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Sampling Theory for Discrete Data

** Economic survey data are often obtained from sampling
protocols that involve stratification, censoring, or  selection.
Econometric estimators designed for random samples may
be inconsistent or inefficient when applied  to these samples.
** When the econometrician can influence sample design,
then the use of stratified sampling protocols combined with
appropriate estimators can be a powerful tool for
maximizing the useful information on structural parameters
obtainable within a data collection budget.
** Sampling of discrete choice alternatives may simplify data
collection and analysis for MNL models.
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Basics of Sampling Theory
Let z denote a vector of exogenous variables, and y

denote an endogenous variable, or a vector of endogenous
variables, such as choice indicators.  The joint distribution
of (z,y) in the population is P(y|z,��o)p(z) = Q(z|y,��o)q(y,��o); see
Figure 1.  P(y|z,��o), the  conditional probability of y, given z, in a
parametric family with true parameter vector ��o, is the structural
model of interest.  "Structural" means this conditional probability
law is invariant in different populations or policy environments
when the marginal distribution of z changes.  If z causes y, then
P(y

z,��o) is a structural relationship.  Other notation:

p(z)   marginal distribution of exogenous variables
Q(z|y)   conditional distribution of z given y
q(y)   marginal distribution of y
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Figure 1. Population Probability Model

y1 y2 ... yJ Total

z1 P(y1|z1,��0)p(z1) P(y2|z1,��0)p(z1) P(yJ|z1,��0)p(z1) p(z1)

z2 P(y1|z2,��0)p(z2) P(y2|z2,��0)p(z2) P(yJ|z2,��0)p(z2) p(z2)

:

zK P(y1|zK,��0)p(zK) P(y2|zK,��0)p(zK) P(yJ|zK,��0)p(zK) p(zK)

Total q(y1,��0) q(y2,��0) q(yJ,��0) 1
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A simple random sample draws independent
observations from the population, each with probability
law P(y|z,��o)��p(z).  The kernel of the log likelihood of this
sample depends only on the conditional probability
P(y|z,��), not on the marginal density p(z);  thus, maximum
likelihood estimation of the structural parameters ��o does
not require that the marginal distribution p(z) be
parameterized or estimated.  ��o influences only how data
are distributed within rows of the table above; and how the
data are distributed across rows provides no additional
information on ��o. 
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Stratified Samples.  An (exogenously) stratified random
sample samples among rows with probability weights
different from p(z), but within rows the sample is
distributed with the probability law for the population.
Just as for a simple random sample, the sampling
probabilities across rows do not enter the kernel of the
likelihood function for ��o, so the exogenously stratified
random sample can be analyzed in exactly the same way as
a simple random sample. 
 

The idea of a stratified random sample can be
extended to consider what are called endogneous or choice-
based sampling protocols.  Suppose the data are collected
from one or more strata, indexed s = 1,..., S.  Each stratum
has a sampling protocol that determines the segment of the
population that qualifies for interviewing.  
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Let R(z,y,s) = qualification probability that a population
member with characteristics (z,y) will qualify for the
subpopulation from which the stratum s subsample will be
drawn.  For example, a stratum might correspond to the
northwest 2x2 subtable in Figure 1, where y is one of the
values y1 or y2 and z is one of the values z1 or z2.  In this
case, R(z,y,s) equals the sum of the four cell probabilities.
Qualification may be related to the sampling frame, which
selects locations (e.g., census tracts, telephone prefixes), to
screening (e.g., terminate interview if respondent is not a
home-owner), or to attrition (e.g., refusals)

Examples:
1. Simple random subsample, with R(z,y,s) = 1. 
2. Exogenously stratified random subsample, with R(z,y,s) = 1 if  z ��

As for a subset As of the universe Z of exogenous vectors, R(z,y,s) = 0
otherwise.  For example, the set As might define a geographical area.  This
corresponds to sampling randomly from one or more rows of the table.  



7

Exogenous stratified sampling can be generalized to
variable sampling rates by permitting R(z,y,s) to be any
function from (z,s) into the unit interval; a protocol for
such sampling might be, for example, a screening interview
that qualifies a proportion of the respondents that is a
function of respondent age. 
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3. Endogenously stratified subsample:  R(z,y,s) = 1 if y
��  Bs, with Bs a subset of the universe of endogenous
vectors Y, and R(z,y,s) = 0 otherwise.  The set Bs might
identify a single alternative or set of alternatives among
discrete responses, with the sampling frame intercepting
subjects based on their  presence in Bs; e.g., buyers who
register their purchase, recreators at national parks.
Alternately, Bs  might identify a range of a continuous
response, such as an income category.  Endogenous
sampling corresponds to sampling randomly from one or
more columns of the table.  A choice-based sample for
discrete response is the case where each response is a
different stratum. Then R(z,y,s) = 1(y = s).  
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Endogenous stratified sampling can be generalized to
qualification involving both exogenous and endogenous
variables, with Bs defined in general as a subset of  Z×Y.
For example, in a study of mode choice, a stratum might
qualify bus riders (endogenous) over age 18 (exogenous). It
can also be generalized to differential sampling rates, with
a proportion R(z,y,s) between zero and one qualifying in a
screening interview.   

4. Sample selection/attrition, with R(z,y,s) giving the
proportion of the population with variables (z,y) whose
availability qualifies them for stratum s.  For example,
R(z,y,s) may give the proportion of subjects with variables
(z,y) that can be contacted and will agree to be interviewed,
or the proportion of subjects meeting an endogenous
selection condition, say employment, that qualifies them for
observation of wage  (in z) and hours worked (in y). 
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The Sample Probability Law
The population probability law for (z,y) is

P(y

z,��o)��p(z).  The qualification probability R(z,y,s)
characterizes the sampling protocol for stratum s.  Then,
R(z,y,s)��P(y

z,��o)��p(z) = joint probability that a  member of
the population will have variables (z,y) and  will qualify for
stratum s.
(2)       r(s) =   R(z,y,s)��P(y

z,��o)��p(z)  

is the proportion of the population qualifying into the
stratum, or qualification factor.  The reciprocal of r(s) is
called the raising factor.
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(3)       G(z,y

s) = R(z,y,s)��P(y

z,��o)��p(z)/r(s),  

the conditional distribution G(z,y

s) of (z,y) given
qualification, is the sample probability law for stratum s.
The probability law G(z,y

s) depends on the unknown
parameter vector ��, on p(z), and on the qualification
probability R(z,y,s).  In simple cases of stratification,
R(z,y,s) is fully specified by the sampling protocol.  The
qualification factor r(s) may be known (e.g., stratification
based on census tracts with known sizes); estimated from
the survey (e.g.; qualification is determined by a screening
interview); or estimated from an auxiliary sample.  In case
of attrition or selection, R(z,y,s) may be an unknown
function, or may contain unknown parameters. 
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The precision of the maximum likelihood estimator will
depend on the qualification factor.  Suppose a random
sample of size ns is drawn from stratum s, and let N = ��sns

denote total sample size.   Let n(z,y

s) denote the number
of observations in the stratum s subsample that fall in cell
(z,y).   Then, the log likelihood for the stratified sample is

(4)       L =    n(z,y

s)��Log G(z,y

s).  
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EXOGENOUS STRATIFIED SAMPLING 

If R(z,y,s) is independent of y, the qualification factor

r(s) =  R(z,s)p(z) is independent of ��o, and the log

likelihood function separates into the sum of a  kernel 

(5)       L1 =    n(z,y

s)��Log P(y

z,��)  

and terms independent of ��.  Hence, the kernel is

independent of the structure of exogenous  stratification.
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ENDOGENOUS STRATIFICATION 

Suppose the qualification probability R(z,y,s) depends
on y.  Then the qualification factor (2) depends on ��o,  and
the log likelihood function (4) has a kernel depending in
general not only on ��, but also on the  unknown marginal
distribution p(z).  Any unknowns in the qualification
probability also enter the kernel.  

There are four possible strategies for estimation under
these conditions: 

1. Brute force -- Assume p(z) and, if necessary,
R(z,y,s), are in parametric families, and estimate   their
parameters jointly with ��.  For example, in multivariate
discrete data analysis, an analysis of  variance
representation absorbs the effects of stratification. 
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2. Weighted Exogenous Sample Maximum Likelihood
(WESML)  This is a quasi-maximum likelihood approach
which starts from the likelihood function appropriate to a
random sample, and reweights the data (if possible) to
achieve consistency.  A familiar form of this approach is
the classical survey research technique of  reweighting a
sample so that it appears to be a simple random sample. 

3. Conditional Maximum Likelihood (CML):  This
approach pools the observations across strata, and then
forms the conditional likelihood of y given z in this pool. 
This has the effect of conditioning out the unknown
density p(z). 

4. Full Information Maximum Likelihood (FICLE):
This  approach formally maximizes the likelihood function
in p(z) as a function of the data, the remaining parameters,
and a finite vector of auxiliary parameters, and then
concentrates the likelihood function by substituting in
these formal maximum likelihood estimates for p(z). 
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** Both the WESML and CML estimators are practical
for  many problems when auxiliary information is
available that allows the raising factors to be estimated
consistently.  The FICLE estimator is computationally
difficult and little used.

WESML 

** Recall the kernel of the log likelihood for exogenous
sampling is given by (5).  Suppose now endogenous
sampling with true log likelihood (4), and consider a
quasi-maximum likelihood criterion based on (5),

(7)    W(��) =  n(z,y

s)��w(z,y,s)��Log P(y

z,��),

where w(z,y,s) = weight to achieve consistency.  
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** Suppose r(s) is consistently estimated by f(s), from
government statistics, survey frame data such  as the
average refusal rate, or an auxiliary sample.  Consider the
weights   

(11)      w(z,y) = 1/ ; 

these are well-defined if the bracketed expressions are
positive and R(z,y,s) contains no unknown parameters.   A
classical application of WESML estimation is to a sample in
which the strata coincide with the possible configurations of
y, so that R(z,y,s) = 1(y = s).  In  this case, w(z,y) = N��f(y)/ny,
the ratio of the population to the sample frequency.  This is
the raising factor encountered in classical survey research.
Another application is to enriched samples, where a random
subsample (s = 1) is enriched with an endogenous
subsamples from one or more configurations of y; e.g.,  s =
y = 2.  Then, w(z,1) = N/n1 and w(z,2) =  N��f(2)/[n1��f(2) + n2].
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CML
Pool the observations from the different strata.

Then, the data generation process for the pooled sample
is   

(15)      Pr(z,y) = G(z,y,s)ns/N,  

and the conditional probability of y given z from this
pool is 

(17)      Pr(y|z) =   . 

The CML estimator maximizes the conditional
likelihood of the pooled sample in �� and any unknowns
in R(z,y,s).  When r(s) is known, or one wishes to
condition on estimates f(s) of r(s) from auxiliary
samples, (17) is used directly.  More generally, given
auxiliary sample information on the r(s), these can be
treated as parameters and estimated from the joint
likelihood of  (17) and the likelihood of the auxiliary
sample. 
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For discrete response in which qualification does
not depend on z, the formula (17) simplifies to 

 Pr(y

z) =  , 

where ��y = R(z,y,s)��ns/N��r(s) can be treated as an
alternative-specific constant.  For multinomial logit
choice models, Pr(y

z) then reduces to a multinomial
logit formula with added alternative-specific  constants.
It is possible to estimate this model by the CML method
using standard random sample computer programs for
this model, obtaining consistent estimates for slope
parameters, and for the sum of log ��y and
alternative-specific parameters in the original model.
What is critical for this to work is that the MNL model
contain alternative-specific dummy variables
corresponding to each choice-based stratum.

** For an enriched sample, Pr(1

z) = P(1

z,��o)��n1/N��D
and Pr(2

z) = P(2

z,��o)��[n1/N + n2/N��r(2)]/D, where
D = n1/N + P(2

z,��o)��n2/N.

**  Example: Suppose y is a continuous variable, and
the sample consists of a single stratum in which high
income families are over-sampled by screening, so that
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the qualification probability is R(z,y,1) = �� < 1 for y ��
yo and R(z,y,1) = 1 for y > yo.  Then Pr(y

z) =
����P(y

z,��o)/D for y �� yo and Pr(y

z) = P(y

z,��o)/D for
y > yo, where D = �� + (1-��)��P(y>yo

z,��o).

** Both the WESML and CML estimators are
computationally practical in a variety of endogenous
sampling  situations, and have been widely used.
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Sampling of Alternatives for Estimation
Consider a simple or exogenously stratified random

sample and discrete choice data to which one wishes to
fit a multinomial logit model.  Suppose the choice set is
very large, so that the task of collecting attribute data
for each alternative is burdensome, and estimation of
the MNL model is difficult.  Then, it is possible to
reduce the collection and processing burden greatly by
working with samples from the full set of alternatives.
There is a cost, which is a loss of statistical efficiency.
Suppose Cn is the choice set for subject n, and the MNL
probability model is written

 Pin =  

where in  is the observed choice and Vin = xin.�� is the
systematic utility of alternative i. 

Suppose the analyst selects a subset of alternatives
An  for this subject which will be used as a basis for
estimation; i.e., if in is contained in An, then the subject
is treated as if the choice were actually being  made
from An, and if in is not contained in An, the observation
is discarded.  In selecting An, the analyst may use the
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information on which alternative in was chosen, and
may also use information on the variables that enter the
determination of the Vin.  The rule used by the analyst
for selecting An is summarized by a probability
%%(A

in,V's) that subset A of Cn is selected, given the
observed choice in and the observed V's (or, more
precisely, the observed variables behind the V's).  
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The selection rule is a uniform conditioning rule if for
the selected An, it is the case that %%(An

j,V's) is  the
same for all j in An.  Examples of uniform conditioning
rules are (1) select (randomly or  purposively) a subset
An of Cn without taking into account what the observed
choice or the V's are, and  keep the observation if and
only if in is contained in  the selected An; and (2) given
observed choice in.  select m-1 of the remaining
alternatives at random from Cn, without taking into
account the V's.  
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An implication of uniform conditioning is that in
the sample containing the pairs (in,An) for which in is
contained in An, the probability of observed response in

conditioned on An is

 =  

This is just a MNL model that treats choice as if it
were being made from An rather than Cn, so that
maximum likelihood estimation of this model for the
sample of (in,An) with in �� An estimates the same
parameters as does maximum likelihood estimation on
data from the full choice set.  Then, this sampling of
alternatives cuts down data collection time (for
alternatives not in An) and computation size and time,
but still gives consistent estimates of parameters for
the original  problem.
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BIVARIATE SELECTION MODEL

(29)    y* = x�� + JJ ,
w* = z�� + )�)� ,

x, z vectors of exogenous variables, not necessarily
all distinct, 

��, ��  parameter vectors, not necessarily all distinct, 
)) a positive parameter.  
y* latent net desirability of work, 
w* latent log potential wage.

NORMAL MODEL
 

(30)      ~ N  ,

 correlation ''.
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Observation rule

 "Observe y = 1 and w = w* if y* > 0; observe y = -1 and do not
observe w when y* �� 0".  

The event of working (y = 1) or not working (y = 0) is
observed, but net desirability is not, and the wage is observed
only if the individual works (y* > 0).  

For some purposes, code the discrete response as s = (y+1)/2;
then s = 1 for workers, s = 0 for non-workers.

The event of working is given by a probit model.  

00 is the standard univariate cumulative normal.

 The probability of working is 

P(y=1

x) = P(JJ > -x��) = 00(x��), 

The probability of not working is 

P(y=-1

x) = P(JJ �� -x��) = 00(-x��).

Compactly,

 P(y

x) = 00(yx��).
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In the bivariate normal, the conditional density of one
component given the other is  univariate normal, 

JJ

�� ~ N('�'�,1-''2) =  

and 

��

JJ ~ N('J'J,1-''2) = .
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The joint density: marginal times conditional, 

(JJ,��) ~ 11(��)��  

= 11(JJ)�� . 

 
The density of (y*,w*)
(31)      f(y*,w*) 

     = 11( )�� ��11

        = 11(y*-x��)�� ��11  .

Log likelihood of an observation, l(��,��,)),'').  

In the case of a non-worker (y = -1 and w = NA), the density
(31) is integrated over y* < 0 and all w*.  Using the second form
in (31), this gives probability 00(-x��).  
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In the case of a worker, the density (31) is integrated over y* ��
0.  Using the first form in (31)

el(��,��,)),'') =   .
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The log likelihood can be rewritten as the sum of the marginal log
likelihood of the  discrete variable y and the conditional log
likelihood of w given that it is observed, l(��,��,)),'') = l1(��,��) +
l2(��,��,)),''),  with the marginal component,

(33)                        l1(��) = log 00(yx��) ,

and the conditional component (that appears only when y = 1),

(34)       l2(�,�,),') = -log ) + log 1( )  + log

0  - log 0(x�) .

One could estimate this model by maximizing the sample sum of the full
likelihood function l, by maximizing the sample sum of either the
marginal or the conditional  component, or by maximizing these
components in sequence.

Note that asymptotically efficient estimation requires maximizing the
full likelihood, and that not all the parameters are identified in each
component; e.g., only � is identified from the marginal component.
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Nevertheless, there may be computational advantages to working with
the marginal or conditional likelihood.  Maximization of l1 is a
conventional binomial probit problem.  Maximization of l2 could be
done either jointly in all the parameters �, �, ', ); or alternately in �,
', ), with the estimate of � from a first-step binomial probit substituted
in and treated as fixed.  
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When ' = 0, the case of "exogenous" selection in which there is no
correlation between the random variables determining selection into the
observed population and the level of the observation, l2 reduces to the
log likelihood for a regression with normal disturbances.  When ' g 0,
selection matters and regressing of w on z will not give consistent
estimates of � and ).
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An alternative to maximum likelihood estimation is a GMM procedure
based on the  moments of w.  Using the property that the conditional
expectation of � given y = 1 equals the conditional expectation of �
given J, integrated over the conditional density of J given y = 1, plus the
property of the normal that d1(J)/dJ = -J�1(J), one has

(35)         E{w
z,y=1} = z� + )E{�
y=1} 
= z� + ) E{�
J}1(J)dJ/0(x�) 

= z� + )' J1(J)dJ/0(x�) 

= z� + )'1(x�)/0(x�) 
� z� + �M(x�), 

where � = )' and M(c) = 1(c)/0(c) is called the inverse Mill's ratio. 
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Further, 
  
     E(�2
J) = Var(�
J) + {E(�
J)}2 

= 1 - '2 + '2
J

2, 

                      
J

2
1(J)dJ = - J11(J)dJ 

= -c1(c) + 1(J)dJ 

= -c1(c) + 0(c), 

(36)     E{(w-z�)2
z,y=1} = )2E{�2
y=1} 

= )2 E{�2
J}1(J)dJ/0(x�) 

= )2 {1 - '2 + '2
J

2}1(J)dJ/0(x�) 

= )2{1 - '2 + '2 - '2x�1(x�)/0(x�)} 
= )2{1 - '2x�1(x�)/0(x�)} 
= )2{1 - '2x��M(x�)}.

Then,
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(37)     E  =

E{(w-z�)2
z,y=1} - [E{w-z�
z,y=1}]2

= )2{1 - '2x�1(x�)/0(x�) - '2
1(x�)2/0(x�)2} 

= )2{1 - '2M(x�)[x� + M(x�)}. 
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A GMM estimator for this problem can be obtained by applying NLLS,

for the observations with y = 1, to the equation

(38)                        w = z� + )'M(x�) + �,

where � is a disturbance that satisfies E{�
y=1} = 0.  This ignores the

heteroskedasticity of �, but it is nevertheless consistent.  This regression

estimates only the product � � )'.
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Consistent estimates of ) and ' could be obtained in a second step: 

(39)    V{�
x,z,y=1} 

= )2{1 - '2M(x�)[x� + M(x�)]},

Estimate )2 by regressing the square of the estimated residual, �e
2,

(40)     �e
2 = a + b{M(x�e)[x�e + M(x�e)]} + !

provide consistent estimates of )2 and )2
'

2, respectively.
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There is a two-step estimation procedure, due to Heckman, that requires

only standard computer software, and is widely used:

[1] Estimate the binomial probit model, 

(42)         P(y
x,�) = 0(yx�)  ,

by maximum likelihood.

[2] Estimate the linear regression model, 

(43)               w = z� + �M(x�e) + �, 

where � = )' and the inverse Mill's ratio M is evaluated at the

parameters estimated from the first stage.

To estimate ) and ', and increase efficiency, one can do an

additional step,

[3] Estimate )2 using the procedure described in (40), with

estimates �e from the second step and �e from the first step.
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One limitation of the bivariate normal model is most easily

seen by examining the regression (43).  Consistent estimation of the

parameters � in this model requires that the term M(x�|) be

estimated consistently.  This in turn requires the assumption of

normality, leading to the first-step probit model, to be exactly right.

Were it not for this restriction, estimation of � in (43) would be

consistent under the much more relaxed requirements for

consistency of OLS estimators.  To investigate this issue further,

consider the bivariate selection model (29) with the following more

general distributional assumptions:  (i) J has a density f(J) and

associated CDF F(J); and (ii) � has  E(�
J) = 'J and a second

moment E(�2
J) = 1 - '2 that is independent of  J.  Define the

truncated moments

J(x�) = E(J
J>-x�) 

= Jf(J)dJ/[1 - F(-x�)] 

and

K(x�) = E(1 - J2
J>-x�) 
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= [1 - J2]f(J)dJ/[1 - F(-x�)] .

Then, given the assumptions (i) and (ii),

E(w
z,y=1) = z� + )'E(J
J>-x�) 

= z� + )'J(x�), 

 E((w - E(w
z,y=1))2
z,y=1) 

= )2{1 - '2[K(x�) + J(x�)2]}. 

Thus, even if the disturbances in the latent variable model were not
normal, it would nevertheless be possible to write down a
regression with an added term to correct for  self-selection that
could be applied to observations where y = 1:

(45)        w = z� + )E{�
x�+J>0} + � 
= z� + )'J(x�) + �,

where � is a disturbance that has mean zero and the heteroskedastic
variance

 E(�2
z,y=1)) = )2{1 - '2[K(x�) + J(x�)2]}. 

  
Now suppose one runs the regression (37) with an inverse Mill's
ratio term to correct for self-selection, when in fact the disturbances
are not normal and (44) is the correct specification.  What bias
results?  The answer is that the closer M(x�) is to J(x�), the less



41

the bias.  Specifically, when (44) is the correct model, regressing
w on z and M(x�) amounts to estimating the misspecified model

 w = z� + �M(x�) + {� + �[J(x�) - M(x�)]} .
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The bias in NLLS is given by

 = �

this bias is small if � = )' is small or the covariance of J - M with
z and M is small.  


