Econ. 241B Dan McFadden, 2000
Exercise 2

1. Facts on Circular Functions: Consider the trigonometric functions cos(w) and sin(w), where
is area number giving the angle in radians. These functions are periodic, with cos(w+2nk) =
cos(w), cos(ntk) = (-1)¥, sin(w+21) = sin(w), sin(rk) = 0, and cos(w) = sin(w+m/2) for k =+1,+2,....
Define the complex valued function exp(iws) = cos(ws) + 1-Sin(ws), where v = (-1)Y2 Then
exp(i(w+27)) = exp(1w) and exp(1rtk) = (-1)*. Here are some other useful relationships —
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(1) coslw) = >

and sin(w) =
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sin(wk)dw = f; exp(twk)dw =0 for k =+1,+2,...

©) f ’; cos(0)dw = f ’; exp(0)dw = 21 and f ’; sin(0)dw =0

@ [" coslokdo= [T sn(kPdo =7 fork=+1£2,.

(5) f:i exp(iwk)exp(-twk)dw = 21 for k = +1,#2,...

(6) f’; exp(twk)exp(-tom)dw = 0 forkm=0,+1,+2,...andk # m

(7) f’; cos(wk)cos(wm)dw = f’; sin(wk)sin(wm)dw =0 for km=0,+1,22,..andk » m

(8) f 7“ cos(wk)sin(wm)dw = 0 for k,m=0,+1+2,...



These formulas are found in handbooks of mathematical functions, and are demonstrated in
textbooks on orthogonal polynomials or on Fourier analysis.

Suppose T > lisan integer, and define n = [T/2], the largest integer satisfying n < T/2. Define
the system of functions ¥, (t) = (T) Y?exp(12ntk/T) for t = 1,...,T and k = -n,-n+1,...,0,....n-1 for T
evenor k =-n+1,...,0,...,n-1 for T odd.

Every complex-valued function h(t) can be written as h(t) = h,(t) + 1h,(t) with h, and h,
real-valued. The complex conjugate of hish'(t) = hy(t) - th,(t), and the product h(t)h'(t) = h,(t)? +
h,(t)>. Apply the formulafor geometric sums to show that

© Y. wu, ©=1k=m).

Then the system of circular functions ,(t) form an orthonormal basis for R™. Supposeys;,..,y; iS
a sequence of numbers, which may be deterministic or may be arealization from some stochastic
process. This sequence can be represented in terms of the system of circular functions. Hereafter,
assume T even and n = T/2. (Analogous formulas hold when T isodd, n = (T+1)/2, and thek = -n
term in the sums below are dropped.) Therelationship is

(10) yi= 3 wOx

with

(1) %= Yy WOy

Verify that these formulas follow from the projection of (y,,...,y;) on the space spanned by the
vectors (Y, (1),...,U(T)) for k = -n,...,n-1; i.e, the regression of (y,,...,y;) on these vectors. The
vector (X,...,X) istermed the Fourier representation of (yj,...,y;). Write out the real and imaginary
parts of (10) and (11) to get the equivalent formulas

(12) y,= Yo' cos(2nkt/T)a + Y o' sin(2nkt/T)-b,

with

(13) a=T* Y[, cos(2nkt/T)y, and b,=T* Y[, sin@rktT)y,

Showthat Y, y2= Yt xx..



2. Suppose hisared-valued function on an interva [-mt,mt]. For T alarge even integer and n=T/2,
define y, = h(-n+2nt/T)- T2 Let x, be the Fourier coefficient given by (11), and define z, =
2ne™x,. The Fourier representation of the sequencey,, from (11), is

14) %= Yo, W Oy=T" X, e h(n+2nT),

implying

(15) z = 2—_: Yo, e TGt 2nt/T)

and, from (10),
(16) h(-m+2nt/T)= Y | ' @2 Tkg [on,

Now let T -~ . Suppose h is of bounded variation (i.e., can be written as the difference of two
increasing bounded functions). Then it is continuous except at most at a countable number of
points, and is square integrable. Then (15) converges to

(17) z =2n fl g2k (42 ns)ds,
0

A further change of variableto r = -n+2ns, implying -12nkstink = -1kr, yields

(18) z = f " e h(r)dr.
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Show that the z, satisfy Y ' zaz =@nT) Y[, h(-n+2nt/TY - 2n f h(r2dr. Then, the
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limit of (16), evaluated at t = [T(r+m)/2w], asn - « existsfor r > -7 and equals
(29) h(r) = . €¥z/2m

at all continuity pointsof h. The pair (18) and (19) give a Fourier representation of a function on



a bounded interval. If the function is periodic with h(rx2n) = h(r) for al r, then the Fourier
representation holds for all r. Using orthogonality properties of €', show directly that if z isa
sguare summabl e sequence, then applying (19) then (18) reproduces the sequence. Notethat if h(z)
is a sum of sines and cosines with frequencies that are multiples of 1/2w, then the Fourier
representation will have non-zero z,'s only for the k's corresponding to these frequencies. Then, the
z, series may be thought of as extracting the frequencies appearing in h(r).

3. Suppose h(r) is asquare integrable real-valued function on the real line. For alarge constant M,
apply the Fourier representation in the previous question to the function M-h(Mr) for -m < r < m to
obtain (18) and (19). Defineavariable w = k/M, or k = wM, and a function H,,(w) on thered line

by

(20) H,,(w) = f*“M e*sn(g)ds - H(w)
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f j°° e"sh(s)ds.

Note that z, = Hy(k/M) = f M

-tM

e'“M).n(s)ds, so that (19) can be written

1 oo
21) h(Mr)= — - o gkH., (k/IM).
(21) h(Mr) Ty Ke oo w(kK/M)

Letting s= Mr and w = k/M, the limit of (21) asM - «, if it exists, becomes

22) h(9 = 2_1n [T e H@)do

The pair consisting of (22) and

(23) H@) = [~ e“*h(gds

are Fourier transforms. This construction shows that Fourier transforms are obtained as limits of
Fourier representations, and also shows that when the limits exist, the Fourier representations from
Question 1 can be used to approximate the Fourier transforms. Show that if (22) and (23) are
satisfied, then



(24) f:’ h(s)?ds = ffw H(w)H" (w)dw.

o0

4. For the Fourier transforms (22) and (23), verify the following conditions:
(2) hevenimpliesH real and even
(2) h odd implies H imaginary and odd
(3) [time scaling] for ¢ > 0, h(cs) transforms to ¢*H(w/c)
(4) [frequency scaling] for ¢ > 0, H(cw) transformsto c*h(s/c)
(5) [time shifting] h(s-t) transforms to H(w)-e*"
(6) [convolution] if g and h are real functions and G and H are their transforms, and if

(g*h)(s) = f j‘” g(t)h(s-t)dt, then the transform of g*h is G(w)-H(w).

oo

(7) [covariation] if gand h arerea functions and cov(g,h) = f " g(9)h(s)ds, then cov(g,h)

—o0

= fﬂo G(w)H (w)dw.

(8) [Parseval's theorem] f_”" h(s)%ds = f ™ H(w)H (w)dw.

—o0



