Many problems of econometric inference can be
cast into some version of the following setup:

Thereisarandom vector (Y,X) € R*xR™ such that X
has a (unknown) density g(x) and almost surely Y has
a (unknown) conditional density f(y|x).

Thereisaknown transfor mation t(y,x) from R*xR™
into thereal line R, and the conditional expectation of
thistransformation, 0(x) = E(t(Y ,x)|X=x), isthe tar get
of the econometric investigation.

Examples of transformations of interest are

(1) t(y,x) =y, in which case O(x) = E(Y | X=x) isthe
conditional expectation of Y given X, or theregression
function of Y on x;

(2) t(y,x) =yy’, in which case O(x) = E(YY'|X=x) isthe
array of second conditional moments, and this
function combined with the first example,

E(YY'|X=x) - {E(Y | X=xX){E(Y |X=x)}" isthe
conditional variance; and

(3) t(y,x) = 1,(y), theindicator function of theset A, in
which case O(x) isthe conditional probability of the
event A, given X = X.



Examples of economic applicationsareY a vector of
consumer demands, and x the vector of income and
prices, or Y avector of firm net outputsand x a vector
of levels of fixed inputs and prices of variable inputs.

Define the disturbance € = g(y,x) = t(y,x) - 0(x).
Then the setup above can be summarized asa
generalized regression model,

t(y.x) = 0(x) +¢,
where E(g|x) = 0.

Econometricproblemsfittingthissetup can beclassified
as fully parametric; semiparametric; or nonparametric.
The modd isfully parametric if the function 6 and the
distribution of thedisturbancee areboth known apriori
to be in finite-parameter families. The modd is
nonparametricif both O and € haveunknown functional
forms, except possibly for shape and regularity
properties such as concavity or continuous
differentiability. The model is semiparametric if it
containsafinite parameter vector, typically of primary
interest, but parts of 0 and/or the distribution of € are
not restricted to finite-parameter families.



Wher e can an econometrician go wrong in setting
out to analyze the generalized regression relationship
t(y,x) = O(x) + €? First, there is nothing in the
formulation of this model per sethat assures that 0(x)
has any causal or invariance propertiesthat allow it to
be used to predict the distribution of values of t(y,x) if
thedistribution of x shifts. Put another way, the model
will by definition be descriptive of the conditional mean
Inthecurrent population, but not necessarily predictive
under policy changes that alter the distribution of x.
Because econometricians are often interested in
conditional relationships for purposes of prediction or
analysis of policy scenarios, thisis potentially a severe
limitation.

Theprescription for " robust" causal inferenceistouse
statistical methods and tests that can avoid or detect
joint or "wrong-way" causality (e.g., instrumental
variables, Granger invariance tests in time series,
exogeneity tests); avoid claiming causal infer enceswhere
confounding of effectsispossible; and avoid predictions
that require substantial extrapolation from the data.



When O(x) is approximated by a parametric family,
there will be a specification error if the parametric
family fails to contain O(x). Specification errors are
particularly likely if the parametric family leaves out
variablesor variableinteractionsthat appear inthetrue
conditional expectation.

The only property that is guaranteed for the
disturbances € when O(x) is correctly specified is the
conditional first moment condition E(e¢|x) =0. Thereis
no guar anteethat the conditional distribution of € given
X is independent of x, or for that matter that the
variance of € ishomoskedastic. In addition, thereisno
guaranteethat thedistribution of € hasthin enough tails
so that higher moments exist, or are sufficiently well
behaved sothat estimatesarenot unduly (and unstably)
influenced by a small number of high influence
observations. | nthesecircumstances, statistical methods
that assume well-behaved disturbances can be
misleading, and better results may be obtained using
methodsthat bound theinfluenceof tail information. At
minimum, it is often worth providing estimates of
estimator dispersion that are consistent in the presence
of variouslikely problemswith the disturbances.



In statistics, thereisafairly clear division between
nonparametric statistics, which worries about the
specification of O(x) or about tests of the qualitative
relationship between x and t, and robust statistics, which
worriesabout thepropertiesof €. | n econometrics, both
problems appear, usually together, and it is useful to
refer to the treatment of both problems in economic
applications as robust econometrics.

Despitetheleading placeof fully parametric models
In classical statistics, elementary nonparametric and
semiparametric methods are used widely without
fanfare. Histograms are nonparametric estimators of
densities. Contingency tablesfor datagrouped intocells
canbe used to estimate a regression function
nonparametrically. Linear regression models, or any
estimator sthat rely on afinitelist of moment conditions,
can beinterpreted as semiparametric, sincethey do not
require complete specification of the underlying
distribution function.



2. HOW TO CONSTRUCT A HISTOGRAM

One of the simplest examples of a nonparametric
problem is that of estimating an unknown univariate
unconditional density g(x), given a random sample of
observationsx; for i =1,...,n. Assume, by transfor mation
If necessary, that the support of gisthe unit interval.

Example: If Fisa CDF with density f on R, then
G(u) = F(®*(u)) isa CDF on (0,1) with density g(u) =
f(DH(u))/P(u).

An elementary method of approximating gistoform a
histogram: First partition the unit interval into K
segmentsof length /K, sothat segment k is(c,_;,c.] with
¢, = k/IK for k = 0,...,.K. Then estimate g within a
segment by the share of the observations falling in this
segment, divided by segment length. If you take
relatively few segments, then the observation countsin
each segment are large, and the variance of the sample
sharein asegment will berelatively small. Ontheother
hand, if the underlying density is not constant in the
segment, then thissegment averageisa biased estimate
of the density at a point. This biasis larger when the
segment is longer. Segment length can be varied to
balance variance against bias.



As sample size rises, the number of segments can be
Increased so that the contributions of variance and bias
remain balanced.

Supposethedensity g hasthefollowing smoothness

property:
lg(x") - g(x)| < L|x"-x|,

wherelL isapositiveconstant. Then thefunctionissaid
to satisfy a Lipschitz condition. If g is continuously
differentiable, thenthisproperty will besatisfied. Let n,
bethenumber of observationsfrom the samplethat fall
In segment k. Then, the histogram estimator of g at a
specified argument X is

£(xX) =Kn,/n for x € (¢.1,G]-

Computethevariance and bias of thisestimator. First,
the probability that an observation fallsin segment k is

the segment mean of g, p, = K- f"k g(x)dx. Then, n,
Ck-1

hasabinomial distribution with probability p, /K, sothat

it has mean np /K and variance n(p/K)(1 - p./K).

Therefore, for x, € (c.,¢J. 2(X,) has mean p, and

variance (K/n)p (1 - p./K).



Thebiasis B (X) = p, - 9g(x). The mean square error of
the estimator equals its variance plus the square of its
bias, or

MSE(X) = (K/n)p(1 - p/K) + (p - 9(¥))*.

A criterion for choosing K is to minimize the mean
square error. Looking more closely at the bias, note
that by thetheor em of themean, ther eissomear gument

z, in thesegment (¢, ,,c ] such that p/K = fc" g(x)dx =
Ck-1

9(z.) f % dx = g(z)/K. Then, using the Lipschitz
Ck-1

property of g,
Pc- 90| =[9(z) - 9(¥)| < L[z -x| < L/K,

Then, the M SE isbounded by
MSE(X) < (K/n)p(1 - p/K) + L/K?

Approximatetheterm p, (1 - p/K) in thisexpression by
g(x), and then minimize the RHS in K. The
(approximate) minimand is K = (2L°n/g(x))*3, and the
value of MSE at this minimand is approximately
(Lg(x)/2n)?3,



Of course, to actually do this calculation, you have a
belling-the-cat problem that you need to know g(x).
However, therearesomeimportant qualitativefeatures
of the solution. First, the optimal K goes up in
proportion to the cube root of sample size, and M SE
declines proportionately to n?®. Comparethiswith the
formulafor thevariance of parametric estimatorssuch
as regression slope coefficients, which are proportional
to 1/n. Then, thehistogram estimator isconsistent for g,
sincethe mean squareerror goesto zero. However, the
cost of not being ableto confinegtoaparametricfamily
Is that the rate of convergence is lower than in
parametric cases. Notethat when L issmaller, sothat g
Islessvariable with x, K issmaller.

If you are interested in estimating the entire
function g, rather than thevalue of g at a specified point
X, then you might take as a criterion the Mean
Integrated Square Error (MISE),
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The RHS of this expression is minimized at K =
(2L2n/3)*3, with MISE < (3L/2n)?3. Both minimizing
M SE at a specified x and minimizing MISE imply that
the number of histogram cells K grows at the rate n*~.
When g(x) < 3, theoptimal K for theM I SE criterion will
be smaller than the optimal K for the MSE criterion;
this happens because the MISE criterion is concerned
with average bias and the M SE criterion is concer ned



with bias at a point.



One practical way to circumvent the belling-the-cat
problem is to work out the value of K for a standard
distribution; thiswill often give satisfactory results for
a wide range of actual distributions. For example, the
triangular density g(x) =2xon 0 < x < 1 hasL =2 and
giveskK =2(n/3)*3. Thus, asampleof sizen =81 implies
K =6, while a sample of sizen = 3000 givesK = 20.



