
Many problems of econometric inference can be
cast into some version of the following setup: 

There is a random vector (Y,X) � �k×�m such that X
has a (unknown) density g(x) and almost surely Y has
a (unknown) conditional density f(y�x).  

There is a known transformation t(y,x) from �k×�m

into the real line �, and the conditional expectation of
this transformation, �(x) = E(t(Y,x)�X=x), is the target
of the econometric investigation.  

Examples of transformations of interest are
 
(1) t(y,x) � y, in which case �(x) = E(Y�X=x) is the
conditional expectation of Y given x, or the regression
function of Y on x; 

(2) t(y,x) = yy�, in which case �(x) = E(YY��X=x) is the
array of second conditional moments, and this
function combined with the first example,
E(YY��X=x) - {E(Y�X=x)}{E(Y�X=x)}� is the
conditional variance; and 

(3) t(y,x) = 1A(y), the indicator function of the set A, in
which case �(x) is the conditional probability of the
event A, given X = x.  



Examples of economic applications are Y a vector of
consumer demands, and x the vector of income and
prices; or Y a vector of firm net outputs and x a vector
of levels of fixed inputs and prices of variable inputs.

Define the disturbance � = �(y,x) � t(y,x) - �(x). 
Then the setup above can be summarized as a
generalized regression model,

   t(y,x) = �(x) + �,

where E(��x) = 0.  

Econometric problems fitting this setup can be classified
as fully parametric; semiparametric; or nonparametric.
The model is fully parametric if the function � and the
distribution of the disturbance � are both known a priori
to be in finite-parameter families.  The model is
nonparametric if both � and � have unknown functional
forms, except possibly for shape and regularity
properties such as concavity or continuous
differentiability.  The model is semiparametric if it
contains a finite parameter vector, typically of primary
interest, but parts of � and/or the distribution of � are
not restricted to finite-parameter families.  



Where can an econometrician go wrong in setting
out to analyze the generalized regression relationship
t(y,x) = �(x) + �?  First, there is nothing in the
formulation of this model per se that assures that �(x)
has any causal or invariance properties that allow it to
be used to predict the distribution of values of t(y,x)  if
the distribution of x shifts.  Put another way, the model
will by definition be descriptive of the conditional mean
in the current population, but not necessarily predictive
under policy changes that alter the distribution of x.
Because econometricians are often interested in
conditional relationships for purposes of prediction or
analysis of policy scenarios, this is potentially a severe
limitation.   

The prescription for "robust" causal inference is to use
statistical methods and tests that can avoid or detect
joint or "wrong-way" causality (e.g., instrumental
variables, Granger invariance tests in time series,
exogeneity tests); avoid claiming causal inferences where
confounding of effects is possible; and avoid predictions
that require substantial extrapolation from the data.  



When �(x) is approximated by a parametric family,
there will be a specification error if the parametric
family fails to contain �(x).  Specification errors are
particularly likely if the parametric family leaves out
variables or variable interactions that appear in the true
conditional expectation.  

The only property that is guaranteed for the
disturbances � when �(x) is correctly specified is the
conditional first moment condition E(��x) = 0.  There is
no guarantee that the conditional distribution of � given
x is independent of x, or for that matter that the
variance of � is homoskedastic.  In addition, there is no
guarantee that the distribution of � has thin enough tails
so that higher moments exist, or are sufficiently well
behaved so that estimates are not unduly (and unstably)
influenced by a small number of high influence
observations.  In these circumstances, statistical methods
that assume well-behaved disturbances can be
misleading, and better results may be obtained using
methods that bound the influence of tail information.  At
minimum, it is often worth providing estimates of
estimator dispersion that are consistent in the presence
of various likely problems with the disturbances.



In statistics, there is a fairly clear division between
nonparametric statistics, which worries about the
specification of �(x) or about tests of the qualitative
relationship between x and t, and robust statistics, which
worries about the properties of �.  In econometrics, both
problems appear, usually together, and it is useful to
refer to the treatment of both problems in economic
applications as robust econometrics.

Despite the leading place of fully parametric models
in classical statistics, elementary nonparametric and
semiparametric methods are used widely without
fanfare.   Histograms are nonparametric estimators of
densities.  Contingency tables for data grouped into cells
canbe used to estimate a regression function
nonparametrically.  Linear regression models, or any
estimators that rely on a finite list of moment conditions,
can be interpreted as semiparametric, since they do not
require complete specification of the underlying
distribution function.



2.  HOW TO CONSTRUCT A HISTOGRAM

One of the simplest examples of a nonparametric
problem is that of estimating an unknown univariate
unconditional density g(x), given a random sample of
observations xi for i = 1,...,n.  Assume, by transformation
if necessary, that the support of g is the unit interval. 

Example: If F is a CDF with density f on �, then 
G(u) = F(�-1(u)) is a CDF on (0,1) with density g(u) =
f(�-1(u))/�(u).  

An elementary method of approximating g is to form a
histogram:  First partition the unit interval into K
segments of length 1/K, so that segment k is (ck-1,ck] with
ck = k/K for k = 0,...,K.  Then estimate g within a
segment by the share of the observations falling in this
segment, divided by segment length.  If you take
relatively few segments, then the observation counts in
each segment are large, and the variance of the sample
share in a segment will be relatively small.  On the other
hand, if the underlying density is not constant in the
segment, then this segment average is a biased estimate
of the density at a point.  This bias is larger when the
segment is longer.  Segment length can be varied to
balance variance against bias.  



As sample size rises, the number of segments can be
increased so that the contributions of variance and bias
remain balanced.

Suppose the density g has the following smoothness
property:

   �g(x�) - g(x)� � L�x� - x�,

where L is a positive constant.  Then the function is said
to satisfy a Lipschitz condition.  If g is continuously
differentiable, then this property will be satisfied.  Let nk

be the number of observations from the sample that fall
in segment k.  Then, the histogram estimator of g at a
specified argument x is

�(x) = Knk/n  for x � (ck-1,ck].

Compute the variance and bias of this estimator.  First,
the probability that an observation falls in segment k is

the segment mean of g, pk = K� g(x)dx.  Then, nk

has a binomial distribution with probability pk/K, so that
it has mean npk/K and variance n(pk/K)(1 - pk/K).
Therefore, for xo � (ck-1,ck], �(xo) has mean pk and
variance (K/n)pk(1 - pk/K).  



The bias is BnK(x) = pk - g(x).  The mean square error of
the estimator equals its variance plus the square of its
bias, or

MSE(x) = (K/n)pk(1 - pk/K) + (pk - g(x))2.

A criterion for choosing K is to minimize the mean
square error.  Looking more closely at the bias, note
that by the theorem of the mean, there is some argument

zk in the segment (ck-1,ck] such that pk/K =  g(x)dx =

g(zk) dx = g(zk)/K.  Then, using the Lipschitz

property of g,
�pk - g(x)� = �g(zk) - g(x)� � L�zk - x� � L/K,

Then, the MSE is bounded by 

MSE(x) � (K/n)pk(1 - pk/K) + L2/K2.

Approximate the term pk(1 - pk/K) in this expression by
g(x), and then minimize the RHS in K.  The
(approximate) minimand is K = (2L2n/g(x))1/3, and the
value of MSE at this minimand is approximately
(Lg(x)/2n)2/3.  



Of course, to actually do this calculation, you have a
belling-the-cat problem that you need to know g(x).
However, there are some important qualitative features
of the solution.  First, the optimal K goes up in
proportion to the cube root of sample size, and MSE
declines proportionately to n-2/3.  Compare this with the
formula for the variance of parametric estimators such
as regression slope coefficients, which are proportional
to 1/n.  Then, the histogram estimator is consistent for g,
since the mean square error goes to zero.  However, the
cost of not being able to confine g to a parametric family
is that the rate of convergence is lower than in
parametric cases.  Note that when L is smaller, so that g
is less variable with x, K is smaller.

If you are interested in estimating the entire
function g, rather than the value of g at a specified point
x, then you might take as a criterion the Mean
Integrated Square Error (MISE),



MISE = E�(�(x) - g(x))2dx 

=  E(�(x) - pk + pk - g(x))2dx

=   E(Knk/n - pk)
2/K +  (pk -

g(x))2dx

=  (1/n)pk(1 - pk/K) 

                          +  (g(zk) - g(x))2dx

� K/n +  L2
�(zk - x)2dx 

� K/n + L2/3K2.

The RHS of this expression is minimized at K =
(2L2n/3)1/3, with MISE � (3L/2n)2/3.   Both minimizing
MSE at a specified x and minimizing MISE imply that
the number of histogram cells K grows at the rate n1/3.
When g(x) < 3, the optimal K for the MISE criterion will
be smaller than the optimal K for the MSE criterion;
this happens because the MISE criterion is concerned
with average bias and the MSE criterion is concerned



with bias at a point.  



One practical way to circumvent the belling-the-cat
problem is to work out the value of K for a standard
distribution; this will often give satisfactory results for
a wide range of actual distributions.  For example, the
triangular density g(x) = 2x on 0 � x � 1 has L = 2 and
gives K = 2(n/3)1/3.   Thus, a sample of size n = 81 implies
K = 6, while a sample of size n = 3000 gives K = 20.


