q(t�x,ξ)r(t�x,ξ); the combined hazard rate for termination of an observed spell either naturally or by
censoring is h(t�x,ξ) - r�(t�x,ξ)/r(t�x,ξ); for a spell ending at time t, the probability that it is censored
is h(t�x,ξ)/(h(t�x,ξ) - r�(t�x,ξ)/r(t�x,ξ)); and the mean duration of observed spells is

 q(t�x,ξ)r(t�x,ξ)dt.�
�

0

An example of a parametric duration model when x is time-invariant is the Weibull model,
which specifies

(8)   q(t�x) = exp(-tαe-x�β),

with α a positive parameter, β a vector of parameters, and x a vector of covariates.  The associated
hazard rate is

(9)   h(t�x) = αtα-1e-x�β

and the mean duration of completed spells is



     1Typical examples are a Weibull or log-normal distribution for q(t�x), or an exponential distribution for q(t�x,ξ) combined
with a gamma distribution for ξ. The parameters of the distribution can be estimated by maximum likelihood.

     2The classical Kaplan-Meier estimator is formulated for duration data without covariates. Suppose that in a data set spells
starting at a common time 0 are observed to end (naturally or by censoring) at times t1 < ... < tJ. Let nj denote the number that end
naturally at time tj, and let mj denote the number that are censored at this time. The total number "at risk" at time tj is Nj =

(ni+mi).  The Kaplan-Meier estimate of the hazard rate at tj is h*(tj) = nj/Nj. A corresponding estimate of the survival�
J

i�j

function is q*(tj) = (1-h*(tj))q*(tj-1), or q*(tj) = (1-nj/Nj). In the presence of categorical covariates, the Kaplan-Meier�
j

i�1

estimator obviously applies cell-by-cell for each configuration of the covariates.  Using the nearest neighbor idea from
non-parametric regression, the Kaplan-Meier estimator can be adapted to the general case of non-categorical covariates. In the
case of unobserved heterogeneity, it is not possible in general to identify the structural survivor functions and the density of the
unobserved covariates when both are non-parametric. Heckman and Singer (1984) establish this result, and also establish
semiparametric methods for estimation of a parametric structural survivor function q(t�x,ξ,β) in the presence of a non-parametric
heterogeneity density ν(ξ�x,0). 

     3Other semiparametric approaches include multiple-index models and methods that parameterize quantiles without fully
parameterizing the distribution.
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(10)  E(t�x) = ex�β/αΓ(1+1/α),

where Γ is the gamma function.  When α = 1, this simplifies to the exponential duration model.
There are three strategies for statistical inference of censored duration data: 

 1.  The fully parametric approach, with q(t�x), or in the case of unobserved heterogeneity
q(t�x,ξ) and ν(ξ�x,0), assumed to be in a finite-parameter family.1 

 2.  The fully nonparametric approach, in which q(t�x) is estimated without parametric
restrictions, using for example a Kaplan-Meier estimator.2 

3.  The single-index semiparametric approach, in which q(t�x) depends on x through a scalar
function V(x,β) that is known up to a finite parameter vector β, but q(t�v) is not confined to a
parametric family.  In the case of unobserved heterogeneity, either q(t�v,ξ) or ν(ξ�v,t) may be
nonparametric (but not both, without further restrictions, due to identification requirements).3

We survey some of the alternative semiparametric problems that have been discussed in the
literature.  Let x be a vector of covariates, assumed now to be time-invariant.  Let β be a vector of
unknown parameters, V(x,β) � x�β be a single  index function known up to β, and q(t�x�β) the
survivor function.  Let T* be the random variable denoting completed duration, and Tc the censoring
time, so observed duration is T = Min(T*,Tc).  Four alternative models for T are 
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   1.  Regression model: Ln T* = x�β + �, with ��x distributed with an unknown density f(�) with zero
mean.  The density f is often assumed symmetric and homoskedastic.  This model yields the survivor
function 

(11)  q(t�x�β) = 1 - F(Ln t - x�β), 

where F is the cumulative distribution function of f.  The associated hazard rate is

(12)  h(t�x�β) = f(Ln t - x�β)�t[1 - F(Ln t - x�β)].

A generalized version of this model allows � to be heteroskedastic, with variance depending on the
index x�β, or more generally on some other function of x.  The censored regression model is simply

(13)  Ln T = Min(Ln Tc,x�β+�); 

it has the property in the case of non-stochastic censoring that 

(14)  E(Ln T�x) = �[1 - F(y-x�β)]dy 

is an increasing function of x�β.  

   2.  Transformation (Generalized Box-Cox) model: Suppose G is an unknown monotone increasing
transformation from (0,+
) onto the real line, and assume

(15)  G(T*) = x�β + �, 

with ��x distributed with a known or unknown density f(�).  The associated survivor function is 

(16)  q(t�x�β) = 1 - F(G(t) - x�β), 

and the associated hazard rate is

(17)  h(t�x�β) = G�(t)f(G(t) - x�β)/[1 - F(G(t) - x�β)].

Again, the model can be generalized to allow heteroskedasticity depending on x�β.  

3.  Projection Pursuit (single index) regression: Suppose H is a unknown transformation
from the real line into the real line.  Assume

(18)  Ln T* = H(x�β) + �, 

with ��x distributed with a known or unknown density f(�).  The associated survivor function is 



27

(19)  q(t�x�β) = 1 - F(Ln t - H(x�β)),

and hazard rate is

(20)  h(t�x�β) = f(Ln t - H(x�β))/t[1 - F(Ln t - H(x�β))].

The error distribution is usually assumed homoskedastic, but some estimators for this model permit
heteroskedasticity depending on x�β.  

4.  Proportional Hazards model: Let ho(t) be an unknown nonnegative "baseline hazard"
function, and assume the covariates exert a proportional effect on the hazard, so that

(21)  h(t�x) = ho(t)exp(-x�β).

Define the integrated baseline hazard

(22)   Λo(t) = ho(s)ds.  �
t

0

Then the survivor function is  

(23)  q(t�x�β) = , exp�Λo(t) e �x �β

and 

(24)  Ln Λo(T*) = x�β + �, 

where � has the extreme value cumulative distribution function 

(25)  F(�) = 1 - .  exp�e ��

Other error distributions may result from a proportional hazards model with unobserved
heterogeneity.  For example, following Lancaster (1979), assume 

(26)  h(t�x,ξ) = ho(t)exp(-x�β)ξ, 

with ξ having a gamma density, ν(ξ�x,0) = ξθ-1e-ξ/Γ(θ).  Then, applying the relation (1), 

(27)  q(t�x) =  , 1 � e Λo(t) � x �β �θ

which implies that (15) holds with � having a generalized logistic distribution (or, e� having a Pareto
distribution), 

(28)  F(�) = 1 - (1+e�)-θ.  
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The average hazard for (26), 

(29)  h*(t�x) = , θh0(t)e
Λo(t)

� e Λo(t)
� e x´β

is no longer of the proportional hazards form.  The conditional distribution of the unobserved
covariates given survival ν(ξ�x,t) remains Gamma with parameter θ, but in the transformed variable

.  (1�e Λo(t) � x �β))ξ

The proportional hazards model (21) is a special case of the transformation model where the
disturbance has the distribution (25).  The proportional hazards model with heterogeneity (26) is also
a specialization of the transformation model.   When the baseline hazard varies with a power of t,
ho(t) = αtα-1, (21) specializes to the parametric Weibull duration model, and also can be interpreted
as a censored regression model with extreme value distributed disturbances. 

FIGURE 1.  SINGLE-INDEX MODELS 

Observation Rules:   T = Min(Tc,T*) for right-censored data 
   T = sgn(Ln(T*)) for binomial discrete response data 

(Specificity Increases as You Move Down the Table) 

CONDITIONAL DISTRIBUTION SINGLE-INDEX MODEL: T*�x � T*�x�β
|

 GENERAL ADDITIVE INDEX MODEL: G(T*) = H(x�β) + �
 ��x ~ F, F, G, H unknown with, e.g., F symmetric

 |                                                              |
linear in x�β                                          linear in Ln(T*) 

|                                                              |
TRANSFORMATION

MODEL
PROJECTION PURSUIT

REGRESSION
G(T*) = x�β + � Ln(T*) = H(x�β) + �

      |                                                                      |
extreme value disturbances                                       linear in x�β 

          |                                                                      |    
PROPORTIONAL HAZARDS

MODEL
CENSORED REGRESSION MODEL

     |                                                                      |
constant hazard rate                                   extreme value disturbance 

    |                                                                      |
PARAMETRIC WEIBULL DURATION MODEL
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A common "generalized additive single-index" model in which the four models above are
nested is 

(30)  G(T*) = H(x�β) + �, 

with � distributed with cumulative distribution function F.  The associated survivor function is 

(31)  q(t�x�β) = 1 - F(G(T) - H(x�β)).  

Figure 1 shows the logical relationship between these models.  All the models are special
cases of single-index sufficiency where the conditional distribution of the dependent variable depends
on covariates x solely through the index x�β.  The proportional hazards model and the censored
regression model are logically distinct, except when both specialize to the common Weibull
parametric model.  Both are specializations of the transformation model.  The censored regression
model is a specialization of the projection pursuit regression model.  The transformation model can
be rewritten as a heteroskedastic projection pursuit model: If G(T*) = x�β + � with G monotone
increasing, then Ln T* = H(x�β) + ζ, where H(x�β) = E

�
Ln G-1(x�β + �), and ζ has the distribution

function F(G(exp(ζ + H(x�β)) - x�β), which in general is heteroskedastic.  
The statistical issues that arise in application of these models are the (large sample and,

potentially, small sample) distributional properties of estimators that are available under various
assumptions, and the efficiency of alternative estimators.  Most of the work to date has concentrated
on finding computationally feasible estimators, establishing consistency and asymptotic normality,
and establishing asymptotic efficiency bounds.  

Horowitz and Newmann use two estimators for the censored regression model, a quantile
estimator (Powell, 1986) and one-step semiparametric generalized least squares estimator (SGLS)
(Horowitz, 1986).  Other estimators that have been proposed for this problem include flexible
parametric approximation of the cumulative distribution function (e.g., Duncan, 1986, who considers
spline approximations--the "method of sieves").  Chamberlain (1986) and Cosslett (1987) have
established for the censored regression problem the existence of a positive information bound on the
parametric part.  This suggests that the it is adequate to use relatively crude estimators of the
nonparametric part in order to achieve |n asymptotically normal estimation of the parametric part.
The Powell and Horowitz estimators have been shown |n asymptotically normal.  Neither achieves
the information bound for i.i.d. errors, and in general neither is efficient relative to the other.

Estimation of the proportional hazards model with an unknown baseline hazard function has
been studied extensively; see Kaplan and Meier (1968), Cox (1972), Kalbfleisch and Prentice (1982),
and Meyer (1990).  A particularly useful "semiparametric" method for this model, applicable to the
case where duration is measured in "weeks", is to flexibly parameterize the baseline hazard; Meyer
(1990) shows this method is root-n asymptotically normal.  

Estimators for the projection pursuit (single index) model have been proposed by Ichimura
(1987), Ruud (1986), Stoker (1986), and Powell, Stock, and Stoker (1989).   The Ichimura estimator
chooses β to minimize the conditional variance of Ln T given x�β, using a kernel estimator of the
conditional mean to form an estimate of the conditional variance.  This estimator is consistent even
if the disturbances are heterogeneous in the index function, so it can also be applied to the
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transformation model.  The Ichimura estimator is n1/2 asymptotically normal, and has recently been
argued to achieve the semiparametric information bound for the homoskedastic projection pursuit
problem with normal disturbances.  It is almost certainly not efficient for the transformation model.
The Ruud and Stoker estimators rely on the fact that under suitable conditions the regression of Ln
T on x is proportional to β; these are also |n asymptotically normal.  

An estimator for the transformation model, applicable also to the proportional hazards model,
is the maximum rank correlation method of Han (1987) and Doksum (1985). 

Newey (1990) has established the asymptotic efficiency of some kernel and quantile
estimators for the censored regression model when error distributions are symmetric.  The status of
these estimators under some other information conditions remains unresolved.  A problem requiring
further work is construction of reliable and practical covariance estimators for the semiparametric
estimators.  An interesting empirical question is whether the censored regression model or the
proportional hazards models can be accepted as restrictions on the transformation model (and what
are appropriate and practical test statistics)? 

Stated Willingness-to-Pay for a Natural Resource

A method for eliciting Willingness-to-Pay (WTP) for natural resources is a referendum
contingent valuation experiment: Survey respondents are asked if they are willing to pay an amount
b, where b is a bid set by experimental design.  Let d denote a dummy variable that is one for a "Yes"
response, zero otherwise.  A sample of n observations are collected on (b,d) pairs, plus covariates
x characterizing the respondent.  Suppose WTP is distributed in the population as w = xβ - �, where
� has a cumulative distribution function G(�) that is independent of x.  Then, Pr(d=1�x�β) = G(xβ
- b), or

(32)   d = G(xβ - b) + �,

Suppose β and the function G are unknown.  The econometric problem is to estimate β and, if
necessary, G, and use these to estimate a measure of location of the distribution of WTP, conditional
on x or unconditional.  This is an example of a projection-pursuit regression model.

Contingent valuation experiments are controversial because they are very sensitive to
psychometric context effects, such as anchoring that leads respondents  who are unsure about their
preferences to take the offered bid as a cue to the "politically correct" range of values.  Some subjects
also appear to misrepresent their responses strategically, giving extreme values that they would not
practically pay, but which express "protest" positions.  These effects make WTP estimates imprecise,
and their connection to welfare economics tenuous.

Why do contingent valuation experiments use the referendum elicitation format, rather than
a format in which subjects would be asked to give an open-ended WTP response?  One answer is
that the open-ended format produces a much higher non- response rate, so that the referendum
method reduces selection bias caused by non- response.  Another is that psychologically the
referendum and open-ended methods elicit quite different behaviors.  Some argue that the
referendum format is closer to the voting mechanisms used elsewhere to make social decisions, and
there is a virtue in mimicking this mechanism for social decisions on natural resources.
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One issue that enters the contingent valuation experimental design is the location of the bid
levels b.  Alternatives are to randomize b, or to choose b on a grid with a specified mesh.  In practice,
coarse meshes have been used, which limits the accuracy of semiparametric estimates.  Let h(b�x)
be the density from which the bid level b is drawn, given x.  Since this is chosen by experimental
design, it is known to the analyst.

Econometric analysis of referendum WTP data can use the fact that (32) is a binary response
model and a single-index model (that is heteroskedastic, but with the heteroskedasticity depending
on the index).  Then, available methods to estimate β are the Manski (1978) maximum score
estimator, the Cosslett (1987) semiparametric maximum likelihood estimator, the Ichimura (1986)
estimator that minimizes expected conditional variance, the Horowitz (1992) estimator that is a
smoothed version of maximum score, and the Klein-Spady (1993) estimator.  The key result for the
binomial response model is that under some smoothness conditions, there are root-n consistent
estimators βn for β; i.e., n1/2(βn - β) is asymptotically normal.  A nonparametric estimator of G can
be obtained jointly with the estimation of β, as in the Cosslett procedure, or by conventional kernel
methods in a second step after the β estimate is plugged in to form the index; it can be estimated only
at a nonparametric rate less than root-n.

One particularly simple estimator for the index parameters β has been proposed for this
problem by Lewbel and McFadden (1997): Carry out a least squares regression on the model,

(33)   (di - 1(bi<0))/h(bi�xi) = xiβ + ζi.

The authors show that the coefficients from this regression are consistent for β, and are
asymptotically normal at a n1/2 rate.  The estimates are not particularly efficient, but their simplicity
makes them an excellent starting point for analysis of model specification and construction of more
efficient estimators.

Exercise 5.  Prove that the estimator based on (33) is consistent.  Apply a law of large
numbers to conclude that

   xi�(di - 1(bi<0))/h(bi�xi) �p ExEb�x x�(G(xβ-b) - 1(b<0))/h(b�x).1
n �

n

i�1

Then apply integration by parts to conclude that

Eb�x x(G(xβ-b) - 1(b<0))/h(b�x) = x� (G(xβ-b) - 1)�db + x� G(xβ-b)�db�
0

�� �
��

0

   = x� b�G(xβ-b)�db = x�xβ.�
��

��

 From this conclude that the least squares coefficients converge to (Ex�x)-1(Ex�xβ) = β.
The authors also establish that the r-th moment of WTP, conditioned on x = xo, can be

estimated consistently at a root-n rate by 
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(34)   Mr = (xoβ)r + r (bi+(xo-xi)β)r-1 
�  .�

n

i�1

di � 1((xiβ>bi)

�
n

j�1
h(bi�(xj�xi)β�xj)

The estimators (33) and (34) are good examples of statistical procedures for a semiparametric
problem that are "robust" in the sense that they do not depend on parametric assumptions on the
distribution of WTP, and provide an easily computed alternative to use of a kernel-type
nonparametric estimator.

6.  SIMULATION METHODS AND INDIRECT INFERENCE
 Econometric theory has traditionally followed classical statistics in concentrating on

problems that yielded analytic solutions.  This explains the emphasis on the linear model, and on
asymptotic approximations in situations where nonlinearities or other factors make exact sample
analysis intractable.  Increased computational power, and better understanding of the uses and
limitations of numerical analysis, have greatly expanded the ability of econometricians to explore
the characteristics of the methods they use under realistic conditions.  The idea is straightforward.
The economist can write down one or more trial data generation processes, perhaps after an initial
round of econometric analysis, and use these data generation processes to generate simulated or
virtual samples.  If a comparison of a real sample with these virtual samples reveals inconsistencies,
this is evidence that the trial data generation process is unrealistic.  Conversely, if the econometrician
has discovered the true data generation process, then the virtual samples generated from it should
not differ systematically from the real sample.  Computers and Monte Carlo simulation methods
come in at the stages of drawing the virtual samples and comparing the real and virtual samples.

If the kinds of comparisons just described are done casually, without attention to statistical
properties, they can mislead the analyst.  Traditional calibration exercises in economics and other
disciplines often suffer from this deficiency.  However, it is possible to develop a statistical theory
to support these comparisons, and use this theory to consistently identify the real data generation
process, or good approximations to it.  In various manifestations, this theory has been developed by
Hendry, Mizon, and Richard  under the name encompassing, by Gourieroux and Monfort under the
name indirect inference, and by McFadden under the name simulation-assisted inference.  

Consider two parametric families of data generation processes, Hf containing models f(y�x,α)
for parameter vectors α in a set A, and Hg containing models g(y�x,β) for parameter vectors β in a
set B.  Both of these families have the same dependent variable y, and are conditioned on the same
explanatory variables x.  It may be the case that one of these families is nested within the other; this
is the situation in classical hypothesis testing where the null hypothesis (say Hg) is a subset of the
universe (say Hf), and the true data generation process is a member of Hf and under the null a
member of Hg.  However, we will now consider more general situations where the two families are
not necessarily nested, and the true data generation process may not be in either.  

Example.  The family Hf is the family of linear models y = xγ + �, where x is a  vector of
explanatory variables and � is a normal disturbance with variance σ2.  This family is parameterized
by α� = (γ,σ2).  Hg is the family y = zδ + η, where z is a vector of  explanatory variables and η is a
normal disturbance with variance λ2, parmeterized by β = (δ,λ2).  The vectors x and z may have
some variables in common, but in the most general case will each contain some distinct variables



33

so that neither is contained (nested) within the other. y = xα + � and the family Hg of linear models
y = zβ + η, where x and z may have some variables in common, but also contain distinct variables
corresponding to alternative theories of the determination of y.  The families are said to be non-
nested when neither can be written as a linearly restricted case of the other.

A proximity measure between densities is the Kullback-Leibler Information Criterion
(KLIC),

   Kfg(α,β,x) = log(f(y�x,α)/g(y�x,β))�f(y�x,α)dy.�
The KLIC is always non-negative, and is zero only if f and g coincide.  This measure depends on
exogenous variables x.  We could alternately take its expectation with respect to x, 

Kfg(α,β) = ExKfg(α,β,x)

and approximate this expectation by a sample average

   Kfgn(α,β) = Kfg(α,β,xi).
1
n �

n

i�1

For the model g, define the pseudo-true value βf(α) to be the β � B that minimizes Kfg(α,β),
and the conditional pseudo-true value βfn(α) to be the β � B that minimizes Kfgn(α,β).  Then,
g(y�x,βf(α)) is the data generation process in the g family closest to f(y�x,α), and 

   Jf(α,B) � Kfg(α,βf(α)) 

is the proximity of f and the g � Hg that is closest to f.  In an earlier chapter, where f(y�x,αo) was
identified as the true data generation process, we called g(y�x,βf(αo)) the least misspecified model
in Hg.  However, we will now consider more general situations where the f family may not contain
the true data generation process.

Exercise 6.  In the linear model example, Show that

log(f/g) = 0.5�{log(λ2/σ2) - (y-xγ)2/σ2 + (y-zδ)2/λ2}
= 0.5�{log(λ2/σ2) - (y-xγ)2(1/σ2 - 1/λ2) + 2(y-xγ)(xγ-zδ)/λ2 + (xγ-zδ)2/λ2},

and hence that Kfg(α) = 0.5�{log(λ2/σ2) + σ2/λ2 - 1 + E(xγ-zδ)2/λ2}.  The pseudo-true values in the
model Hg are  the values βf(α) that minimize Kfg(α).  Show that the pseudo-true value for δ is
(Ez�z)-1(Ez�x)γ and the pseudo-true value for λ2 is σ2 + γ�{Ex�x - (Ex�z)(Ez�z)-1(Ez�x)}γ.  Show that
the minimum distance from f to Hg is 

Jf(α) = 0.5�log(1 + γ�{Ex�x -  (Ex�z)(Ez�z)-1(Ez�x)}γ/σ2).

The distance is zero if z can be written as a linear combination of the variables in x
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A model f(y�x,α) is said to encompass the family g if f can account for, or explain, the results
obtained with the g family.  Operationally, this concept says the g family will fit similarly the
observed sample data and virtual data generated by the model f(y�x,α).  If we define

   bn = argmaxβ g(yi�xi,β);�
n

i�1

to be the maximum likelihood estimate from the family Hg for the observed sample, and f(y�x,α)
encompasses Hg, then bn should converge to the pseudo-true value βf(α).   Conversely, if bn - βf(α)
converges to a non-zero limit, f(y�x,α) fails to encompass Hg.  This is the same as saying that as
judged from the family Hg, samples generated by the model f(y�x,α) look like samples generated by
the true data generation process.

Exercise 7.  In the linear model example with n observations, write the models Hf and Hg as
y = Xγ + � and  y = Zδ + η respectively.  Show that the maximum likelihood estimates in the family
Hg are δe = (Z�Z)-1Z�y and λe

2 = y�[I -  Z(Z�Z)-1Z�]y/n, and in the Hf family are γe = (X�X)-1X�y and
σe

2 = y�[I - X(X�X)-1X�]y/n.  Suppose the model y = Xβ + � with parameters α is true.  Show that the
differences of the maximum likelihood estimates in the Hg family and the corresponding pseudo-true
values for this family, evaluated at α, converge in probability to zero.

If f(y�x,αo) is the true data generation process, then by definition it encompasses any other
family of models Hg.  It is possible for a member of Hg to encompass the true data generation process
f(y�x,αo); this means that the member of g can generate data that looks like data drawn from
f(y�x,αo).  This could obviously happen if Hg contains one or more models that are observationally
equivalent to f, but could also occur if Hg contains models that are more "structural" than ƒ so that
they potentially can explain the same phenomena as f, and more.

In the theory of tests of non-nested hypotheses, the setup is to have two families of data
generation processes, Hf and Hg, which are not nested, with the true data generation process assumed
to be in one of the two families.  Then, the family containing the true data generation process will
encompass the other, but not vice versa (except in the unidentified case where there are models in
either family that can mimic the true data generation process).  Let an be the maximum likelihood
estimator of α from the model f(y�x,α).  Then bn - βfn(an) converges to zero if and only f encompasses
g, and an - βgn(bn) converges to zero if and only if g encompases f.  These observations form the basis
for practical test statistics for non-nested hypotheses; see Pesaran (1987) and Gourieroux & Monfort
(1994).  These ideas also form the basis for an estimation method called indirect inference, or in a
more general but less focused form, method of simulated moments: If the family Hf contains the true
data generation process f(y�x,αo), then this model encompasses g and one has bn - βfn(αn) converging
to zero if αn converges to αo, and with an assumption of identifiability, to a non-zero limit if αn
converges to something other than αo.  Then, choosing αn to make bn - βfn(αn) small will under some
regularity conditions make these estimators consistent for αo.  The reason to consider these indirect
estimates, rather than direct maximum likelihood estimates of α from the model f(y�x,α), is that the
true model may be very complex or very difficult to work with computationally.  For example,
f(y�x,α) may involve a complex structural model, or may involve probabilities that require
high-dimensional numerical integration to evaluate.  Then, the indirect inference may utilize a
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simpler family of models Hg that are easier to compute or more "robust".  For example, g may be a
reduced form model and indirect inference may involve choosing structural parameters so that their
transformation to reduced form parameters gives the same values as direct least squares estimation
of the reduced form.  Or, indirect inference may utilize a select list of moment conditions that you
are confident hold in the population.  The reason simulation methods enter is that the practical way
to calculate βfn(αn) is to use Monte Carlo methods to draw virtual samples from the data generation
process f(y�x,α) for various trial α, and select αn to minimize the distance between the estimator bn
from the observed sample and estimators bn(α) obtained from a virtual sample from f(y�x,α) by
estimating β by maximum likelihood estimation applied to this virtual sample.   Because this process
can also be interpreted as matching the "moments" bn from the virtual sample with simulated
"moments" bn(α) from the simulated virtual sample by varying α, it is also called the method of
simulated moments.  

Encompassing is a limited concept when comparing the true data generation process with an
alternative, since the true data generation process will encompass any alternative model.  However,
it becomes more general and more interesting under two circumstances: (1) the true data generation
process may fail to lie in either Hf or Hg, or (2) the results from Hf and Hg are based on limited
information, such as GMM estimates that rely on specific orthogonality conditions, rather that a full
parametric specification of a data generation process.  Then, encompassing can be a useful approach
to model selection.

We will not attempt to provide any general introduction to simulation and Monte Carlo
methods in these notes.  However, there a few key concepts that are important enough to introduce
at this stage.  First consider the problem of drawing a virtual sample from the data generation process
f(y�x,α) for a trial value of α.  Consider the simplest case when y is one-dimensional.  The
corresponding CDF U = F(Y�x,α) has a uniform distribution, and a Monte Carlo draw of y for
observation i is y* = F-1(ui�xi,α), where ui is a draw from a uniform distribution.  This is a practical
method of drawing a realization of a random variable if F-1 can be determined analytically or
efficiently evaluated numerically.  When it is impractical to calculate F-1, one may be able to use
Monte Carlo Markov Chain (MCMC) methods.  A Metropolis-Hastings (MH) sampler for f(y�x,α)
is defined by a conditional density q(y��y,x) chosen by the analyst and kernel w(y,y�,x) =
Min{q(y��y,x), f(y��x,α)�q(y�y�,x)/f(y�x,α)}.  This kernel is associated with a transition process in
which y� is sampled from q(y��y,x), then the process moves to y� with probability p(y,y�,x), and
otherwise stays at y, where p(y,y�,x) = Min{1,q(y�y�,x)�f(y��x,α)/q(y��y,x)�f(y�x,α)}.  A simple
choice for q(y��y,x) is a density q(y�) independent of y and x from which it is computationally easy
to draw and which has the property that f(y�x,α)/q(y) is never too large, a key determinant of the
efficiency of the sampling process.  The MH sampler is a generalization of what are called
acceptance/rejection methods.

The Metropolis-Hastings sampler starts from an arbitrary point, and proceeds recursively.
Suppose at step t-1, the draw is yt-1 and ft-1 = f(yt-1�x,α)).  Draw y� from the conditional density
q(��yt-1), and define qt+ = q(y��yt-1) and  q+t = q(yt-1�y�), Calculate α(yt-1,y�) = Min{1,q+tft/qt+ft-1}.  Draw
a uniform [0,1] random number ζ.  If ζ � p(yt-1,y�,x), set yt = y�; otherwise, set yt = yt-1.  Once it is
“burned in”, the sequence yt behaves like a sample drawn from f(��x,α).  Note that the terms in the
sequence are not statistically independent.  When one needs to form expectations with respect to
f(y�x,α), these can be approximated by means over the yt draws.
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In indirect inference or method of simulated moments, one searches iteratively for parameter
values that satisfy some criterion, such as minimizing the distance of bn - βfn(α) from zero, using
simulation to approximate βfn(α).  It is important in doing this that the simulated value of βfn(α),
considered as a function of α, have a property called stochastic equicontinuity.  Informally, this
means that the simulator does not "chatter" as α varies.  The way to accomplish this is to keep the
Monte Carlo draws that drive the simulation fixed as α changes.  For example, when a virtual sample
from f(y�x,α) is drawn by the inverse method y* = F-1(u�x,α), keeping the uniformly distributed draws
u fixed as α is varied does the job.

Further reading on simulation methods and indirect inference can be found in McFadden
(1989), Gourieroux & Monfort (1994), and Hajivassiliou & Ruud (1994).

7.  THE BOOTSTRAP

The idea fundamental to all of statistical inference is the principle that a statistical sample
forms an analogy to the target population, and to estimate the results of an operation on the target
population, one can complete the analogy by carrying out the same operation on the statistical
sample.  Thus, the sample mean is analogous to the population mean, and hence has decent statistical
properties as an estimate of the population mean.  Manski (1994) shows how this principle can guide
the construction of estimators.

Extending the analogy principle, if one is interested in the relationship between a target
population and a given sample drawn from this population, one could form an analogy by starting
from the given sample, drawing subsamples from it, and forming analogous relationships between
the original sample and the subsamples.  When the subsamples are drawn with replacement and are
the same size as the original sample, this is called the bootstrap.  

To illustrate the operation of the bootstrap, suppose you have an estimate an of the parameter
in a data generation process f(y�x,α), obtained from a sample of size n from the target population.
You would like to know the variance of the estimator an.   Note that this is a property of the
relationship between the population and the sample that could in principle be determined by drawing
repeated samples from the population, and estimating the variance of an from the repeated samples.
The bootstrap idea is to start from the observed sample, draw repeated subsamples from it (with
replacement), and complete the analogy by forming the estimator a* for each subsample, and
computing the sample variance of these estimators.  The bootstrap process is computationally
intensive, because it involves the subsampling process and the computation of a*, repeated many
times.  Under very general regularity  conditions, the analogy principle applies and the estimate of
the variance of an formed in this way will have good statistical properties.  Specifically, the bootstrap
estimate of the variance of an will have the same properties as the first-order asymptotic
approximation to the variance, without the effort of determining analytically and computing the
asymptotic approximation.  Further, the bootstrap estimator will under some conditions pick up
higher order effects, so that it is a better finite sample approximation that the first-order asymptotic
approximation.  In particular, if the expression being studied has a limiting distribution that is
independent of the parameters of the problem, as for example when one is interested in the finite
sample distribution of the ratio of a parameter estimate to its standard error which has a limiting
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T-distribution, the bootstrap will be more accurate for finite samples that the first-order asymptotic
approximation.  A statistic with the last property is called pivotal.

Bootstrap methods can often be used to estimate the distribution of statistics, for purposes
of estimating moments or critical levels, in situations where asymptotic analysis is intractable or
tedious.  The bootstrap is itself one member of a broad class of techniques called resampling
methods.  There are various pitfalls to be avoided in application of resampling methods, and a variety
of shortcuts and variants that can speed calculation or make them more accurate.  For further reading,
see Efron & Tibshirani (1993), Hall (1994), and Horowitz (1999).
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