Sampling Theory for Discrete Data

[ Economic survey data ar e often obtained from sampling
protocolsthat involve stratification, censoring, or selection.
Econometric estimators designed for random samples may
beinconsistent or inefficient when applied tothese samples.
[ When the econometrician can influence sample design,
then the use of stratified sampling protocols combined with
appropriate estimators can be a powerful tool for
maximizing the useful infor mation on structural parameters
obtainable within a data collection budget.

[1 Sampling of discretechoicealter nativesmay simplify data
collection and analysisfor MNL models.



Basics of Sampling Theory
Let z denote a vector of exogenous variables, and y
denote an endogenous variable, or a vector of endogenous

variables, such as choice indicators. Thejoint distribution
of (zy) in the population is P(y|z,f,)p(z) = Q(zly.B.)aly.B.): see
Figure 1. P(y|z,8,), the conditional probability of y, given z, in a
parametric family with true parameter vector 3,, isthe structural
model of interest. " Structural” meansthis conditional probability
law is invariant in different populations or policy environments
when the marginal distribution of z changes. If z causesy, then
P(y|z,B.) isastructural relationship. Other notation:

p(z) marginal distribution of exogenous variables

Q(zly) conditional distribution of z giveny

g(y) marginal distribution of y



Figure 1. Population Probability M odel

Y1 Y Y; Total

Z, | Plydzi.Bo)p(z) | P(y.lz.,Bo)p(z) P(y;1z.Bo)p(z) | p(z)

Z, P(y1|Z2.B0)P(z,) | P(Y,lz,.Bo)P(2) P(Y;|zBoP(z.) | p(z)

Zy P(y11z«.Bo)P(Z4) | P(Yalz«.Bo)P(zk) P(Y;lzc.Bo)P(zc) | P(z4)
Total q(ys,Bo) qy2B0) q(y5B0) 1




A dsmple random sample draws independent
observations from the population, each with probability
law P(y|z,.)'p(2). Thekernel of thelog likelihood of this
sample depends only on the conditional probability
P(y|z,3), not on the marginal density p(z); thus, maximum
likelihood estimation of the structural parameters [3, does
not require that the marginal distribution p(z) be
parameterized or estimated. [3, influences only how data
aredistributed within rowsof thetableabove; and how the
data are distributed across rows provides no additional
information on 3,



Stratified Samples. An (exogenoudly) stratified random
sample samples among rows with probability weights
different from p(z), but within rows the sample is
distributed with the probability law for the population.
Just as for a simple random sample, the sampling
probabilities across rows do not enter the kernel of the
likelihood function for 3,, so the exogenoudly stratified
random sample can beanalyzed in exactly the sameway as
a smplerandom sample.

The idea of a stratified random sample can be
extended to consider what ar ecalled endogneousor choice-
based sampling protocols. Suppose the data are collected
from oneor morestrata, indexed s=1,..., S. Each stratum
hasasampling protocol that deter minesthe segment of the
population that qualifiesfor interviewing.



Let R(zy,s) = qualification probability that a population
member with characteristics (z,y) will qualify for the
subpopulation from which the stratum s subsamplewill be
drawn. For example, a stratum might correspond to the
northwest 2x2 subtablein Figure 1, wherey isone of the
valuesyl or y2 and z isone of thevalueszl or z2. In this
case, R(z,y,s) equalsthe sum of the four cell probabilities.
Qualification may berelated to the sampling frame, which
selectslocations (e.g., censustracts, telephone prefixes), to
screening (e.g., terminate interview if respondent isnot a
home-owner), or to attrition (e.g., refusals)

Examples:

1. Simple random subsample, with R(z,y,s) = 1.

2. Exogenoudly stratified random subsample, with R(z,y,s) = 1if z €
A, for a subset A, of the universe Z of exogenous vectors, R(z,y,s) = 0
otherwise. For example, theset A_might definea geographical area. This
corresponds to sampling randomly from one or morerows of the table.



Exogenous stratified sampling can be generalized to
variable sampling rates by permitting R(z,y,s) to be any
function from (z,s) into the unit interval; a protocol for
such sampling might be, for example, ascreeninginterview
that qualifies a proportion of the respondents that is a
function of respondent age.



3. Endogenoudly stratified subsample: R(z,y,s) =1ify
€ B, with B, a subset of the universe of endogenous
vectors Y, and R(zy,s) = 0 otherwise. The set B, might
Identify a single alternative or set of alternatives among
discrete responses, with the sampling frame inter cepting
subjects based on their presencein B, e.g., buyers who
register their purchase, recreators at national parks.
Alternately, B, might identify a range of a continuous
response, such as an income category. Endogenous
sampling corresponds to sampling randomly from one or
more columns of the table. A choice-based sample for
discrete response is the case where each response is a
different stratum. Then R(z,y,s) = 1(y = 9).



Endogenous stratified sampling can be generalized to
gualification involving both exogenous and endogenous
variables, with B, defined in general as a subset of ZxY.
For example, in a study of mode choice, a stratum might
qgualify busriders(endogenous) over age 18 (exogenous). It
can also be generalized to differential sampling rates, with
aproportion R(z,y,s) between zero and onequalifyingin a
SCreening interview.

4. Sample selection/attrition, with R(z,y,s) giving the
proportion of the population with variables (z,y) whose
availability qualifies them for stratum s. For example,
R(z,y,s) may givethe proportion of subjectswith variables
(z,y) that can becontacted and will agreeto beinterviewed,
or the proportion of subjects meeting an endogenous
selection condition, say employment, that qualifiesthemfor
observation of wage (in z) and hoursworked (in y).



The Sample Probability Law

The population probability law for (zy) Is
P(y|z,B,)'p(z). The qualification probability R(zy,s)
characterizes the sampling protocol for stratum s. Then,
R(zy,9)P(y|zB.)-p(2) =joint probability that a member of
thepopulation will havevariables(z,y) and will qualify for
stratum s.
(2) (9= Rzy9Py|zp)p@
IS the proportion of the population qualifying into the
stratum, or qualification factor. Thereciprocal of r(s) is
called theraising factor.
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(3)  G(zy|s) =RzYy.9Py|zB)p@)/r (9.

the conditional distribution G(zy|s) of (zy) given
gualification, is the sample probability law for stratum s.
The probability law G(z,y|s) depends on the unknown
parameter vector 3, on p(z), and on the qualification
probability R(z)y,s). In simple cases of stratification,
R(z)y,s) is fully specified by the sampling protocol. The
gualification factor r(s) may be known (e.g., stratification
based on censustractswith known sizes); estimated from
thesurvey (e.g.; qualification isdeter mined by a screening
Interview); or estimated from an auxiliary sample. In case
of attrition or selection, R(zy,s) may be an unknown
function, or may contain unknown parameters.
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The precison of the maximum likelihood estimator will
depend on the qualification factor. Suppose a random
sampleof sizengisdrawn from stratum s, and let N =} n,
denotetotal samplesize. Let n(z,y|s) denote the number
of observationsin the stratum ssubsamplethat fall in cell
(z,y). Then,theloglikelihood for the stratified sampleis
(4 L=¥ X ¥ n@zylsLogGzyls.

y
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EXOGENOUS STRATIFIED SAMPLING

If R(z,y,s) Isindependent of y, the qualification factor
r(s) = R(zs)p(2) is independent of B, and the log

likelihood function separatesinto the sum of a kernel

(5 Li=% X X n(zy|sLogP(y|zp)

and terms independent of [3. Hence, the kernd is

Independent of the structure of exogenous stratification.
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ENDOGENOUS STRATIFICATION

Supposethequalification probability R(z,y,s) depends
ony. Then thequalification factor (2) dependson f3,, and
the log likelihood function (4) has a kernel depending in
general not only on [3, but also on the unknown mar ginal
distribution p(z). Any unknowns in the qualification
probability also enter the kernel.

Therearefour possiblestrategiesfor estimation under
these conditions:

1. Brute force -- Assume p(z) and, if necessary,
R(z\y,s), are in parametric families, and estimate their
parameter s jointly with . For example, in multivariate
discrete data analysis, an analysis of variance
representation absor bsthe effects of stratification.
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2. Weighted Exogenous Sample M aximum L ikelihood
(WESML) Thisisaquasi-maximum likelihood approach
which startsfrom thelikelihood function appropriateto a
random sample, and reweights the data (if possible) to
achieve consistency. A familiar form of this approach is
the classical survey research technique of reweighting a
sample so that it appearsto be a ssmple random sample.

3. Conditional Maximum Likelihood (CML): This
approach pools the observations across strata, and then
forms the conditional likelihood of y given z in this poal.
This has the effect of conditioning out the unknown
density p(2).

4. Full Information Maximum Likelihood (FICLE):
This approach for mally maximizesthelikelihood function
In p(z) asafunction of thedata, theremaining parameters,
and a finite vector of auxiliary parameters, and then
concentrates the likelihood function by substituting in
these formal maximum likelihood estimates for p(z).
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[1 Both the WESML and CML estimators are practical
for many problems when auxiliary information is
available that allows the raising factors to be estimated
consistently. The FICLE estimator is computationally
difficult and little used.

WESML
[] Recall the kernel of the log likelihood for exogenous
sampling is given by (5). Suppose now endogenous

sampling with true log likelihood (4), and consider a
guasi-maximum likelihood criterion based on (5),

S
(7) W(P)= Z Y Y n@yl9w(zy.9-LogPy|zB),
§= X y

wherew(z,y,s) = weight to achieve consistency.
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[1 Suppose r(s) is consistently estimated by f(s), from
government statistics, survey frame data such as the
averagerefusal rate, or an auxiliary sample. Consider the
weights

S

1)  w(zy) =V le | RGzy.s)n/NfGs)|

these are well-defined if the bracketed expressions are
positive and R(z,y,s) contains no unknown parameters. A
classical application of WESML estimation istoasamplein
which thestrata coincidewith thepossibleconfigurationsof
y,sothat R(z,y,s) =1(y =9). In thiscase, w(z,y) = N-f(y)/n,,
theratio of the population to the samplefrequency. Thisis
the raising factor encountered in classical survey research.
Another applicationistoenriched samples, wherearandom
subsample (s = 1) is enriched with an endogenous
subsamples from one or mor e configurationsof y; e.q., s=
y =2. Then,w(z,1) = N/n, and w(z,2) = N-f(2)/[n,*f(2) + n,].
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CML

Pool the observations from the different strata.
Then, thedata generation processfor thepooled sample
IS

(15)  Pr(zy)= ¥ G(zy.9nyN,

and the conditional probability of y given z from this
pool is

S
) Rzy.s)Py|z,B,)n/Nr(s)
(17) Py = —=

S

Y z; R(z,,8)P(y|z,B ) n/N*(s)
y §=

The CML estimator maximizes the conditional
likelihood of the pooled samplein (3 and any unknowns
In R(z,y,s). When r(s) is known, or one wishes to
condition on estimates f(s) of r(s) from auxiliary
samples, (17) is used directly. More generally, given
auxiliary sample information on the r(s), these can be
treated as parameters and estimated from the joint
likelihood of (17) and the likelihood of the auxiliary
sample.
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For discrete response in which qualification does
not depend on z, theformula (17) smplifiesto

P()/|Z,BO)‘OCy
ZyP(y|Z,B0)'OCy

where o, = R(z,y,s)'n/N'r(s) can be treated as an
alternative-specific constant. For multinomial logit
choice models, Pr(y|z) then reduces to a multinomial
logit for mulawith added alter native-specific constants.
It ispossibleto estimatethismodel by the CM L method
using standard random sample computer programsfor
this model, obtaining consistent estimates for dope
parameters, and for the sum of log o, and
alter native-specific parameters in the original model.
What iscritical for thistowork isthat the MNL model
contain alternative-specific dummy variables
cor responding to each choice-based stratum.

Pr(y|2) =

[ For an enriched sample, Pr(1|z) = P(1|z3,)-n,/N-D
and Pr(2|z) = P(2|zB,):[n/N + n,/N-r(2)]/D, where
D =n,/N + P(2|z,,)n,/N.

[ Example: Supposey is a continuous variable, and
the sample consists of a single stratum in which high
Income families are over-sampled by screening, so that
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the qualification probability isR(z,y,1) =y <1fory <
Yo and R(zy,1) = 1 for y >y, Then Pr(y|2) =
v-P(y|z,B,)/D for y <y, and Pr(y|z) = P(y|z[,)/D for
Y > Yo, where D =y + (1-y) P(y>Y,|z,B,)-

[1 Both the WESML and CML estimators are
computationally practical in a variety of endogenous
sampling situations, and have been widely used.
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Sampling of Alternativesfor Estimation

Consider asimpleor exogenously stratified random
sample and discrete choice data to which one wishesto
fit a multinomial logit model. Supposethechoice set is
very large, so that the task of collecting attribute data
for each alternative is burdensome, and estimation of
the MNL moded is difficult. Then, it is possible to
reduce the collection and processing burden greatly by
wor king with samples from the full set of alternatives.
Thereisa cost, which isa loss of statistical efficiency.
Suppose C, isthechoice set for subject n, and the MNL
probability model iswritten

o Vi

I:)in -
V.
Y e

jecC,

wherei, istheobserved choiceand V,, = x;,.p isthe
systematic utility of alter nativel.

Supposethe analyst selects a subset of alternatives
A, for this subject which will be used as a basis for
estimation; i.e,, if i, iscontained in A,,, then the subject
Is treated as if the choice were actually being made
fromA,, andifi,isnot contained in A,, the observation
Is discarded. In selecting A, the analyst may use the
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Information on which alternative i, was chosen, and
may also useinfor mation on thevariablesthat enter the
determination of the V;,. Therule used by the analyst
for selecting A, is summarized by a probability
T(Ali,,V's) that subset A of C, is selected, given the
observed choice i, and the observed V's (or, more
precisely, the observed variables behind the V's).

22



The selection rule is a uniform conditioning rule if for
the selected A,, it is the case that T(A,|j,V's) is the
samefor all j in A,. Examples of uniform conditioning
rulesare (1) select (randomly or purposively) a subset
A, of C, without taking into account what the observed
choiceor theV'sare, and keep the observation if and
only if i,, iscontained in the selected A,; and (2) given
observed choice i,. select m-1 of the remaining
alternatives at random from C,, without taking into
account theV's.
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An implication of uniform conditioning is that in
the sample containing the pairs (i,,A,) for which i, is
contained in A, the probability of observed responsei,
conditioned on A, is

V.
P =

ZjeA e
n

Thisisjust a MNL model that treats choice asif it
wer e being made from A, rather than C,, so that
maximum likelihood estimation of this model for the
sampleof (i,,A,) with i, € A, estimatesthe same
parameters as does maximum likelihood estimation on
data from the full choice set. Then, thissampling of
alter natives cuts down data collection time (for
alternativesnot in A,,) and computation size and time,
but still gives consistent estimates of parameters for
theoriginal problem.

24



BIVARIATE SELECTION MODEL

(29) y =xp+e,
W =z + 0V,

X, Z vectors of exogenous variables, not necessarily
all distinct,

o, B parameter vectors, not necessarily all distinct,

o) a positive parameter.

y’ latent net desirability of work,

W latent log potential wage.

NORMAL MODEL

1 p
p 1

(30) ~N

b

0

|

correlation p.
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Observation rule

"Observey=1andw=w"if y >0; observey = -1 and do not
observew wheny” < 0".

The event of working (y = 1) or not working (y = 0) is
observed, but net desirability is not, and the wage is observed
only if theindividual works (y" > 0).

For some purposes, code the discrete response as s = (y+1)/2;
then s=1for workers, s= 0 for non-workers.

The event of working isgiven by a probit modd.
® isthe standard univariate cumulative normal.
The probability of working is

P(y=1|x) = P(e > -xB) = ®(xP).
The probability of not workingis

P(y=-1|x) = P(¢ < -x3) = (-x).
Compactly,

P(y|x) = ®(yxB).
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In the bivariate normal, the conditional density of one
component given the other is univariate normal,

_ 1 e-pv
e|v~N(pv,1-p%) = b
1-p? V1-p?

and

v]e~N(pe1-p) = — ¢ LZPE |
1-p? 1-p?
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Thejoint density: marginal times conditional,

(e.v) ~ (V)" ( £ "")
1_

= d(e)

1-p? -¢(¢V17‘;) |

The density of (y,w’)
(31) f(y'w)

_ 1 w-zo 1 —xp-p(w”-za)lo
= (I)( ): (I) Yy
(0] (0] 1_p2 ( /1_p2

- by -xP)° 1 & (w*—zoc—po(y*—xﬁ)] |
o /15 o157

L og likelihood of an observation, I(e,3,0,p).

In the case of a non-worker (y =-1 and w = NA), the density
(31) isintegrated over y" <0and all w'. Usingthe second form

in (31), this gives probability ®(-x[3).
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In the case of aworker, thedensity (31) isintegrated over y* >
0. Using thefirst formin (31)

r O (-xp) ify = -1

d@pop) = xB +p w-z0
ld)(w—zoc ) o
(0] (0]

ify =1
2

1-p
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Thelog likelihood can be rewritten as the sum of the marginal log
likelihood of the discrete variable y and the conditional log
likelihood of w given that it is observed, I(e,,0,p0) = I*(e,) +
1%(ee,3,0,p), with the marginal component,

(33) I*(B) =log @(yxp),

and the conditional component (that appearsonly wheny = 1),

WwW—Z0,
(34) 1%(e,3,0,0) = -log 0 + log §( ——— ) + log
(0}
( WwW—Z0, \
xp+p
0}
® - log D (xP).
2
\ 1-p )

One could estimate thismodel by maximizing the sample sum of thefull
likelihood function |, by maximizing the sample sum of either the
margina or the conditional component, or by maximizing these
components in sequence.

Note that asymptotically efficient estimation requires maximizing the

full likelithood, and that not al the parameters are identified in each
component; e.g., only 3 is identified from the margina component.
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Nevertheless, there may be computational advantages to working with
the marginal or conditional likelihood. Maximization of I' is a
conventional binomia probit problem. Maximization of 1> could be
done either jointly in al the parameters o, 3, p, 0; or aternately in o,
0, 0, with the estimate of 3 from afirst-step binomial probit substituted
in and treated as fixed.
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When p = 0, the case of "exogenous' selection in which there is no
correlation between the random vari abl es determining sel ection into the
observed population and the level of the observation, |? reduces to the
log likelihood for aregression with normal disturbances. When p # 0,

selection matters and regressing of w on z will not give consistent
estimates of o and 0.
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An aternative to maximum likelihood estimation isa GMM procedure
based on the moments of w. Using the property that the conditional
expectation of v given y = 1 equals the conditional expectation of v
given g, integrated over the conditional density of € giveny =1, plusthe
property of the normal that dd(€)/de = - (€), one has

(35) E{w

z,y=1} = zo. + OE{ v|y=1}
=700+ O fﬁ E{ v|e} P(e)de/D(xP)

=z + Op fﬁ e (e)de/D(xP)

= zot + opP(xP)/D(xP)
= za, + AM(XP3),

where A = op and M(c) = ¢(c)/®(c) is called the inverse Mill's ratio.
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Further,

E(v*[e) = Var(v|e) + {E(v|€)}*
=1-p2+ p2e2

f+°° e?d(e)de = - f+°° ed’(e)de
-c -c

o(c) + f 7 Ple)e

c

= -ofp(c) + D(0)
(36)  E{(w-zar)|zy=1} = 0E{V?|y=1}

_ ¢? f "BV €} b(e)del D(xB)
_xﬁ

= o2 f o {1-p?+p%e?}P(e)de/D(xP)
~xp
=0{1-p’+p*- pXBP(XP)/D(xP)}
=0{1- p’xPH(xP)D(xP)}

= 0%{1- p*>xP-M(xP)}.

Then,



(37) E {[w -zoo - E{w-za |Z,y: 1}]2|Z,y= 1} =

E{ (w-z)?| zy=1} - [E{ w-zct|z,y=1}]?
= 0¥ 1- pXBOXPYD(xP) - p*P(xPB)P(xP)*}

=0%{1- p"M(XP)[xP + M(xP)}.
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A GMM estimator for this problem can be obtained by applying NLLS,

for the observations with y = 1, to the equation
(38) w = zo + opM(xP) + ,
where ( is adisturbance that satisfies E{{ |y=1} = 0. Thisignoresthe

heteroskedasticity of {, but it is nevertheless consistent. Thisregression

estimates only the product A = op.
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Consistent estimates of 0 and p could be obtained in a second step:

(39) V{C

X,z,y=1}

=04 1- p"M(P)[xP + M(xP)]},
Estimate 62 by regressing the square of the estimated residual, {2,

(40) C=a+b{MXBIXP. + M(xBJ1} +&

provide consistent estimates of 6* and 6°p?, respectively.
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Thereisatwo-step estimation procedure, dueto Heckman, that requires

only standard computer software, and iswidely used:

[1] Estimate the binomial probit model,

(42) P(y|x.) = @(yxp) ,
by maximum likelihood.

[2] Estimate the linear regression model,

(43) w=zo + AM(XP,) + ,
where A = gp and the inverse Mill's ratio M is evaluated at the
parameters estimated from the first stage.

To estimate 0 and p, and increase efficiency, one can do an

additional step,

[3] Estimate 0 using the procedure described in (40), with
estimates A, from the second step and [, from the first step.
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One limitation of the bivariate normal model is most easily
seen by examiningtheregression (43). Consi stent estimation of the
parameters o in this model requires that the term M(xf]) be
estimated consistently. This in turn requires the assumption of
normality, leading to thefirst-step probit model, to be exactly right.
Were it not for this restriction, estimation of o in (43) would be
consistent under the much more relaxed requirements for
consistency of OLS estimators. To investigate this issue further,
consider the bivariate sel ection model (29) with thefollowing more
genera distributional assumptions. (i) € has a density f(e) and
associated CDF F(g); and (ii) v has E(v|€) = pe and a second
moment E(v?|€) = 1 - p? that is independent of €. Define the

truncated moments

JxP) = E(e|e>-xp)

— f " ef(e)de/[1 - F(-xP)]
_x[}

and
K(xB) = E(1 - €?|e>-xP3)
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(o0}

. f [1 - €7]f(e)de/[1 - F(-xB)] .
_xB

Then, given the assumptions (i) and (i),

E(w|zy=1) = zo. + 0pE(e|e>-xP)
=zo + opJ(xP),
E((w - E(w|zy=1))*|z,y=1)

= 0°{1- pI[K(xP) + IxB)7}-

Thus, evenif the disturbancesin thelatent variable model were not
normal, it would nevertheless be possible to write down a
regression with an added term to correct for self-selection that
could be applied to observations wherey = 1.

(45)  w=zo + OE{v|xP+e>0} +
=z0 + opJ(xP) + ¢,

where  isadisturbance that has mean zero and the heteroskedastic
variance

E(C*

z,y=1)) = 0*{1- p[K(xB) + IxP)I}.

Now suppose one runs the regression (37) with an inverse Mill's
ratio termto correct for self-selection, whenin fact thedisturbances
are not normal and (44) is the correct specification. What bias
results? The answer is that the closer M(xP) is to J(xP), the less
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the bias. Specifically, when (44) is the correct model, regressing
w on z and M(x[3) amounts to estimating the misspecified model

w = 2ot + AM(XP) +{C + A[IxP) - M(xP)]} .
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Thebiasin NLLSis given by

6 -o| [Edz EgM[' | ExJ-M)
=A
A~ Al |EMz EM?*| |EM(J-M)

thisbiasissmall if A = op issmall or the covariance of J- M with
zand M issmall.
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