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SPECIFYING ECONOMETRIC MODELS

The target of an econometric analysis is the data generation
process (DGP) that maps explanatory variables x into a
dependent variable y, with unobserved elements making the
mapping stochastic.  Write such a mapping as y = m*(x,�), where
� denotes an unobserved effect or state of nature that has a
cumulative distribution function G*(�).  One might equivalently
describe the mapping by the conditional cumulative distribution
function F*(y|x) of y given x.  A “*” signifies the functions are not
known to the econometrician.

Examples:
 y = GDP, x = aggregate resources and other macroeconomic

characteristics
 y = food expenditures, x = income, family size, education,

age
 y = indicator for college education, x = ability, gender,

parents’ income and education

Relationships: Starting from m* and G*, define � = G*(�) and
m**(x,�) � m*(x,G*-1(�)).  Then, � has a uniform distribution
and m* and G* can always be redefined so that G* is uniform. 
� F*(y|x) = G*({�|m*(x,�) � y}).  
� m*(x,�) = F*-1(�|x), where F*-1(�|x) = inf{y|F*(y|x) � �}.  
� Some normalization on m*(x,�) and G*(�), such as � uniform or
some restrictions on the way � enters m, are necessary for
identification, and the normalization can be picked to simplify
subsequent analysis; see Matzkin (1999).
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The task of econometrics is to specify models m(x,�) and
G(�), or F(y|x), that approximate the real mappings set by nature.
Finding these approximations requires a specification step, in
which one restricts attention to a class of candidate functions
believed to contain the real mappings, or something close, and an
estimation step that picks out one candidate mapping from the
class that by some criterion seems to be closest to the true
mapping.  The choice of the candidate class will be governed by
what is believed to be true about the real mapping from prior
research and from economic and statistical theory, and by
practical considerations.  For example, economic theory may
specify what x variables influence y, and justify assuming
invariance of f(y|x) under policy interventions.  Practical
considerations may justify limiting the class of candidate
functions to a finite-parameter family, or to a linear regression
model, or may only justify limiting the class of candidate
functions to those with some mild smoothness and shape
properties.  How the specification and estimation stages are done
depends on how the analysis is to be used, and the approximation
accuracy it requires.  Typical tasks range from describing
empirical features of the mapping, such as the conditional mean
M*(x) = �yF*(dy|x) = �m*(x,�)G*(d�) and other moments or
quantiles, to testing economic hypotheses about F*(y|x), to
predicting the conditional distribution of y following policy
interventions that alter the distribution of x.  The usefulness of the
analysis will depend on the quality of the model specification as
an approximation to reality, and the validity of assumptions of
invariance under policy interventions.   The conditional mean M*
is important, but not the whole story of the mapping F*.
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DISCRETE RESPONSE MODELS

When economic behavior is expressed as a continuous
variable, a linear regression model is often adequate to describe
the impact of economic factors on this behavior, or to predict this
behavior in altered circumstances.  For example, a study of food
expenditures as a function of price indices for commodity groups
and income, using households from the Consumer Expenditure
Survey, can start by modeling indirect utility as a translog
function and from this derive a linear in logs regression equation
for food expenditures that does a reasonable job of describing
behavior.  This situation remains true even when the behavioral
response is limited in range (e.g., food consumption of households
is non-negative) or integer-valued (e.g., number of times per year
eat outside home), provided these departures from a unrestricted
continuous variable are not conspicuous in the data (e.g., food
consumption is observed over a range where the non-negativity
restriction is clearly not binding; the count of meals outside the
home is in the hundreds, so that round-off of the dependent
variable to an integer is negligible relative to other random
elements in the model).  However, there are a variety of economic
behaviors where the continuous approximation is not a good one.
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Examples:

(1) For individuals:  Whether to attend college; whether to
marry; choice of occupation; number of children; whether to
buy a house; what brand of automobile to purchase; whether
to migrate, and if so where; where to go on  vacation.

(2) For firms:  Whether to build a plant, and if so, at what
location; what commodities to produce; whether to shut
down, merge or acquire other firms; whether to go public or
private; whether to accept union demands or take a strike.
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For sound econometric analysis, one needs probability
models that approximate the true data generation process.  To
find these, it is necessary to think carefully about the economic
behavior, and about the places where random factors enter this
behavior.  For simplicity, we initially concentrate on a single
binomial (Yes/No) response.  An example illustrates the process:

Yellowstone National Park has been overcrowded in recent
years, and large user fees to control demand are under
consideration.  The National Park Service would like to know
the elasticity of demand with respect to user fees, and the
impact of a specified fee increase on the total number of
visitors and on the visitors by income bracket.  The results of
a large household survey are available giving household
characteristics (income, number of children, etc.), choice of
vacation site, and times and costs associated with vacations at
alternative sites.  Each vacation is treated as an observation.
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Start with the assumption that households are utility
maximizers.  Then, each household will have an indirect utility
function, conditioned on vacation site, that gives the payoff to
choosing this particular site and then optimizing consumption
in light of this choice.  This indirect utility function will depend
on commodity prices and on household income net of
expenditures mandated by the vacation site choice.  It may also
contain factors such as household tastes and perceptions, and
unmeasured attributes of sites, that are, from the standpoint of
the analyst, random.  (Some of what appears to be random to
the analyst may just be heterogeneity in tastes and perceptions
over the population.)  
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Now consider the difference between the indirect utility of a
Yellowstone vacation and the maximum indirect utilities of
alternative uses of leisure.  This is a function y* = f(z,�) of
observed variables z and unobserved variables �.  We put a "*"
on the utility difference y to indicate that is latent rather than
observed directly.  Included in z are variables such as household
income, wage rate, family characteristics, travel time and cost
to Yellowstone, and so forth.  The form of this function will be
governed by the nature of indirect utility functions and the
sources of �.  In some applications, it makes sense to
parameterize the initial indirect utility functions tightly, and
then take f  to be the function implied by this.  Often, it is more
convenient to take f to be a form that is flexibly parameterized
and convenient for analysis, subject only to the generic
properties that a difference of indirect utility functions should
have.  In particular, it is almost always possible to approximate
f closely by a function that is linear in parameters, with an
additive disturbance:  f(z,�) � x� - �, where � is a k×1 vector of
unknown parameters, x is a 1×k vector of transformations of z,
and � = -f(z,�) + Ef(z,�) is the deviation of f from its expected
value in the population.  Such an approximation might come,
for example, from a Taylor's expansion of Ef in powers of
(transformed) observed variables z.
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     Suppose the gain in utility from vacationing in Yellowstone
rather than at an alternative site is indeed given by y* = x� - �.
Suppose the disturbance � is known to the household and
unknown to the econometrician, but the cumulative distribution
function (CDF) of � is a function F(�) that is known up to a
finite parameter vector.  The utility-maximizing household will
then choose Yellowstone if y* > 0, or � < x�.   The probability
that this occurs, given x, is 

P(� < x�) = F(x�).

Define y = 1 if Yellowstone is chosen, y = -1 otherwise; then, y
is an (observed) indicator for the event y* > 0.  The
probability law governing observed behavior is then, in
summary,

 P(y�x�) =  .

Assume that the distribution of � is symmetric about zero, so
that F(�) = 1 - F(-�); this is not essential, but it simplifies
notation.  The probability law then has an even more compact
form,

P(y�x�) = F(yx�) .



10

How can you estimate the parameters �?  An obvious
approach is maximum likelihood.  The log likelihood of an
observation is

l(��y,x) = log P(y�x�) � log F(yx�) .

If you have a random sample with observations t = 1,...,T, then
the sample log likelihood is

LT(�) = log F(ytxt�) .

The associated score and hessian of the log likelihood are

��LT(�) =  ytxt	F	(ytxt�)/F(ytxt�) 

���LT(�) =  xt	xt{F
(ytxt�)/F(ytxt�) - [F	(ytxt�)/F(ytxt�)]2} 

A maximum likelihood program will either ask you to provide
these formula, or will calculate them for you analytically or
numerically.  If the program converges, then it will then find a
value of � (and other parameters upon which F depends) that
are (at least) a local maximum of LT.  It can fail to converge to
a global maximum if no maximum exists or if there are
numerical problems in the evaluation of expressions or in the
iterative optimization.  The estimates obtained at convergence
will have the usual large-sample properties of MLE, provided
the usual regularity conditions are met, as discussed later.
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It is sometimes useful to write the score and hessian in a
slightly different way.  Let d = (y+1)/2; then d = 1 for
Yellowstone, d = 0 otherwise, and d is an indicator for a
Yellowstone trip.  Then, we can write 

l(y�x,�) = d�log F(x�) + (1-d)�log F(-x�). 
 

Differentiate, and noting that F	(x�) = F	(-x�), to get

��l = xF	(x�){d/F(x�) - (1-d)/F(-x�)} = w(x�)�x�[d - F(x�)],

where w(x�) = F	(x�)/F(x�)F(-x�).  The sample score is then 

��LT(�) =  w(xt�)�xt	�[dt - F(xt�)] .

The MLE condition that the sample score equal zero can be
interpreted as a weighted orthogonality condition between a
residual [d - F(x�)] and the explanatory variables x.  Put
another way, a weighted non-linear least squares (NLLS)
regression dt = F(xt�) + �t, with observation t weighted by
w(xt�)½, will be equivalent to MLE.
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The hessian can also be rewritten using d rather than y:
���l = -x	x�s(x�), where 

s(x�) =  

- [d - F(x�)] .  

The expectation of s(x�) at the true �o is  > 0,

so that the sample sum of the hessians of the observations in
sufficiently large samples is eventually almost surely negative
definite in a neighborhood of �o.

It should be clear from the sample score, or the analogous
NLLS regression, that the distribution function F enters the
likelihood function in an intrinsic way.  Unlike linear regression,
there is no simple estimator of � that rests only on assumptions
about the first two moments of the disturbance distribution.
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FUNCTIONAL FORMS AND ESTIMATORS

In principle, the CDF F(�) will have a form deduced from
the application.  Often, F would naturally be conditioned on the
observed explanatory  variables.  However, an almost universal
practice is to assume that F(�) has one of the following standard
distributions that are not conditioned on x: 

(1) Probit:  F is standard normal.
(2) Logit:  F(�) = 1/(1+e-�), the standard logistic CDF.
(3) Linear:  F(�) = �, for 0 � � � 1, the standard uniform
distribution.
(4) Log-Linear:  F(�) = e�, for � � 0, a standard exponential
CDF.
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There are many canned computer programs to fit models
(1) or (2).  Model (3) can be fit by linear regression, although
heteroscedasticity is an issue.  Model (4) is  not usually a canned
program when one is dealing with individual observations, but
for repeated observations at each configuration of x it is a
special case of the discrete analysis of variance model that is
widely used in biostatistics and can be fitted using ANOVA or
regression methods.  Each of the distributions above has the
property that the function s(x�) that appears in the hessian is
globally positive, so that the log likelihood function is globally
concave.  This is convenient in that any local maximum is the
global maximum, and any stable hill-climbing algorithm will
always get to the global maximum.  The linear and log-linear
distributions are limited in range.  This is typically not a
problem if the range of x is such that the probabilities are
bounded well away from zero and one, but can be a serious
problem when some probabilities are near or at the extremes,
particularly when the model is used for forecasting.
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ALTERNATIVES TO MLE

Recall that MLE chooses the parameter vector � to achieve
orthogonality between the explanatory variables x, and
residuals d - F(x�), with weights w(x�).  When the explanatory
variables are grouped, or for other reasons there are multiple
responses observed for the same x, there is another estimation
procedure that is useful.  Let j = 1,...,J index the possible x
configurations, mj denote the number of responses observed at
configuration xj, and sj denote the number of "successes" among
these responses (i.e., the number with d = 1).  Let pj = F(xj�o)
denote the true probability of a success at configuration xj.
Invert the CDF to obtain cj = F-1(pj) = xj�.  Note that p = F(c)
implies �c/�p = 1/F	(c) and �2c/�p2 = - F
(c)/F	(c)3.  
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A Taylor's expansion of F-1(sj/mj) about pj gives

F-1( )  = F-1(pj) +    - 

 
 

= xj� + �j + �j , 

where qj is a point between pj and sj/mj,
 

�j = (sj/mj - pj)/F	(F
-1(pj)) 

is a disturbance that has expectation zero and a variance
proportional to pj(1-pj)/mj, and �j is a disturbance that goes to
zero in probability relative to �j.  Then, when the mj are all large
(the rule-of-thumb is sj � 5 and mj-sj � 5), the regression

F-1(sj/mj) = xj� + �j

gives consistent estimates of �.  This is called Berkson's method.
It can be made asymptotically equivalent to MLE if a FGLS
transformation for heteroscedasticity is made.  Note however
that in general this transformation is not even defined unless sj

is bounded away from zero and mj, so it does not work well when
some x's are continuous and cell counts are small.  
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Berkson's transformation in the case of probit is �-1(sj/mj); in the
case of logit is log(sj/(mj-sj)); in the case of linear is sj; and in the
case of the exponential model is log(sj/mj).  It is a fairly general
proposition that the asymptotic approximation is improved by
using the transformation F-1((sj+0.5)/(mj+1)) rather than
F-1(sj/mj) as the dependent variable in the regression; for logit,
this minimizes the variance of the second-order error.

There is an interesting connection between the logit model
and a technique called normal linear discriminant analysis.
Suppose that the conditional distributions of x, given d = 1 or
given d = 0, are both multivariate normal with respective mean
vectors �1 and �0, and a common covariance matrix 	.  Note
that these assumptions are not necessarily very plausible,
certainly not if some of the x variables are limited or discrete.
If the assumptions hold, then the means �0 and �1 and the
covariance matrix 	 can be estimated from sample averages,
and by Bayes law the conditional distribution of d given x when
a proportion q1 of the population has state d = 1 has a logit form

P(d=1�x) =  

=  ,

where � = 	-1(�1-�0) and 
 = �1		
-1�1 - �0		

-1�0 + log(q1/q0).
This approach produces a fairly robust (although perhaps
inconsistent) estimator of the logit parameters, even when the
normality assumptions are obviously wrong.
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3. STATISTICAL PROPERTIES OF MLE

The MLE estimator for most binomial response models is
a special case of the general setup treated in the statistical theory
of MLE, so that the incantation "consistent and asymptotically
normal (CAN) under standard regularity conditions" is true.
This is a simple enough application so that it is fairly
straightforward to see what these "regularity" conditions mean,
and verify that they are satisfied.  This is a thought exercise
worth going through whenever you are applying the maximum
likelihood method.  First, here is a list of fairly general sufficient
conditions for MLE to be CAN in discrete response models;
these are taken from McFadden "Quantal Response Models",
Handbook of Econometrics, Vol. 2, p. 1407.  Commentaries on
the assumptions are given in italics.
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(1) The support of the explanatory variables is a closed set X
with a measurable probability p(x).  This just means that the
explanatory variables have a well-defined distribution.  It
certainly holds if p is a continuous density on closed  X.

(2) The parameter space is a subset of �k, and the true
parameter vector is in the interior of this space.  This says you
have a finite-dimensional parametric problem.  This assumption
does not require that the parameter space be bounded, in
contrast to many sets of assumptions used to conclude that MLE
are CAN.  The restriction that the true parameter vector be in
the interior excludes some cases where CAN breaks down.  This
is not a restrictive assumption in most applications, but it is for
some.  For example, suppose a parameter in the probit model is
restricted (by economic theory) to be non-negative, and that this
parameter is in truth zero.  Then, its asymptotic distribution will
be the (non-normal) mixture of a half-normal and a point mass.

(3) The response model is measurable in x, and for almost all
x is continuous in the parameters.  The standard models such
as probit, logit, and the linear probability model are all
continuous in their argument and in x, so that the assumption
holds.  Only “pathological” applications in which a parameter
determines a "trigger level" will violate this assumption.
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(4)  The model satisfies a global identification condition (that
guarantees that there is at most one global maximum; see
McFadden, ibid, p. 1407).  The concavity of the log likelihood
of an observation for probit, logit, linear, and log linear models
guarantees global identification, requiring only that the x's are
not linearly dependent.

(5) The model is once differentiable in the parameters in some
neighborhood of the true values.  This is satisfied by the four
CDF from Section 2 (provided parameters do not give
observations on the boundary in the linear or log linear models
where probabilities are zero or one), and by most applications.
This assumption is weaker than most general MLE theorems,
which assume the log likelihood is twice or three times
continuously differentiable.

(6) The log likelihood and its derivative have bounds
independent of the parameters in some neighborhood of the
true parameter values.  The first derivative has a Lipschitz
property in this neighborhood.  This property is satisfied by the
four CDF, and any CDF that are continuously differentiable.

(7) The information matrix, equal to the expectation of the
outer product of the score of an observation, is nonsingular at
the true parameters.  This is satisfied automatically by the four
CDF in Section 2, provided the x's are not linearly dependent.
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The result that conditions (1)-(7) guarantee that MLE
estimates of � are CAN is carried out essentially by linearizing
the first-order condition for the estimator using a Taylor's
expansion, and arguing that higher-order terms than the linear
term are asymptotically negligible.  With lots of differentiability
and uniform bounds, this is an easy argument.  A few extra
tricks are needed to carry this argument through under the
weaker smoothness conditions contained in (1)-(7).

4. EXTENSIONS OF MAXIMUM LIKELIHOOD PRINCIPLE

The assumptions under which the maximum likelihood
criterion produces CAN estimates include, critically, the
condition (2) that the parametric family of likelihoods that are
being maximized include the true data generation process.
There are several reasons that this assumption can fail.  First,
you may have been mistaken in your assumption that the model
you have written down includes the truth.  This might happen in
regression analysis because some variable that you think does
not influence the dependent variable or is uncorrelated with the
included variables actually does belong in the regression.  Or, in
modeling a binomial discrete response, you may assume that the
disturbance in the model y* = x� - � is standard normal when it
is in truth logistic.  Second, you may deliberately write down a
model you suspect is incorrect, simply because it is convenient
for computation or reduces data collection problems.  
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For example, you might write down a model that assumes
observations are independent even though you suspect they are
not.  This might happen in discrete response analysis where you
observe several responses from each economic agent, and suspect
there are unobserved factors such as tastes that influence all the
responses of this agent.  

What are the statistical consequences of this model
misspecification?  The answer is that this will generally cause the
CAN property to fail, but in some cases the failure is less
disastrous than one might think.  The most benign situation
arises when you write down a likelihood function that fails to use
all the available data in the most efficient way, but is otherwise
consistent with the true likelihood function.  For example, if you
have several dependent variables, such as binomial responses on
different dates, you may write down a model that correctly
characterizes the marginal likelihood of each response, but fails
to characterize the dependence between the responses.  This
setup is called quasi-maximum likelihood estimation.  What may
happen in this situation is that not all the parameters in the
model will be identified, but those that are identified are
estimated CAN, although not necessarily with maximum
efficiency.  In the example, it will be parameters characterizing
the correlations across responses that are not identified.  
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Also fairly benign is a method called pseudo-maximum likelihood
estimation, where you write down a likelihood function with the
property that the resulting maximum likelihood estimates are in
fact functions only of selected moments of the data.  A classic
example is the normal regression model, where the maximum
likelihood estimates depend only on first and second moments of
the data.  Then the estimates that come out of this criterion will
be CAN even if the pseudo-likelihood function is misspecified, so
long as the true likelihood function and the pseudo-likelihood
function coincide for the moments that the estimators actually
use.

More tricky is the situation where the likelihood you write
down is not consistent with the true likelihood function.  In this
case, the parameters in the model you estimate will not
necessarily match up, even in dimension, with the parameters of
the true model, and there is no real hope that you will get
reasonable estimates of these true parameters.  However, even
here there is an interesting result.  Under quite general
conditions, it is possible to talk about the "asymptotically least
misspecified model", defined as the model in your misspecified
family that asymptotically has the highest log likelihood.  To set
notation, suppose f(y�x) is the true data generation process, and
g(y�x,�) is the family of misspecified models you consider.  
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Define �1 to be the parameters that maximize

Ey,x f(y�x)�log g(y�x,�).

Then, �1 determines the least misspecified model.  While �1 does
not characterize the true data generation process, and the
parameters as such may even be misleading in describing this
process, what is true is that �1 characterizes the model g that in
a "likelihood metric" is as close an approximation as one can
reach to the true data  generation process when one restricts the
analysis to the g family.  Now, what is interesting is that the
maximum likelihood estimates b from the misspecified model are
CAN for �1 under mild regularity conditions.  A colloquial way
of putting this is that MLE estimates are usually CAN for
whatever it is they converge to in probability, even if the
likelihood function is misspecified.

All of the estimation procedures just described,
quasi-likelihood maximization,  pseudo-likelihood maximization,
and maximization of a misspecified likelihood function, can be
interpreted as special cases of a general class of estimators called
generalized method of moment estimators.  One of the important
features of these estimators is that they have asymptotic
covariance matrices of the form �-1��	-1, where � comes from
the hessian of the criterion function, and � comes from the
expectation of the outer product of the gradient of the criterion
function.  For true maximum likelihood estimation, this form
reduces to �-1, but more generally the full form �-1��	-1 is
required.
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One important family of quasi-maximum likelihood
estimators arises when an application has a likelihood function
in two sub-vectors of parameters, and it is  convenient to obtain
preliminary CAN estimates of one sub-vector, perhaps by
maximizing a conditional likelihood function.  Then, the
likelihood is maximized in the second sub-vector of parameters
after plugging in the preliminary estimates of the first
sub-vector.  This will be a CAN procedure under general
conditions, but it is necessary to use a formula of the form
�-1��	-1 for its asymptotic covariance matrix, where � includes
a contribution from the variance in the preliminary estimates of
the first sub-vector.  The exact formulas and estimators for the
terms in the covariance matrix are given in the lecture notes on
generalized method of moments.
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5. TESTING HYPOTHESES

It is useful to see how the general theory of large sample
hypothesis testing plays out in the discrete response application.
For motivation, return to the  example of travel to Yellowstone
Park.  The basic model might be binomial logit,

P(y�x�) = F(yx�) = 1/(1 + exp(-yx�)),

where x includes travel time and travel cost to Yellowstone, and
family income, all appearing linearly:

x� = TT��1 + TC��2 + I��3 + �4,

with TT = travel time, TC = travel cost, I = income.  The
parameter �4 is an intercept term that captures the "average"
desirability of Yellowstone relative to alternatives after travel
factors have been taken into account.  The Park Service is
particularly concerned that an increase in Park entry fees, which
would increase overall travel cost, will have a particularly
adverse effect on low income families, and asks you to test the
hypothesis that sensitivity to travel cost increases as income falls.
This suggests the alternative model

x� = TT��1 + TC��2 + I��3 + �4 + �5�TC/I,

with the null hypothesis that �5 = 0.  
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This hypothesis can be tested by estimating the model without
the null hypothesis imposed, so that �5 is estimated.  The Wald
test statistic is the quadratic form (b5 - 0)	V(b5)

-1(b5 - 0); it is just
the square of the T-statistic for this one-dimensional hypothesis,
and it is asymptotically chi-square distributed with one degree
of freedom when the null hypothesis is true.  When the null
hypothesis is non-linear or of higher dimension, the Wald
statistic requires retrieving the covariance matrix of the
unrestricted estimators, and forming the matrix of derivatives of
the constraint functions evaluated at b.  An alternative that is
computationally easier when both the unrestricted and restricted
models are easy to estimate is to form the Likelihood Ratio
statistic 2[LT(b) - LT(b*)], where b and b* are the estimates
obtained without the null hypothesis and with the null hypothesis
imposed, respectively, and LT is the sample log likelihood.  This
statistic is asymptotically equivalent to the Wald statistic.
Finally, the Lagrange Multiplier statistic is obtained by
estimating the model under the null hypothesis, evaluating the
score of the unrestricted model at the restricted estimates, and
then testing whether this score is zero.  In our example, there is
a slick way to do this.  Regress a normalized residual [dt -
F(xtb)]/[F(xb)F(-x b)]1/2 from the restricted model on the
weighted explanatory variables xF	(xb)/[F(xb)F(-xb)]1/2 . that
appear in the unrestricted model.  The F-test for the significance
of the explanatory variables in this regression is asymptotically
equivalent to the Lagrange Multiplier test.  The reason this trick
works is that the Lagrange Multiplier test is a test of
orthogonality between the normalized residual and the weighted
variables in the unrestricted model.
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6. MULTINOMIAL RESPONSE

Conceptually, it is straightforward to move from modeling
binomial response to modeling multinomial response.  When
consumers or firms choose among multiple, mutually exclusive
alternatives, such as choice of brand of automobile, occupation,
or plant location, it is natural to introduce the economic agent's
objective function (utility for consumers, profit for firms), and
assume that choice maximizes this objective function.  Factors
unobserved by the analyst, particularly heterogeneity in tastes
or opportunities, can be interpreted as random components in
the objective functions, and choice probabilities derived as the
probabilities that these unobserved factors are configured so as
to make the respective alternatives optimal.

Suppose there are J alternatives, indexed C = {1,...,J}, and
suppose the economic agent seeks to maximize an objective
function U(zi,s,�i), where zi are observed attributes of alternative
i, s are characteristics of the decision maker, and �i summarizes
all the unobserved factors that influence the attractiveness of
alternative i.  
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Then, the multinomial response probability is

     PC(i�z,s) = Prob({��U(zi,s,�i) > U(zj,s,�j) for j  i}),

where z = (z1,...,zJ).  For example, if C = {1,...,J} is the set of
automobile brands, with zi the attributes of brand i including
price, size, horsepower, fuel efficiency, etc., then this model can
be used to explain brand choice, or to predict the shares of
brands as the result of changing prices or new model
introductions.  If one of the alternatives in C is the "no
purchase" alternative, the model can describe the demand for
cars as well as brand choice.  If C includes both new and used
alternatives, then it can explain replacement behavior.  If i � C
identifies a portfolio of two brands, or one brand plus a "no
purchase", it can explain the holdings of two-car families.  

Placing U in a parametric family and making � a random
vector with a parametric probability distribution produces a
parametric probability law for the observations.  However, it is
difficult to do this in a way that leads to simple algebraic forms
that do not require multivariate integration.  Consequently, the
development of  multinomial response models has tended to be
controlled by computational issues, which may not accommodate
some features that might seem sensible given the economic
application, such as correlation of unobservables across
alternative portfolios that have common elements.
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� For notational shorthand, associate with alternative i in a feasible set
C a "payoff" ui = zi� + �i, which in the case of consumer choice may be
the indirect utility attached to alternative i and in the case of firm choice
may be profit from alternative i.  The zi are observed explanatory
variables, and the �i are unobserved disturbances.  Observed choice is
assumed to maximize payoff: yi = 1(ui � uj for j � C). 
 
� One form of this model is a random coefficients formulation ui = zi
,
E
 = �, �i = zi(
 - �), implying cov(�i,�j) = zi�Cov(
)�zj	 .  � For C =
{1,...,J}, define u, z, �, and y to be J×1 vectors with components uj, zj, �j,
yj, respectively.   Define a (J-1)×J matrix i by starting from the J×J
identity matrix, deleting row i, and then replacing column i with the
vector (-1,...,-1).  For example if J = 4,

   1 =  .   

Then alternative i is chosen if iu � 0.  The probability of this event is

Pi(z,�) = Pr(iu � 0�z,�) � f(u�z,�)du,

where f(u�z,�) is the conditional density of u given z.  The parameters
� include the slope parameters � and any additional parameters
characterizing the distribution of the disturbances �.   
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MULTINOMIAL LOGIT

A special case where Pi(z,�) has a simple closed form is the multinomial
logit (MNL) model

Pi(z,�) = exp(vi)/�j�C exp(vj)

with vi = zi�.  This is derived from ui = zi� + �i with the disturbances �i

being independently, identically distributed with a distribution called
Extreme Value Type 1, which has Prob(�i � c) � F(c) = exp(-e-c) and
density f(c) = e-c�exp(-e-c).  This distribution is bell-shaped and skewed to
the right; the density is plotted in the figure below.
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Derivation:

Pi(z,�) = Prob(vi+�i � vj+�j for j � C)

    =  f(�1)�...�f(�J)d�1...d�J

    = f(�i){�ji F(�i+vi-vj)}d�i

    = e-c {�j exp(-exp(-c-vi+vj))}dc

   = e-c�exp(-�j exp(-c-vi+vj))dc

   = A A-1 e-c�exp(-e-c/A)dc 

   = A[F(�/A) - F(-�/A)] = A

with A-1 = �j exp(-vi+vj), or A = exp(vi)/�j�C exp(vj).  

The reason that the somewhat unusual EV1 distribution is linked to the
closed MNL formula is that the EV1 family is closed under the operation
of maximization.  (Compare with the normal family, which is closed
under the operation of addition.)
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The MNL discrete response probabilities with suitably articulated vi’s
are often reasonable approximations to true response probabilities, for
essentially the same reason that linear regression models are often
reasonable approximations a true data generating process – the
coefficients can compensate to some degree for failures of the
specification.  However, when vi is specified to be a function solely of
attributes zi of alternative i, the MNL model satisfies a very powerful
and very restrictive property called Independence from Irrelevant
Alternatives (IIA).  This property says that the relative probabilities
of responses i and j depend only on vi and vj, and not on the
attractiveness, or even the presence or absence, of additional
alternatives.  From the MNL formula,

Pi(z,�)/Pj(z,�) = exp((zi-zj)�) � exp(vi)/exp(vj).

When the true responses l satisfy IIA, this is extremely useful.  One
can predict multinomial response by studying binomial responses,
predict responses when new alternatives are added, and analyze
responses as if the set of feasible alternatives were a proper subset
of the true choice set (next lecture).  However, when the true
responses do not satisfy IIA, predictions from a MNL
approximation can be very misleading.
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Red Bus / Blue Bus Problem

Two alternatives originally, car and blue bus, with vc = zc� = zbb� =
vbb .  Then the MNL choice probabilities are Pc = Pbb = 1/2.

Suppose a third alternative is added, a red bus that is identical or
nearly identical to the blue bus except for color (which does not
matter to the consumer), so that zrb � zbb.  What one expects in
reality is that if vrb = vbb, then those who preferred car to bb will
prefer car to both rb and bb, whereas those who preferred bb to car
will continue to choose bus, and divide their patronage evenly
between rb and bb, leading to Pc = 1/2, Prb = Pbb = 1/4.  Further, if vrb

> vbb and the two buses are nearly identical in terms of unobserved
characteristics, one expects in reality that Pc � 1/2, Prb � 1/2, and Pbb

� 0.

The MNL model estimated using data on choices between c and bb
will have the IIA property, and will predict that Pbb/Pc = 1when the
rb is added, just as when it was absent.  Thus, when vc = vbb = vrb,
the MNL model predicts Pc = Prb = Pbb = 1/3.  This contradicts reality,
where rb gets its patronage solely from previous bb users.
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Comparing the sensitivity of Prb/Pbb and Pc/Pbb to service attributes,
the former ratio is much more sensitive because differences in
unobserved attributes are unimportant, while the latter ratio is
much less sensitive because differences in unobserved attributes
(�’s) are important and will induce many decision-makers to stay
with their initial choice even when there is some variation in
observed attributes.  The validity of IIA in an application is an
empirical question.  The elevated sensitivity to observed attributes
between alternatives that are similar in unobserved attributes,
compared to alternatives with independent unobserved attributes,
can be used as a basis for a test of the validity of the IIA property.
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Tests of IIA

1. Hausman-McFadden Test
Intuition:  If IIA holds, then one should get approximately the
same parameter estimates using the full choice set or using the
observations that fall in a subset.

2. McFadden omitted variables tests
Intuition:  Failures of IIA are usually associated with sharper
discrimination within a subset of alternatives than otherwise.
This can be detected by the coefficients on added variables that
are zero for alternatives outside the subset.  Chosen
appropriately, these additional variables give tests that are
equivalent to the Hausman-McFadden test, or to a test against
the nested MNL model.



37

1. Hausman-McFadden Test on a subset of alternatives.

� Estimate logit model twice: 
a. on full set of alternatives
b. on a specified subset of alternatives (and the

subsample with choices from  this subset)

� If IIA holds, the two sets of estimates should not be
statistically different:  Let �b denote the estimates obtained
from setup b. above, and 	b denote their estimated
covariance matrix.  Let  �a denote the estimates of the same
parameters  obtained from setup a. above, and 	a denote
their estimated covariance matrix.  (Some  parameters that
can be estimated in setup a. may not be identified in setup
b, in  which case  �a  refers to estimates under setup a. of
the subvector of parameters that are identified in both
setups.)  Then, the quadratic form 

   (�a - �b)	(	b - 	a)
-1(�a - �b)

has a chi-square distribution when IIA is true.  In
calculating this test, one must  be careful to restrict the
comparison of parameters, dropping components as 
necessary, to get  	b - 	a  non-singular.  When this is
done, the degrees of freedom of  the chi-square test
equals the rank of  	b - 	a .  

Reference:  Hausman-McFadden,  Econometrica, 1984.
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2. McFadden omitted variables test.

� Estimate a MNL model, using all the observations. 
Suppose A is a specified subset of alternatives.  Create
new variables in one of  the following two forms:

      
a. If xi are the variables in the basic logit model, define

new auxiliary variables

where Pj|A = Pj/�j�A Pj is the conditional probability of
choice of  j  given  choice from A , calculated from the
basic estimated model.  The variables zi can be written
in abbreviated form as  zi = �iA(xi - xA) , where  �iA = 1
iff   i � A and xA = �j�APj�Axj.

      
b. If   Vi = xi�  is the representative utility from the basic

model, calculated at the basic model estimated
parameters, define the new variable

       

or more compactly, zi = �iA(Vi - VA) .
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The auxiliary variable in b. equals the vector of auxiliary variables
in a., multiplied by the MNL parameter vector �.  The auxiliary
variable in b. can also be written as

       

where Pi is calculated using basic model estimates.

� To carry out an IIA test, estimate an expanded model that
contains the basic model variables plus the new variables  zi ,
and carry out a LR test that the coefficients of zi are zero:

LR = 2[(Log likelihood with z's) - (Log likelihood without z's)]

 If IIA holds, then this statistic has a chi-square distribution
with degrees of  freedom equal to the number of non-
redundant auxiliary variables added.
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Properties:

� The test using variables of type a. is equivalent to the
Hausman-McFadden test  for the subset of alternatives A.

� The test using variables of type b. is equivalent to a
one-degree-of-freedom  Hausman-McFadden test focused in the
direction determined by the parameters  �.  It is  likely to have
greater power than the previous test if there is substantial
variation  in the V's across A.  This test is also equivalent to a
Lagrange Multiplier test of the basic MNL model against a
nested MNL model in which subjects discriminate more sharply
between alternatives within A than they do between alternatives
that are not both in A.  One plus the coefficient of the variable
can be interpreted as a preliminary estimate of a nested logit
model inclusive value coefficient for the nest A.

 � The tests described above are for a single specified subset A
(which can vary by observation, although the power of the test is
generally highest when A is fixed across observations).  It is
trivial to test the MNL model against several nests at once, simply
by introducing an auxiliary variable for each suspected nest, and
testing jointly that the coefficients of these omitted variables are
zero.  Alternative nests in these tests can be nested or
overlapping.   The coefficients on the auxiliary variables provide
some guide to choice of nesting  structure if the IIA hypothesis
fails.
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� If there are subset-A-specific dummy variables, appearing alone
and in interaction with some generic variables in the basic model,
then some of the auxiliary type a. variables duplicate these
variables, and cannot be used in the  testing procedure.  In the
extreme case that all the original model variables appear in a form
equivalent to allowing all interactions of generic variables and a
subset-A-specific dummy, it is impossible to distinguish IIA
failure from the effect of these variables on choice, and the IIA
test has zero power.

� One may get a rejection of the null hypothesis either if IIA is
false, or if there is some other problem with the model
specification, such as omitted variables or a failure of the logit
form due, say, to asymmetry or to fat tails in the disturbances.  

 � Rejection of the IIA test will often occur when IIA is false, even
if the nest A  does not correctly represent the pattern of nesting.
However, the test will  typically have greatest power when A is
a nest for which an IIA failure occurs.

Reference:  D. McFadden, "Regression based specification tests for
the multinomial  logit model" Journal of Econometrics, 1987.
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EXTENSIONS OF MNL: NESTED LOGIT

Example:  Choice of Heating Type and Central Cooling

                     Yes                                                             No

1 2 3 4 5 6 7

Alternatives:
1. Central cooling and gas central heating
2. Central cooling and electric central heating
3. Central cooling and electric room heating
4. Heat pump (central cooling and heating)
5. No central cooling, gas central heating
6. No central cooling, electric central heating
7. No central cooling, electric room heating

Central Cooling?
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Model Ui = Vi + �i  ,   i = 1,...,7  �i � Generalized Extreme Value
with: correlation among �1 , �2 , �3 , and �4 ;

correlation among �5 , �6 , and �7 ;
no correlation between �i , i = 1,2,3,4 and �j , j = 5,6,7 ; 
and 1 - � is a measure of correlation.

Then:



44

IIA holds within nests but not across nests:

- depends on V1 and V2 only.

- depends on all V1 ,..., V7.  

� An improvement in the attributes of one alternative draws
proportionately from other alternatives in the nest, but less than
proportionately from alternatives outside the nest.
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THE ISSUES IN SPECIFIYING ALTERNATIVES TO MNL

� The multivariate integral defining Pi(z,�),

Pi(z,�) = Pr(iu � 0�z,�) � f(u�z,�)du,

 can be calculated analytically in special cases, notably multinomial
logit and its generalizations.  However, for most densities the integral
is analytically intractable, and for dimensions much larger than J =
5 is also intractable to evaluate with adequate precision using
standard numerical integration methods.  (Numerical integration
works by forming a weighted average of values of the integrand at
judiciously selected points.  A typical procedure called Gaussian
quaditure can get acceptable precision for most problems with about
10 evaluation points per dimension, so that the total number of
function evaluations required is about 10J-1.  This count rises too
rapidly with J to be feasible for J much above 5.)  Then, the four
practical methods of working with random utility models for complex
applications are (1) use of nested multinomial logit and related
specializations of Generalized Extreme Value (GEV) models, (2) use
of multinomial probit with special factor-analytic structure to provide
feasible numerical integration; (3) use of multinomial probit with
simulation estimators that handle high dimensions; and (4) use of
mixed (random coefficients) multinomial logit, with simulation
procedures for the coefficients.  
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GEV Models

� Let C = {1,...,J}.  Let 1j denote the unit vectors for j � C, and for A
� C, let 1A denote a vector with components that are one for the
elements of A, zero otherwise.  Assume that the indirect utility of i can
be written
 

 ui = xi� + �i, 

where xi is a vector of attributes of alternative i, � is a parameter
vector, and �i is a part that varies randomly across consumers.  Let vi

= xi� index the desirability of alternative i.

Define a GEV generating function H(w1,...,wJ) on w = (w1,...,wJ) �
0 to have the properties that it is non-negative, homogeneous of degree
one, and differentiable, with its mixed partial derivatives for j = 1,...,J
satisfying (-1)j�jH/�w1...�wj � 0.  A GEV generating function H is
proper with respect to a subset A of C if H(1j) > 0 for j � A and H(1C\A)
= 0.  Let �  denote the family of GEV generating functions, and let
�(A) denote the subfamily that is proper with respect to A.  Let � =
0.5772156649 denote Euler's constant. 
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Theorem.  If a random vector U = (U1,...,UJ) has a GEV
distribution F(u) = Prob(U � u), then this distribution has the form

[1] F(u) = exp(-H(exp(-u1 + v1),...,exp(-uJ + vJ))),

where (v1,...,vJ) are location parameters and H(w1,...,wJ) is a non-
negative function of w � 0 which is homogeneous of degree one and
satisfies H(1j) > 0 for j � C.  Conversely, a sufficient condition for the
function [1] to be a GEV distribution is that H � �(C).   GEV
distributions have the properties:

 A. f(u) = �JF(u)/�w1...�wJ � 0, F(u) = f(u)du, and 0 � F(u) � 1.

   B. The Uj for j = 1,...,J are EV1 with common variance �2/6�2,
means vj + �-1 log H(1j) + �/�, and moment generating functions
exp(tvj)H(1j)

t/��(1-t/�).

 C. U0 = maxi=1,...,J Ui is EV1 with variance �2/6�2, mean
(logH(exp(v1),...,exp(vJ))) + �)/�, and moment generating function
H(exp(v1),...,exp(vJ))

t/��(1-t/�).

 D. Letting Hj(w) = �H(w)/�wj, the probability Pj that Uj = maxi=1,...,J Ui

satisfies

[2] Pj = exp(vj)�Hj(exp(v1),...,exp(vJ))/�H(exp(v1),...,exp(vJ)).
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The linear function H(w) = w1 + ... + wJ is a GEV generating function;
the vector U with the distribution function [1] for this H has
independent extreme value distributed components. The choice
probabilities [2] for this case have a multinomial logit (MNL) form,

[3] Pj = exp(vj)/�i�Cexp(vi).

The next result gives operations on GEV generating functions that can
be applied recursively to generate additional GEV generating
functions.

Lemma  2.  The family � of GEV generating functions is closed
under the following operations:

A. If H(w1,...,wJ) � �(A), then H(
1w1,...,
JwJ) � �(A) for 
1,...,
J > 0.
B. If H(w1,...,wJ) � �(A) and s � 1, then H(w1

s,...,wJ
s)1/s � �(A).

C. If HA(w1,...,wJ) � �(A) and HB(w1,...,wJ) � �(B), where A and B are
subsets of C, not necessarily disjoint, then 

 HA(w1,...,wJ) + HB(w1,...,wJ) � �(A�B).
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A three-level nested MNL model is generated by a function H of the
form 

 H =  , 

where the Amk partition {1,...,J} and sk,sm’ � 1.  This form corresponds
to a tree: m indexes major branches, k indexes limbs from each
branch, and i indexes the final twigs.  The larger sk or sm’, the more
substitutable the alternatives in Amk.  If sk = sm’ = 1, this model reduces
to the MNL model.

If the utility index vi is linear in income, with a coefficient 
, then the
expected change in utility in moving from one environment to
another, measured in income units, is

 WTP = �  

This is the "log sum" formula first developed by Ben-Akiva (1972),
McFadden (1973), and Domencich and McFadden (1975) for the
multinomial logit model, and by McFadden (1978, 1981) for the nested
logit model.  This formula is valid only when the indirect utility
function is linear in income.  
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The MNP Model

� A density that is relatively natural for capturing unobserved effects,
and the patterns of correlation of these effects across alternatives, is
the multivariate normal distribution with a flexible covariance matrix.
This is termed the multinomial probit model.  
� If � = z�, where � is interpreted as a random variation in "taste"
weights across observations with � ~ N(0,	), then the transformed
variable w = iu is multivariate normal of dimension J-1 with mean
iz� and covariance iz	z	i	.  Unless J � 5 or dimensionality can be
reduced because � has a factorial covariance structure, the resulting
MNP response probabilities are impractical to calculate by numerical
integration.  The method of simulated moments was initially developed
to handle this model; see McFadden (1989).  
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� The log likelihood of an observation is 

l(�) = di�log Pi(z,�) ,

where di is an indicator for the event that i is chosen.  The score of an
observation is then

s(�) =  di���log Pi(z,�) �  [di - Pi(z,�)]���log Pi(z,�) ,

with the second form holding because 0 � �� Pi(z,�).

This score can be adapted to Generalized Method of Simulated
Moments (GMSM) or Method of Simulated Scores (MSS) estimation
when Pi(z,�) is intractable by conventional analysis.  Simulators are
required for Pi(z,�) and ��log Pi(z,�).  
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� Consider the problem of approximating the multinomial probit
(MNP)

(1)       P � P(B;�,	) = n(v-�,	)dv � EV1(V�B), 

where V is a m-dimension normal random vector with mean �,
covariance matrix 	, with density denoted by n(v - �,	), and 1(V�B)
is an indicator for B = {V| a < V < b}.

� The derivatives of (1) with respect to � and 	 are

(2)     ��P(B;�,	) = 	 1(v�B)(v-�)n(v-�,	)dv 

� 	-1EV 1(V�B)(V-�),
 

�	P(B;�,	) = � 1(v�B)[(v-�)(v-�)	-	]n(v-�,	)dv�	-1 

� (1/2)	-1EV 1(V�B)[(V-�)(V-�)	-	]�	-1.  
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� For statistical inference, it is often unnecessary to achieve high
numerical accuracy in evaluation of (1) and (2).  For example,
simulating P by the frequency of the event 1(v�B) in a number of
Monte Carlo draws comparable to sample size will tend to produce
statistics in which the variance introduced by simulation is at worst
of the same magnitude as the variance due to the observed data.
Further, when probabilities appear linearly across observations in an
estimation criterion, independent unbiased simulation errors are
averaged out.  Then, a small, fixed number of draws per probability
to be evaluated will be sufficient with increasing sample size to reduce
simulation noise at the same rate as noise from the observed data.  
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MONTE CARLO METHODS

� Crude Frequency Sampling.  The random vector V can be written
V = � + ��, where � is an independent standard normal vector of
dimension m and � is an lower triangular Cholesky factor of 	, so 	
= ��	.   Make repeated Monte Carlo draws of �, and fix these
throughout the iteration.  Calculate V = � + �� for trial parameters
(�,�) and form empirical analogs of the expectations (1) and (2).
Advantage: very fast, unbiased.   Disadvantages: Discontinuous
simulator, relative error large for small probabilities.
  
� Importance Sampling.  Consider the generic integral
H = 1(v�B)�h(v;�,	)�n(v-�,	)dv, where h is an array of

polynomials in v; integrals (1)-(2) have this form.   Let g(v) be a
density with support B chosen by the analyst.  Then,

H =  {h(v;�,	)�n(v-�,	)/g(v)}�g(v)dv

and a smooth unbiased simulator of H is obtained by drawing from
g, fixing these draws, and then for (�,	) averaging
{h(v;�,	)�n(v-�,	)/g(v)} over these draws.
� Advantages: Smoothness, unbiased, and positiveness for simulated
P, aid iteration to estimates.  Fast if g(v) is an easy density to draw
from.  Disadvantages: can be inaccurate unless mass of g is
concentrated near mass of normal, simulator can exceed one.
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� Geweke-Hajivassiliou-Keane Simulator (GHK) This is an
importance sampling simulator that has performed well in
comparison with many other simulators.  It is based on sampling
from recursive truncated normals after a Cholesky transformation. 
The approach was suggested by Geweke (1986), and has been
developed by Hajivassiliou, who proposed the weighting used here.  
Keene (1988) independently developed a weighting scheme of
essentially the same form for a problem of estimating transition
probabilities.  

Let v = � + ��, where � is the Cholesky factor of 	.   The
indicator 1(v�B) is then transformed to 1(�+���B), which can be
written recursively as the product of indicators of the events Bj(�<j)
defined by (aj-�j-�j,<j�<j)/�jj < < (bj-�j-�j,<j�<j)/�jj for j = 1,...,m; �<j

denotes the subvector of � containing the components below the jth.
Define �(�j|Bj(�<j) = �(�j)1(�j�Bj(�<j))/�(Bj(�<j)), the conditional
distribution of �j given the event Bj(�<j).   Define a weight �(�) =
�j�(Bj(�<j)), with j ranging from 1 to M.  Then 

H = h(�+��)�(�) �j�(�j|Bj(�<j))d�.  
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The GHK simulator is obtained by drawing and fixing uniform
[0,1] variates �, then for (�,	) calculating variates 

�j = �-1(�j�((aj-�j-�j,<j�<j)/�jj)  + (1-�j)�((bj-�j-�j,<j�<j)/�jj)),
  

and then averaging h(�+��)�(�) over these variates.

� Advantages: For a broad spectrum of applications, this
importance sampling density is concentrated near the ideal
truncated multivariate normal density, giving low variance
simulators for both probabilities and derivatives that have small
relative error even when P is small.  Disadvantages:  The recursive
loops with multiple evaluations of standard normal CDFs and
inverse CDFs are computationally costly and may introduce
additional approximation errors.  
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Applications
� A number of applications of MNP using simulation have
appeared in the literature; some examples:

Berkovec and Stern (1991) "Job Exit Behavior of Older Men",
Econometrica, 59, 189-210.
Bolduc, D. (1992) "Generalized autoregressive errors in the
multinomial probit model", Transportation Research B, 26, 155-170.
Borsch-Supan, A., V. Hajivassiliou, L. Kotlikoff, J. Morris (1992)
"Health, Children, and Elderly Living Arrangements", Topics in the
Economics of Aging (D. Wise, ed.), Univ. of Chicago Press.  
� MNP simulation by MSLE using the GHK simulator is available
in GAUSS.  Code from Hajivassiliou- McFadden-Ruud for GHK
and other simulators for probabilities and derivatives, in GAUSS
and FORTRAN, is available from Berkeley's Econometrics
Laboratory Software Archive (ELSA) on the World Wide Web. 
These programs are practical for up to 25 alternatives without
covariance matrix restrictions, but memory and speed are likely
to be problems for larger applications.  
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� For dynamic applications (e.g., multiperiod binomial probit
with autocorrelation), and other applications with large
dimension, alternatives to A GHK setup with an unrestricted
covariance matrix may perform better.  McFadden (1984, 1989)
suggests a "factor analytic" MNP with a components of variance
structure, starting from

ui = zi� + �ik�k + �i�i ,

where �1,...,�K,�1,...,�J are independent standard normal, with the
�k interpreted as levels of unobserved factors and the �ik as the
loading of factor k on alternative i.  The �'s are identified by
normalization and exclusion restrictions.

� The choice probabilities for this specification:

Pi(z,�) = �(�i)� �(�k)

            × � �d�id�1���d�K 
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Mixed MNL (MMNL)

Mixed MNL is a generalization of standard MNL that shares
many of the advantages of MNP, allowing a broad range of
substitution patterns.  Train and McFadden (1999) show that any
regular random utility model can be approximated as closely as
one wants by a MMNL model.  Assume ui = zi
 + �i, with the �i

independently identically Extreme Value I distributed, and 

random with density f(
;�), where � is a vector of parameters.
Conditioned on 
,

Li(z�
) = exp(xi
) /�j� C exp(xj
).

Unconditioning on 
,

Pi(z��) = �
Li(z�
)�f(
;�)�d
 . 

This model can be estimated by sampling randomly from f(
;�),
approximating Pi(z��) by an average in this Monte Carlo sample,
and varying � to maximize the likelihood of the observations.
Care must be taken to avoid chatter in the draws when � varies.

Example:  
 = � + ��, where �= (�,�) are the parameters and �
is a standard normal vector that is drawn in a Monte Carlo sample
and then fixed during iteration to estimate the parameters.

 The MMNL model has proved computationally practical and
flexible in applications.  It can approximate MNP models well, and
provides one convenient route to specification of models with
flexibility comparable to that provided by MNP.
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A LM Test for MNL Against the Mixed MNL Model

The mixed MNL family is very flexible and can approximate
any well-behaved discrete response data generation process that
is consistent with utility maximization.  However, because the
MMNL model requires the use of simulation methods for
estimation, it is very useful to have a specification test that can
indicate whether mixing is needed.  The next result describes a
Lagrange Multiplier test for this purpose.  This test has the pivotal
property that its asymptotic distribution under the null hypothesis
that the correct specification is MNL does not depend on the
parameterization of the mixing distribution under the alternative.

Theorem.  Consider choice from a set C = {1,...,J}.  Let xi be a
1×K vector of attributes of alternative i.  From a random sample n
= 1,...,N, estimate the parameter 
 in the simple MNL model
LC(i;x,
) = , using maximum likelihood; construct

artificial variables
 zti = ½(xti - xtC)2   with   xtC = xtj�LC(j;x,�)  

for selected components t of xi, and use a Wald or Likelihood Ratio
test for the hypothesis that the artificial variables zti should be
omitted from the MNL model.  This test is asymptotically equivalent
to a Lagrange multiplier test of the hypothesis of no mixing against
the alternative of a MMNL model PC(i�x,�) = �LC(i;x,
)�G(d
;�)
with mixing in the selected components t of 
.  The degrees of
freedom equals the number of artificial variables zti that are linearly
independent of x. 
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To examine the operating characteristics of the test, consider two
simple Monte Carlo experiments for choice among three
alternatives, with random utility functions ui = 
1x1i + 
2x2i + �i.
The disturbances �i were i.i.d. Extreme Value Type I.  In the first
experiment, the covariate were distributed as described below:

 

Variable Alternative 1 Alternative 2 Alternative 3
  x1  ±½ w.p.  ½    0    0
  x2  ±½ w.p.  ½  ±½ w.p.  ½    0

 

The parameter 
2 = 1 under both the null and the alternative.  The
parameter 
1 = 0.5 under the null hypothesis, and under the
alternative 
1 = 0.5 ± 1 w.p. 1/2.  We carried out 1000 repetitions
of the test procedure for a sample of size N = 1000 and choices
generated alternately under the null hypothesis and under the
alternative just described, using likelihood ratio tests for the
omitted variable z1i.  

Nominal
Significance

Level

Actual
Significance

Level

Power Against the
Alternative

  10%   8.2%  15.6%
  5%   5.0%   8.2%

 The nominal and actual significance levels of the test agree well.
The power of the test is low, and an examination of the estimated
coefficients reveals that the degree of heterogeneity in tastes
present in this experiment gives estimated coefficients close to
their expected values.  Put another way, this pattern of
heterogeneity is difficult to distinguish from added extreme value
noise.
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In the second experiment, the covariates are distributed:
 

Variable Alternative 1 Alternative 2 Alternative 3
  x1  ±½ w.p.  ½  ±½ w.p.  ½    0
  x2  ±½ w.p.  ½  ±½ w.p.  ½    0

 

The utility function is again ui = 
1x1i + 
2x2i + �i.  Under the null
hypothesis, 
1 = 
2 = 1, while under the alternative (
1,
2) = (2,0)
w.p. ½ and (0,2) w.p. ½.  Again, 1000 repetitions of the tests are
made for N = 1000 under the null and the alternative:
 

 Nominal
Significance Level

Actual
Significance

Level

Power Against the
Alternative

  10%   9.7%  52.4%
  5%   3.9%  39.8%

 

In this case where mixing is across utility functions of different
variables, the test is moderately powerful.  It remains the case in
this example that the estimated coefficients in the MNL model
without mixing are close to their expected values. 


