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CHAPTER 1.  DISCRETE RESPONSE MODELS

1. INTRODUCTION  
When economic behavior is expressed as a continuous variable, a linear regression model

is often adequate to describe the impact of economic factors on this behavior, or to predict this
behavior in altered circumstances.  For example, a study of food expenditures as a function of price
indices for commodity groups and income, using households from the Consumer Expenditure
Survey, can start by modeling indirect utility as a translog function and from this derive a linear in
logs regression equation for food expenditures that does a good job of describing behavior.  This
situation remains true even when the behavioral response is limited in range (e.g., food consumption
of households is non-negative) or integer-valued (e.g., college enrollment by state), provided these
departures from a unrestricted continuous variable are not conspicuous in the data (e.g., food
consumption is observed over a range where the non-negativity restriction is clearly not binding;
college enrollments are in the thousands, so that round-off of the dependent variable to an integer
is negligible relative to other random elements in the model).  However, there are a variety of
economic behaviors where the continuous approximation is not a good one.  Here are some
examples:

(1) For individuals:  Whether to attend college; whether to marry; choice of occupation; number
of children; whether to buy a house; what brand of automobile to purchase; whether to migrate,
and if so where; where to go on  vacation.

(2) For firms:  Whether to build a plant, and if so, at what location; what commodities to
produce; whether to shut down, merge or acquire other firms; whether to go public or private;
whether to accept union demands or take a strike.

For sound econometric analysis, one needs probability models that approximate the true data
generation process.  To find these, it is necessary to think carefully about the economic behavior, and
about the places where random factors enter this behavior.  For simplicity, we initially concentrate
on a single binomial (Yes/No) response.  An example illustrates the process:  

Yellowstone National Park has been overcrowded in recent years, and large user fees to control
demand are under consideration.  The National Park Service would like to know the elasticity
of demand with respect to user fees, and the impact of a specified fee increase on the total
number of visitors and on the visitors by income bracket.  The results of a large household survey
are available giving household characteristics (income, number of children, etc.), choice of
vacation site, and times and costs associated with vacations at alternative sites.  Each vacation
is treated as an observation.

Start with the assumption that households are utility maximizers.  Then, each household will have
an indirect utility function, conditioned on vacation site, that gives the payoff to choosing this
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particular site and then optimizing consumption in light of this choice.  This indirect utility function
will depend on commodity prices and on household income net of expenditures mandated by the
vacation site choice.  It may also contain factors such as household tastes and perceptions, and
unmeasured attributes of sites, that are, from the standpoint of the analyst, random.  (Some of what
appears to be random to the analyst may just be heterogeneity in tastes and perceptions over the
population.)  Now consider the difference between the indirect utility of a Yellowstone vacation and
the maximum indirect utilities of alternative uses of leisure.  This is a function y  = f(z,�) of observed*

variables z and unobserved variables �.  We put a "*" on the utility difference y to indicate that is
latent rather than observed directly.  Included in z are variables such as household income, wage rate,
family characteristics, travel time and cost to Yellowstone, and so forth.  The form of this function
will be governed by the nature of indirect utility functions and the sources of �.  In some applications,
it makes sense to parameterize the initial indirect utility functions tightly, and then take f  to be the
function implied by this.  Often, it is more convenient to take f to be a form that is flexibly
parameterized and convenient for analysis, subject only to the generic properties that a difference
of indirect utility functions should have.  In particular, it is almost always possible to approximate
f closely by a function that is linear in parameters, with an additive disturbance:  f(z,�) � x� - J,
where � is a k×1 vector of unknown parameters, x is a 1×k vector of transformations of z, and
J = -f(z,�) + Ef(z,�) is the deviation of f from its expected value in the population.  Such an
approximation might come, for example, from a Taylor's expansion of Ef in powers of (transformed)
observed variables z.
     Suppose the gain in utility from vacationing in Yellowstone rather than at an alternative site is
indeed given by y  = x� - J.  Suppose the disturbance J is known  to the household and unknown to*

the econometrician, but the cumulative distribution  function (CDF) of J is a function F(J) that is
known up to a finite parameter vector.  The utility-maximizing household will then choose
Yellowstone if y  > 0, or J < x�.   The probability that this occurs, given x, is *

P(J < x�) = F(x�).

Define y = 1 if Yellowstone is chosen, y = -1 otherwise; then, y is an (observed) indicator for the
event y  > 0.  The probability law governing observed behavior is then, in summary,*

P(yx�) = . 
 

Assume that the distribution of J is symmetric about zero, so that F(J) = 1 - F(-J); this is not
essential, but it simplifies notation.  The probability law then has an even more compact form,

P(yx�) = F(yx�) .

How can you estimate the parameters �?  An obvious approach is maximum  likelihood.  The
log likelihood of an observation is

l(�y,x) = log P(yx�) � log F(yx�) .
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     To be precise, iterated NLLS, with the � appearing in the weighting function replaced by the last iterate, will converge to the1

MLE estimator; a single NLLS without weighting provides estimates of � that are consistent and asymptotically normal, but not
asymptotically efficient; and one iterate with weights calculated from a consistent estimator of � will be asymptotically equivalent
to MLE.
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If you have a random sample with observations t = 1,...,T, then the sample log likelihood is

L (�) = log F(yx�) .T t t

The associated score and hessian of the log likelihood are

/ L (�) =  yx 1F1(yx�)/F(yx�)� T t t t t t t  

/ L (�) =  x 1x {F2(yx�)/F(yx�) - [F1(yx�)/F(yx�)] } .�� T t t t t t t t t t t
2

A maximum likelihood program will either ask you to provide these formula, or will calculate them
for you analytically or numerically.  If the program converges, then it will then find a value of � (and
any additional parameters upon which F depends) that are (at least) a local maximum of L .  It canT

fail to converge to a maximum if no maximum exists or if there are numerical problems in the
evaluation of expressions or in the iterative optimization.  The estimates obtained at convergence
will have the usual large-sample properties of MLE, provided the usual regularity conditions are met,
as discussed later.

It is sometimes useful to write the score and hessian in a slightly different way.  Let d =
(y+1)/2; then d = 1 for Yellowstone, d = 0 otherwise, and d is an indicator for a Yellowstone trip.
Then, we can write 

l(yx,�) = d�log F(x�) + (1-d)�log F(-x�). 
 

Differentiating this expression, and noting that F1(x�) = F1(-x�), we get
/ l = xF1(x�){d/F(x�) - (1-d)/F(-x�)} = w(x�)�x�[d - F(x�)],�

where w(x�) = F1(x�)/F(x�)F(-x�).  The sample score is then 

/ L (�) =  w(x�)�x 1�[d  - F(x�)] .� T t t t t

The MLE condition that the sample score equal zero can be interpreted as a weighted orthogonality
condition between a residual [d - F(x�)] and the explanatory variables x.  Put another way, a
weighted non-linear least squares (NLLS) regression d  = F(x�) + � , with observation t weightedt t t

by w(x�) , will be equivalent to MLE.t
½ 1

The hessian can also be rewritten using d rather than y:  / l = -x1x�s(x�), where ��

s(x�) =  - [d - F(x�)] .  
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     We will see later that there are some more robust estimators, not as simple, that avoid having to place F in a parametric2

family, or use a non-parametric estimate of F.  Sometimes assumptions on F are sufficiently problematic so this extra complexity
is worth the trouble.
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The expectation of s(x�) at the true value �  is  > 0, so that the sample sum of theo

hessians of the observations in sufficiently large samples is eventually almost surely negative definite
in a neighborhood of � .o

It should be clear from the sample score, or the analogous NLLS regression, that the
distribution function F enters the likelihood function in an intrinsic way.  Unlike linear regression,
there is no simple estimator of � that rests only on assumptions about the first two moments of the
disturbance distribution.2

2. FUNCTIONAL FORMS AND ESTIMATORS

In principle, the CDF F(J) will have a form deduced from the application; in many cases, this
form would naturally be conditioned on the observed explanatory  variables.  However, an almost
universal practice is to assume that F(J) has one of the following standard distributions that are not
conditioned on x: 

(1) Probit:  F is standard normal.
(2) Logit:  F(J) = 1/(1+e ), the standard logistic CDF.-J

(3) Linear:  F(J) = J, for 0 � J � 1, the standard uniform distribution.
(4) Log-Linear:  F(J) = e , for J � 0, a standard exponential CDF.J
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There are many canned computer programs to fit models (1) or (2).  Model (3) can be fit by
linear regression, although heteroscedasticity is an issue.  Model (4) is  not usually a canned program
when one is dealing with individual observations, but for repeated observations at each configuration
of x it is a special case of the discrete analysis of variance model that is widely used in biostatistics
and can be fitted using ANOVA or regression methods.  Each of the distributions above has the
property that the function s(x�) that appears in the hessian is globally positive, so that the log
likelihood function is globally concave.  This is convenient in that any local maximum is the global
maximum, and any stable hill-climbing algorithm will always get to the global maximum.  The linear
and log-linear distributions are limited in range.  This is typically not a problem if the range of x is
such that the probabilities are bounded well away from zero and one, but can be a serious problem
when some probabilities are near or at the extremes, particularly when the model is used for
forecasting.

The remainder of this section deals with some alternatives to maximum likelihood
estimation, and can be skipped on first reading.  Recall that MLE chooses the parameter vector � to
achieve orthogonality between the explanatory variables x, and residuals d - F(x�), with weights
w(x�).  When the explanatory variables are grouped, or for other reasons there are multiple responses
observed for the same x, there is another estimation procedure that is useful.  Let j = 1,...,J index the
possible x  configurations, m  denote the number of responses observed at configuration x , and sj j j

denote the number of "successes" among these responses (i.e., the number with d = 1).  Let p  =j

F(x � ) denote the true probability of a success at configuration x .  Invert the CDF to obtain c  =j o j j

F (p ) = x�.  Note that p = F(c) implies 0c/0p = 1/F1(c) and 0 c/0p  = - F2(c)/F1(c) .  Then, a Taylor's-1 2 2 3
j j

expansion of F (s /m) about p  gives-1
j j j

F (s /m) = F (p ) +  - � = x� + �  + �  ,-1  -1  
j j j  j j j  

where q  is a point between p  and s /m, �  = (s /m - p )/F1(F (p )) is a disturbance that has expectationj j j j j j j j j
-1

zero and a variance proportional to p (1-p )/m , and �  is a disturbance that goes to zero in probabilityj j j j

relative to � .  Then, when the m  are all large (the rule-of-thumb is s  � 5 and m-s  � 5), thej j j j j

regression
F (s /m) = x� + �-1

j j j j

gives consistent estimates of �.  This is called Berkson's method.  It can be made asymptotically
equivalent to MLE if a FGLS transformation for heteroscedasticity is   made.  Note however that in
general this transformation is not even defined unless s  is bounded away from zero and m, so it doesj j

not work well when some x's are continuous and cell counts are small.  Note that Berkson's
transformation in the case of probit is - (s /m); in the case of logit is log(s /(m-s )); in the case of-1

j j j j j

linear is s ; and in the case of the exponential model is log(s /m).  It is a fairly general propositionj j j

that the asymptotic approximation is improved by using the transformation F ((s +0.5)/(m+1)) rather-1
j j

than F (s /m) as the dependent variable in the regression; for logit, this minimizes the variance of-1
j j

the second-order error.
There is an interesting connection between the logit model and a technique called normal

linear discriminant analysis.  Suppose that the conditional distributions of x, given d = 1 or given
d = 0, are both multivariate normal with respective mean vectors µ  and µ , and a common1 0
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covariance matrix .  Note that these assumptions are not necessarily very plausible, certainly not
if some of the x variables are limited or discrete.  If the assumptions hold, then the means µ  and µ0 1

and the covariance matrix  can be estimated from sample averages, and by Bayes law the
conditional distribution of d given x when a proportion q  of the population has state d = 1 has a logit1

form

P(d=1x) =  =  ,

where � =  (µ -µ ) and . = µ 1 µ  - µ 1 µ  + log(q /q ).  This approach produces a fairly robust-1 -1 -1
1 0 1 1 0 0 1 0

(although perhaps inconsistent) estimator of the logit parameters, even when the normality
assumptions are obviously wrong.

3. STATISTICAL PROPERTIES OF MLE

The MLE estimator for most binomial response models is a special case of the general setup
treated in the statistical theory of MLE, so that the incantation "consistent and asymptotically normal
(CAN) under standard regularity conditions" is true.  This is a simple enough application so that it
is fairly straightforward to see what these "regularity" conditions mean, and verify that they are
satisfied.  This is a thought exercise worth going through whenever you are applying the maximum
likelihood method.  First, here is a list of fairly general sufficient conditions for MLE to be CAN in
discrete response models; these are taken from McFadden "Quantal Response Models", Handbook
of Econometrics, Vol. 2, p. 1407.  Commentaries on the assumptions are given in italics.

(1) The domain of the explanatory variables is a measurable set X with a probability p(x).  This
just means that the explanatory variables have a well-defined distribution.  It certainly holds if
the domain (support) of X is a closed set, and p is a continuous density on X.

(2) The parameter space is a subset of Ü , and the true parameter vector is in the interior of thisk

space.  This says you have a finite-dimensional parametric problem.  This assumption does not
require that the parameter space be bounded, in contrast to many sets of assumptions used to
conclude that MLE are CAN.  The restriction that the true parameter vector be in the interior
excludes some cases where CAN breaks down.  This is not a restrictive assumption in most
applications, but it is for some.  For example, suppose a parameter in the probit model is
restricted (by economic theory) to be non-negative, and that this parameter is in truth zero.
Then, its asymptotic distribution will be the (non-normal) mixture of a half-normal and a point
mass.

(3) The response model is measurable in x, and for almost all x is continuous in the parameters.
The standard models such as probit, logit, and the linear probability model are all continuous
in their argument and in x, so that the assumption holds.  Only pathological applications in
which a parameter determines a "trigger level" will violate this assumption.
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(4)  The model satisfies a global identification condition (that guarantees that there is at most one
global maximum; see McFadden, ibid, p. 1407).  The concavity of the log likelihood of an
observation for probit, logit, linear, and log linear models guarantees global identification,
provided only that the x's are not linearly dependent.

(5) The model is once differentiable in the parameters in some neighborhood of the true values.
This is satisfied by the four CDF from Section 2 (provided parameters do not give observations
on the boundary in the linear or log linear models where probabilities are zero or one), and by
most applications.  This assumption is weaker than most general MLE theorems, which assume
the log likelihood is twice or three times continuously differentiable.

(6) The log likelihood and its derivative have bounds independent of the parameters in some
neighborhood of the true parameter values.  The first derivative has a Lipschitz property in this
neighborhood.  This property is satisfied by the four CDF, and any CDF that are continuously
differentiable.

(7) The information matrix, equal to the expectation of the outer product of the score of an
observation, is nonsingular at the true parameters.  This is satisfied automatically by the four
CDF in Section 2, provided the x's are not linearly dependent.

The result that conditions (1)-(7) guarantee that MLE estimates of � are CAN is carried out
essentially by linearizing the first-order condition for the estimator using a Taylor's expansion, and
arguing that higher-order terms than the linear term are asymptotically negligible.  With lots of
differentiability and uniform bounds, this is an easy argument.  A few extra tricks are needed to carry
this argument through under the weaker smoothness conditions contained in (1)-(7).

4. EXTENSIONS OF THE MAXIMUM LIKELIHOOD PRINCIPLE

The assumptions under which the maximum likelihood criterion produces CAN estimates
include, critically, the condition (2) that the parametric family of likelihoods that are being
maximized include the true data generation process.  There are several reasons that this assumption
can fail.  First, you may have been mistaken in your assumption that the model you have written
down includes the truth.  This might happen in regression analysis because some variable that you
think does not influence the dependent variable or is uncorrelated with the included variables
actually does belong in the regression.  Or, in modeling a binomial discrete response, you may
assume that the disturbance in the model y  = x� - J is standard normal when it is in truth logistic.*

Second, you may deliberately write down a model you suspect is incorrect, simply because it is
convenient for computation or reduces data collection problems.  For example, you might write
down a model that assumes observations are independent even though you suspect they are not.  This
might happen in discrete response analysis where you observe several responses from each economic
agent, and suspect there are unobserved factors such as tastes that influence all the responses of this
agent.  
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What are the statistical consequences of this model misspecification?  The answer is that this
will generally cause the CAN property to fail, but in some cases the failure is less disastrous than one
might think.  The most benign situation arises when you write down a likelihood function that fails
to use all the available data in the most efficient way, but is otherwise consistent with the true
likelihood function.  For example, if you have several dependent variables, such as binomial
responses on different dates, you may write down a model that correctly characterizes the marginal
likelihood of each response, but fails to characterize the dependence between the responses.  This
setup is called quasi-maximum likelihood estimation.  What may happen in this situation is that not
all the parameters in the model will be identified, but those that are identified are estimated CAN,
although not necessarily with maximum efficiency.  In the example, it will be parameters
characterizing the correlations across responses that are not identified.  Also fairly benign is a
method called pseudo-maximum likelihood estimation, where you write down a likelihood function
with the property that the resulting maximum likelihood estimates are in fact functions only of
selected moments of the data.  A classic example is the normal regression model, where the
maximum likelihood estimates depend only on first and second moments of the data.  Then the
estimates that come out of this criterion will be CAN even if the pseudo-likelihood function is
misspecified, so long as the true likelihood function and the pseudo-likelihood function coincide for
the moments that the estimators actually use.

More tricky is the situation where the likelihood you write down is not consistent with the
true likelihood function.  In this case, the parameters in the model you estimate will not necessarily
match up, even in dimension, with the parameters of the true model, and there is no real hope that
you will get reasonable estimates of these true parameters.  However, even here there is an
interesting result.  Under quite general conditions, it is possible to talk about the "asymptotically
least misspecified model", defined as the model in your misspecified family that asymptotically has
the highest log likelihood.  To set notation, suppose f(yx) is the true data generation process, and
g(yx,�) is the family of misspecified models you consider.  Define �  to be the parameters that1

maximize
E  f(yx)�log g(yx,�).y,x

Then, �  determines the least misspecified model.  While �  does not characterize the true data1 1

generation process, and the parameters as such may even be misleading in describing this process,
what is true is that �  characterizes the model g that in a "likelihood metric" is as close an1

approximation as one can reach to the true data  generation process when one restricts the analysis
to the g family.  Now, what is interesting is that the maximum likelihood estimates b from the
misspecified model are CAN for �  under mild regularity conditions.  A colloquial way of putting1

this is that MLE estimates are usually CAN for whatever it is they converge to in probability, even
if the likelihood function is misspecified.

All of the estimation procedures just described, quasi-likelihood maximization,
pseudo-likelihood maximization, and maximization of a misspecified likelihood function, can be
interpreted as special cases of a general class of estimators called generalized method of moment
estimators.  One of the important features of these estimators is that they have asymptotic covariance
matrices of the form + �+1 , where + comes from the hessian of the criterion function, and � comes-1 -1
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from the expectation of the outer product of the gradient of the criterion function.  For true maximum
likelihood estimation, this form reduces to � , but more generally the full form + �+1  is required.-1 -1 -1

One important family of quasi-maximum likelihood estimators arises when an application
has a likelihood function in two sub-vectors of parameters, and it is  convenient to obtain preliminary
CAN estimates of one sub-vector, perhaps by maximizing a conditional likelihood function.  Then,
the likelihood is maximized in the second sub-vector of parameters after plugging in the preliminary
estimates of the first sub-vector.  This will be a CAN procedure under general conditions, but it is
necessary to use a formula of the form + �+1  for its asymptotic covariance matrix, where �-1 -1

includes a contribution from the variance in the preliminary estimates of the first sub-vector.  The
exact formulas and estimators for the terms in the covariance matrix are given in the lecture notes
on generalized method of moments.

5. TESTING HYPOTHESES

It is useful to see how the general theory of large sample hypothesis testing plays out in the
discrete response application.  For motivation, return to the  example of travel to Yellowstone Park.
The basic model might be binomial logit,

P(yx�) = F(yx�) = 1/(1 + exp(-yx�)),

where x includes travel time and travel cost to Yellowstone, and family income, all appearing
linearly:

x� = TT��  + TC��  + I��  + � ,1 2 3 4

with TT = travel time, TC = travel cost, I = income.  The parameter �  is an intercept term that4

captures the "average" desirability of Yellowstone relative to alternatives after travel factors have
been taken into account.  The Park Service is particularly concerned that an increase in Park entry
fees, which would increase overall travel cost, will have a particularly adverse effect on low income
families, and asks you to test the hypothesis that sensitivity to travel cost increases as income falls.
This suggests the alternative model

x� = TT��  + TC��  + I��  + �  + � �TC/I,1 2 3 4 5

with the null hypothesis that �  = 0.  This hypothesis can be tested by estimating the model without5

the null hypothesis imposed, so that �  is estimated.  The Wald test statistic is the quadratic form (b5 5

- 0)1V(b ) (b  - 0); it is just the square of the T-statistic for this one-dimensional hypothesis, and it5 5
-1

is asymptotically chi-square distributed with one degree of freedom when the null hypothesis is true.
When the null hypothesis is non-linear or of higher dimension, the Wald statistic requires retrieving
the covariance matrix of the unrestricted estimators, and forming the matrix of derivatives of the
constraint functions evaluated at b.  An alternative that is computationally easier when both the
unrestricted and restricted models are easy to estimate is to form the Likelihood Ratio statistic
2[L (b) - L (b*)], where b and b* are the estimates obtained without the null hypothesis and withT T

the null hypothesis imposed, respectively, and L  is the sample log likelihood.  This statistic isT
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asymptotically equivalent to the Wald statistic.  Finally, the Lagrange Multiplier statistic is obtained
by estimating the model under the null hypothesis, evaluating the score of the unrestricted model at
the restricted estimates, and then testing whether this score is zero.  In our example, there is a slick
way to do this.  Regress a normalized residual [d  - F(x b)]/[F(xb)F(-x b)]  from the restricted modelt t

1/2

on the weighted explanatory variables xF1(xb)/[F(xb)F(-xb)]  . that appear in the unrestricted1/2

model.  The F-test for the significance of the explanatory variables in this regression is
asymptotically equivalent to the Lagrange Multiplier test.  The reason this trick works is that the
Lagrange Multiplier test is a test of orthogonality between the normalized residual and the weighted
variables in the unrestricted model.

6. MULTINOMIAL RESPONSE

Conceptually, it is straightforward to move from modeling binomial response to modeling
multinomial response.  When consumers or firms choose among multiple, mutually exclusive
alternatives, such as choice of brand of automobile, occupation, or plant location, it is natural to
introduce the economic agent's objective function (utility for consumers, profit for firms), and
assume that choice maximizes this objective function.  Factors unobserved by the analyst,
particularly heterogeneity in tastes or opportunities, can be interpreted as random components in the
objective functions, and choice probabilities derived as the probabilities that these unobserved
factors are configured so as to make the respective alternatives optimal.

Suppose there are J alternatives, indexed C = {1,...,J}, and suppose the economic agent seeks
to maximize an objective function U(z ,s,� ), where z  are observed attributes of alternative i, s arei i i

characteristics of the decision maker, and �  summarizes all the unobserved factors that influence thei

attractiveness of alternative i.  Then, the multinomial response probability is

     P (iz,s) = Prob({�U(z ,s,� ) > U(z ,s,� ) for j g i}),C i i j j

where z = (z ,...,z ).  For example, if C = {1,...,J} is the set of automobile brands, with z  the1 J i

attributes of brand i including price, size, horsepower, fuel efficiency, etc., then this model can be
used to explain brand choice, or to predict the shares of brands as the result of changing prices or
new model introductions.  If one of the alternatives in C is the "no purchase" alternative, the model
can describe the demand for cars as well as brand choice.  If C includes both new and used
alternatives, then it can explain replacement behavior.  If i � C identifies a portfolio of two brands,
or one brand plus a "no purchase", it can explain the holdings of two-car families.  

Placing U in a parametric family and making � a random vector with a parametric probability
distribution produces a parametric probability law for the observations.  However, it is difficult to
do this in a way that leads to simple algebraic forms that do not require multivariate integration.
Consequently, the development of  multinomial response models has tended to be controlled by
computational issues,  which may not accommodate some features that might seem sensible given
the economic application, such as correlation of unobservables across alternative portfolios that have
common elements.

The simplest multinomial response model is multinomial logit (MNL), which has a closed
form
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P (iz,s) = exp(x�)/ exp(x�),C i j

where x  is a vector of known functions of z  and s.  This model is derived from the maximizingi i

framework above by assuming U(z ,s,� ) = x� + J , with the J  independently identically distributedi i i i i

with the special CDF ), termed the Type I  extreme value distribution.  

The likelihood of observation n from a MNL model for choice from C is

l  = d �log(P (i)), n in Cn

where P (i) = exp(x �)/ / exp(x �) , and d  =1 indicates choice and d  = 0 for non-chosenCn in kn in jn

alternatives.  The gradient, or score, is

s  = / l  = d �[x  - x �P (k)] n � n in in kn Cn

 = [d  - P (i)]�x . =  [d  - P (i)]�xin Cn in in cn iCn

where x  = P (i)�x  and x  = x  - xCn Cn in iCn in Cn

The score has the interpretation of requiring orthogonality in the sample between the explanatory
variables x  and the residuals d  - P (i).  The hessian, or information matrix, isin in Cn

H  = -/ l  = P (i)�[x  - x ]�[x  - x ]1= P (i)�x �x 1 , n �� n Cn in Cn in Cn Cn iCn iCn

The matrix H  is positive semi-definite, and the expectation of H  will be positive definite so longn n

as the x  are not linearly dependent.  This assures that the log likelihood function is concave.iCn

Consider the sample log likelihood L  = l .  Any parameter vector that sets the sampleN n

score to zero will also be a global maximum, and standard iterative  maximization by a procedure
like Newton-Raphson will converge to a global maximum.   The Newton-Raphson iterative3

adjustment in parameters will be 
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û� = s  �  x �[d  - P (i)],n iCn in Cn

where x  = x  - x  � x  - P (i)�x .  The adjustment û� can also be interpreted as theiCn in Cn in Cn in

estimates of the coefficients from a linear regression of [d  - P (i)]#P (i)  on the variablesin cn Cn
-1/2

P (i) �x .  This has the same form as a Lagrange Multiplier test statistic, and one can write downCn iCn
1/2

a criterion for convergence that is identical to a LM test of whether the last iterate of the parameter
vector is the true parameter vector.  (One would want to accept the hypothesis and stop iterating only
if there is very little probability of a type II error, accepting a false hypothesis.  Therefore, the
convergence criterion should use this LM statistic with a very large type I error, say 99.9%.)

One implication of the MNL model is that the ratio of the probabilities of two alternatives
i and j depends only on x  and x , and not on the presence or properties  of other alternatives; i.e., i j

P (i)/P (j) = exp((x  - x )�) .  This is called the Independence from Irrelevant Alternatives (IIA)Cn Cn in jn

property.  This is a very restrictive property when x  depends only on attributes of alternative i forin

each i.  It implies patterns of cross-elasticities of substitution that are implausible for many
applications.  For example, a MNL model of the multinomial choice of school for graduate study in
economics makes no allowance for the possibility that there may be unobserved factors shared by
several schools (e.g., the Northern California location of Berkeley and Stanford), so that
discrimination within this class (which we might call the "blue department" and the "red
department") is likely to be sharper than it is between one of these departments and an East Coast
department such as Princeton.  The IIA property is a powerful restriction which if true can greatly
simplify estimation and forecasting, and if false produces a misspecified model that can give
misleading estimates and forecasts.  The IIA property is not on its face particularly plausible, and
what is remarkable about the MNL model is that it often performs well in forecasting situations even
when IIA does not appear to be reasonable.  However, it is important to understand the consequences
of the IIA property of MNL, and to develop models for discrete response that can be used when IIA
is clearly invalid.

7. ALTERNATIVES TO THE MNL MODEL FOR MULTINOMIAL RESPONSE

As in the derivation of the MNL model, associate with alternative i in a feasible set C a
"payoff" u  = z� + J , which in the case of consumer choice may be the indirect utility attached toi i i

alternative i and in the case of firm choice may be profit from alternative i.  The z  are observedi

explanatory variables, and the J  are unobserved disturbances.  Observed choice is assumed toi

maximize payoff:  y  = 1(u  � u  for j � C).  One form of this model is a random coefficientsi i j

formulation u  = z., E. = �, J  = z (. - �), implying cov(J ,J ) = z �Cov(.)�z 1 .  For C = {1,...,J},i i i i i j i j

define u, z, J, and y to be J×1 vectors with components u , z , J , y , respectively.  Define a (J-1)×Jj j j j

matrix û  by starting from the J×J identity matrix, deleting row i, and then replacing column i withi

the vector (-1,...,-1).  For example, letting 1  denote a (J-1)×1 vector of ones and I  denote anJ-1 J-1

identity  matrix of dimension J-1, one has  
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û  = [-1   I ].1 J-1 J-1

Then alternative i is chosen if ûu � 0.  The probability of this event isi

P (z,�) = Pr(ûu � 0z,�) � f(uz,�)du,i i

where f(uz,�) is the conditional density of u given z. The parameters � include the slope parameters
� and any additional parameters characterizing the distribution of the disturbances J.  The
multivariate integral defining P (z,�) can be calculated analytically in special cases, notablyi

multinomial logit and its generalizations.  However, for most densities the integral is analytically
intractable, and for dimensions much larger than J = 5 is also intractable to evaluate with adequate
precision using standard numerical integration methods.  Then, the four practical methods of
working with random utility models for complex applications are (1) use of nested multinomial logit
and related specializations of Generalized Extreme Value (GEV) models, (2) use of multinomial
probit with special factor-analytic structure to provide feasible numerical integration; (3) use of
multinomial probit with simulation estimators that handle high dimensions; and (4) use of mixed
(random coefficients) multinomial logit, with simulation procedures for the coefficients.

GEV Models
Assume that the indirect utility of i can be written u  = v  + J  with J  a disturbance and v  thei i i i i

systematic part of utility, depending on observed variables and unknown parameters.  For example,
one might have v  = .(y-t ) + �x , where y is income, t  is the cost of alternative i (including costs ofi i i i

time), and J  is a part that varies randomly across consumers.  The terms ., � are parameters.  i

The J's have a joint CDF of generalized extreme value (GEV) form if

F(J ,...,J ) = )), 
1 J  

where (i) H(w ,...,w ) is a non-negative linear homogeneous function of w � 0,  satisfying (ii) if any1 J

argument goes to +�, then H goes to +�; and (iii) the mixed partial derivatives of H exist, are
continuous, and alternate in sign, with non-negative odd mixed derivatives.  A function H with
properties (i) - (iii) will be termed a GEV generating function. 
 

Theorem1.  Suppose H(w) for w = (w ,...,w ) is a GEV generating function.  Then, F(J) is a CDF 
1 J

with Extreme Value Type I univariate marginals.  Further the random  utility model u  = v  + Ji i i

with J distributed F(J) satisfies 

E max u  = log ) + E,  
i i  

where E = 0.5772156649 is Euler's constant, and the choice probabilities satisfy 

P  = �H ) . 
i i
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The linear function H = w  is a GEV generating function which yields the multinomiali

logit (MNL) model.  The following result can be used to build up complex choice models.  In this
theorem, the sets A and B are not required to be mutually exclusive.

Theorem 2. If sets A,B satisfy AFB = {1,...,J}, H (w ) and H (w ) are GEV generating functionsA B
A B

in w  and w , respectively, and if s � 1, then  H(w) = H (w )  + H (w ) is a GEV generatingA B A B
A s 1/s B

function in (w ,...,w ).1 J

One can use this theorem to show that a three-level nested MNL model is generated by a function
H of the form 

H =   , 
 

where the A  partition {1,...,J} and s1 ,s  � 1.  This form corresponds to a tree: m indexes majormk k m

branches, k indexes limbs from each branch, and i indexes the final twigs.  The larger s1  or s , thek m

more substitutable the alternatives in A .  If s1  = s  = 1, this model reduces to the MNL model.mk k m

The GEV model is most efficiently estimated by MLE, but a convenient (and numerically relatively
stable) method of getting preliminary estimates is to proceed sequentially, starting at the innermost
nests.  At each level of nesting, choice can be represented by a MNL model, which will however
depend on parameters estimated from deeper levels of nesting.  Details of this estimation procedure
are given in McFadden (1984).

One interesting feature of GEV models is that they provide a convenient computational
formula for the exact consumers' surplus associated with a policy that  changes the attributes of
alternatives.  Let v 1 = .(y-t ) + � x 1 and v2 = .(y-t ) + � x2, where x 1 is the vector of originali i i i i i i

attributes and x2 is the vector of improved  attributes.  Then, the willingness-to-pay for the changei

from x1 to x2 is

WTP = � . 
 

This is the "log sum" formula first developed by Ben Akiva (1972), McFadden (1973), and
Domencich and McFadden (1975) for the multinomial logit model, and by McFadden  (1978, 1981)
for the nested logit model.  This formula is valid only when the indirect utility function is linear in
income.

The MNP Model
A density that is relatively natural for capturing unobserved effects, and the patterns of

correlation of these effects across alternatives, is the multivariate normal distribution with a flexible
covariance matrix.  This is termed the multinomial probit model.  If J = z�, where � is interpreted
as a random variation in "taste" weights across observations with � ~ N(0,), then the transformed
variable w = ûu is multivariate normal of dimension J-1 with mean û z� and covariance û zz1û 1.i i i i
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Unless J � 5 or dimensionality can be reduced because � has a factorial covariance structure, the
resulting MNP response probabilities are impractical to calculate by numerical integration.  The
method of simulated moments was initially developed to handle this model; see McFadden (1989).

For dynamic applications (e.g., multiperiod binomial probit with autocorrelation), and other
applications with large dimension, alternatives to simulation of the MNP model with a unrestricted
covariance matrix may perform better.  McFadden (1984, 1989) suggests a "factor analytic" MNP
with a components of variance structure, starting from

u  = z� + � �  + 1 �  ,  i i ik k i i

where � ,...,� ,� ,...,�  are independent standard normal, with the �  interpreted as levels of1 K 1 J k

unobserved factors and the �  as the loading of factor k on alternative i.  The �'s are identified byik

normalizations and exclusion restrictions.  The choice probabilities for this specification are

P (z,�) =  3(� )� 3(� )i i k

× - �d�d� ���d�i 1 K

Numerical integration (when K+1 < 5) or simulation methods can be used to approximate this
function and its derivatives for purposes of approximate maximum likelihood estimation.  If
simulation is used, two important rules should be followed:  First, the Monte Carlo draws used for
simulation should be made once and then frozen over the course of iterative search for parameters.
This avoids "chatter" that can destroy the statistical properties of simulation-based estimators.
Second, the number of simulation draws per observation should rise faster than the square root of
sample size.  This will assure that the simulation is asymptotically negligible, and cannot interfere
with the CAN properties of MLE.

Mixed MNL (MMNL)
Mixed MNL is a generalization of standard MNL that shares many of the advantages of

MNP, allowing a broad range of substitution patterns.  Train and McFadden (1999) show that any
regular random utility model can be approximated as closely as one wants by a MMNL model.
Assume u = z. + J , with the J  independently identically Extreme Value I distributed, and . randomi i i i

with density f(.;�), where � is a vector of parameters.  Conditioned on .,

L (z.) = /� .i j0C

Unconditioning on .,

P (z�) = L (z.)�f(.;�)�d. .i i  

This model can be estimated by sampling randomly from f(.;�), approximating P (z�) by an averagei

in this Monte Carlo sample, and varying � to maximize the likelihood of the observations.  Care must
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be taken to avoid chatter in the draws when � varies.  The MMNL model has proved computationally
practical and flexible in applications.  It can approximate MNP models well, and provides one
convenient route to specification of models with flexibility comparable to that provided by MNP.

8. TESTS FOR THE IIA PROPERTY OF MNL

Alternatives to the MNL model may be derived from random utility models in which
subsets of alternatives have disturbances J  that are correlated, perhaps because of  commonin

unobserved attributes.  Common components of disturbances cancel out of the  determination
of choice within such a subset.  As a result, discrimination of differences in observed attributes
is sharper in a subset than overall; there is less random noise to blur discrimination.  Tests for
the presence of sharper discrimination in subsets is then a test of the IIA property of the MNL
model.

For any discrete response model, including but not limited to MNL, let s  denote then

score of an observation, and H  the negative of the hessian for an observation.  A Taylor'sn

expansion of the sample score about the maximum likelihood estimator establishes that in large
samples 

b - �  = ( H ) ( s ) + O(N ),  -1 -1/2
o n n  

and the covariance matrix of b - �  is approximately  = ( H ) , where all expressionso n  
 -1

are evaluated at � .  In sufficiently large samples, b is  approximately normally distributed witho

mean �  and covariance matrix , and the quadratic formo

(b - � )1 (b - � ) = ( s )1( H ) ( s ) -1 -1
o C o  n n n  

is approximately chi-squared distributed with degrees of freedom equal to the dimension of � .o

This is a Wald test statistic for the null hypothesis that � = � .  It can also be applied to ao

subvector of �, with the commensurate submatrix of   in the center of the quadratic form, toC
-1

test the null hypothesis that this subvector takes on specified values.  
We describe a series of hypothesis testing procedures that can be interpreted as tests of

the IIA property of MNL.  We will show a connection between these statistics and conventional
test statistics for omitted variables.

Hausman-McFadden IIA Test:4

Estimate the MNL model twice, once on a full set of alternatives C, and second on a
specified subset of alternatives A and the subsample with choices from this subset.  If IIA holds,
the two estimates should not be statistically different.  If IIA fails, then there may be sharper
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discrimination within the subset A, so that the estimates from the second setup will be larger
in magnitude than the estimates from the full set of alternatives.  Let �  denote the estimatesA

obtained from the second setup, and   denote their estimated covariance matrix.  Let �  denoteA C

the estimates of the same parameters obtained from the full choice set, and   denote theirC

estimated covariance matrix.  (Some parameters that can be estimated from the full choice set
may not be identified in the second setup, in which case �  refers to estimates of the subvectorC

of parameters that are identified in both setups.)  Consider the quadratic form 
(�  - � )1(  -  ) (�  - � ) . -1

C A A C C A  

This has a chi-square distribution when IIA is true.  In calculating this test, one must be careful
to restrict the comparison of parameters, dropping components as necessary, to get   - A C

non-singular.  When this is done, the degrees of freedom of the chi-square test equals the rank
of   -  .  The simple form of the covariance matrix for the parameter difference arisesA C

because �  is the efficient estimator for the problem.  C

McFadden omitted variables test.5

Estimate the basic MNL model, using all the observations; let P  = P (i) denote thein Cn

fitted model.  Suppose A is a specified subset of alternatives.  Create new variables in one of
the following three forms:

a. If x  are the variables in the basic logit model, define new variables  in

z  = , 
in  

The variables z  can be written in abbreviated form as z  = / (x  - x ), where /  = 1 iffin in iA in An iA

i � A and x  = P x  and P  is the conditional probability of choice of j givenAn jnA j jnA

choice from A, calculated from the base model.  

b. If V  = x � is the representative utility from the basic model, calculated at basic modelin in

estimated parameters, define the new variable

z  = , 
in  

or more compactly, z  = / (V  - V ).in iA in An  

c. Define the new variable



log(PinA) 	M
k�A

PknAlog(PknA) if i � A

0 if i Õ A

Log Likelihood

with z �s
	

Log Likelihood

without z �s

18

z  = , 
in  

where P  is calculated using the basic model estimates.inA

* The constructions b. and c. are the same.  The denominators of the probabilities in the
expression -log(P ) that appears in the type c. variable drop out, leaving the terms in theinA

construction b.
* Estimate an expanded MNL model that contains the basic model variables plus the new
variables z .  Then test whether these added variables are significant.  If there is  a single addedin

variable, as in the construction b., then the T-statistic for this added variable is the appropriate
test statistic.  More generally, one can form a likelihood ratio statistic

LR = 2    
 

If IIA holds, this likelihood ratio statistic has a chi-square distribution with degrees of freedom
equal to the number of added z variables (after eliminating any that are linearly dependent).

Properties:
* The test using variables of type a. is statistically asymptotically equivalent to the
Hausman-McFadden test for the subset of alternatives A.
* The test using variables of type b. is equivalent to a one-degree-of-freedom
Hausman-McFadden test focused in the direction determined by the parameters �.  It will have
greater power than the previous test if there is substantial variation in the V's across A.  It is also
asymptotically equivalent to a score or Lagrange Multiplier test of the basic MNL model
against a nested MNL model in which subjects discriminate more sharply between alternatives
within A than they do between alternatives that are not both in A.  One minus the coefficient
of the variable can be interpreted as a preliminary estimate of the inclusive value coefficient for
the nest A.
* If there are subset-A-specific dummy variables in the basic model, then some of  the omitted
type a. variables are linearly dependent upon these variables, and cannot be used in the testing
procedure.  Put another way, subset-A-specific dummy variables can mimic the effects of
increased discrimination within A due to common unobserved components.
* One may get a rejection of the null hypothesis either if IIA is false, or if there is some other
problem with the model specification, such as omitted variables or a failure of the logit form
due, say, to asymmetry or to fat tails in the disturbances.



e
xi./Mj�C e

xj.

Mj�C

19

* Rejection of the IIA test will often occur when IIA is false, even if the nest A does not
correctly represent the pattern of nesting.  However, the test will typically have greatest power
when A is a nest for which an IIA failure occurs.
* The tests described above are for a single specified subset A.  However, it is trivial to test the
MNL model against several nests at once, simply by introducing an omitted variable for each
suspected nest, and testing jointly that the coefficients of these omitted variables are zero.
Alternative nests in the test can be overlapping and/or nested.  The coefficients on the omitted
variables and their T-statistics provide some guide to choice of nesting structure if the IIA
hypothesis fails.

A LM Test Against the Mixed MNL Model
The mixed MNL family is very flexible and can approximate any well-behaved discrete

response data generation process that is consistent with utility maximization.  However, because
the MMNL model requires the use of simulation methods for estimation, it is very useful to
have a specification test that can indicate whether mixing is needed.  The next result describes
a Lagrange Multiplier test for this purpose.  This test has the pivotal property that its asymptotic
distribution under the null hypothesis that the correct specification is MNL does not depend on
the parameterization of the mixing distribution under the alternative.

Theorem 2.  Consider choice from a set C = {1,...,J}.  Let x be a 1×K vector of attributes 
i

of alternative i.  From a random sample n = 1,...,N, estimate the parameter . in the simple MNL

model L (i;x,.) = , using maximum likelihood; construct artificial variablesC

z  = ½(x  - x )    with   x  = x �L (j;x,r)   2
ti ti t t tj  C C C

for selected components t of x , and use a Wald or Likelihood Ratio test for the hypothesis thati

the artificial variables z  should be omitted from the MNL model.  This test is asymptoticallyti

equivalent to a Lagrange multiplier test of the hypothesis of no mixing against the alternative
of a MMNL model P (ix,�) = ,L (i;x,.)�G(d.;�) with mixing in the selected components t ofC C

..  The degrees of freedom equals the number of artificial variables z  that are linearlyti

independent of x. 

To examine the operating characteristics of the test, consider two simple Monte Carlo
experiments for choice among three alternatives, with random utility functions u  = . x  + . xi 1 1i 2 2i

+ J .  The disturbances J  were i.i.d. Extreme Value Type I.  In the first experiment, the covariatei i

were distributed as described below:

 

Variable Alternative 1 Alternative 2 Alternative 3
  x  ±½ w.p.  ½    0    01

  x  ±½ w.p.  ½  ±½ w.p.  ½    02
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The parameter .  = 1 under both the null and the alternative.  The parameter .  = 0.5 under the2 1

null hypothesis, and under the alternative .  = 0.5 ± 1 w.p. 1/2.  We carried out 1000 repetitions1

of the test procedure for a sample of size N = 1000 and choices generated alternately under the
null hypothesis and under the alternative just described, using likelihood ratio tests for the
omitted variable z .  The results are given below:1i

 

Nominal Significance Level Actual Significance Level Power Against the Alternative
  10%   8.2%  15.6%
  5%   5.0%   8.2%

  
The nominal and actual significance levels of the test agree well.  The power of the test is low,
and an examination of the estimated coefficients reveals that the degree of heterogeneity in
tastes present in this experiment gives estimated coefficients close to their expected values.  Put
another way, this pattern of heterogeneity is difficult to distinguish from added extreme value
noise.

In the second experiment, the covariates are distributed as shown below:

 

Variable Alternative 1 Alternative 2 Alternative 3
  x  ±½ w.p.  ½  ±½ w.p.  ½    01

  x  ±½ w.p.  ½  ±½ w.p.  ½    02

 

The utility function is again u  = . x  + . x  + J .  Under the null hypothesis, .  = .  = 1, whilei 1 1i 2 2i i 1 2

under the alternative (. ,. ) = (2,0) w.p. ½ and (0,2) w.p. ½.  Again, 1000 repetitions of the tests1 2

are made for N = 1000 under the null and the alternative; the results are given below:
 

 Nominal Significance Level Actual Significance Level Power Against the Alternative
  10%   9.7%  52.4%
  5%   3.9%  39.8%

 

In this case where mixing is across utility functions of different variables, the test is moderately
powerful.  It remains the case in this example that the estimated coefficients in the MNL model
without mixing are close to their expected values. 


