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ARMA Estimation Recipes

1. Preliminaries

These notes summarize procedures for estimating the lag coefficients in the stationary
ARMA (p,q) model

(D) Y= +a(Yerw) + ...+ ap(yt-p_u) +e +he, +..+ bqst-q!

wherey, isobserved for t = 1,...,T and the g, are unobserved i.i.d. disturbances with mean zero and
finite variance 6. The mean y, the lag coefficients a,,...,a, and b,,...,b,, and o are the parameters
of the model. By assumption, a, # O and b, » 0. Definethe polynomialsA(z) =az + ... + 3,2° and
B(2) = b,z + ... + bz%, and the lag operator L that for any series x, isdefined asLx, = X, ;. Thenthe
model can be written

@ (1 -ALYY: -1 = +B(L)e.

The modd is stationary if and only if the polynomial 1 - A(z) is stable; i.e., al itsroots lie
outside the unit circle. If themodel is stationary, then the lag polynomial | - A(L) isinvertible, and
thereisaMA (=) representation of the model, written formally as
| +B(L) .
| - A(L)

Let z),...,z, denote the roots of 1 - A(z), some of which may be repeated. Then this polynomial

(3) Yi-H=

te

p 00
can bewritten 1- A(2) = (1- 2/z))-..(1- /). Then(1-AL)*= [ Y. zsL® Alternately,

k=1 s=0

write (I - A(L))Y(1 + B(L)) = fj wl®=¥(L). Theidentity
s=0

o min(p,s)
@) 1+B(L} =(I-AL)) Z; WeL®= wol + (wrayo)L + ...+ (v, - le ay )L+ ...

min(p,s)

impliesy,=1,y,=a +b,,andy,= Y ay,, +b, whereb,=0for s>g. Another derivation
i-1

of these conditions starts by noting that the covariance of y, and ¢, ,,is c*y,,> for m > 0, and zero for

m < 0. Multiplying (1) by e, and taking expectations then gives



(5) \Ilm = a1\|]m—1 +..F %Wm—p + bm’

with y,, = 0for s>m, b, =1, and we defineb,, = 0 for m > q. These are called the Yule-Walker
equations. They can be used recursively to obtain the coefficients y, in the MA (=) representation.
An implication of the MA() representation is

(6) vo=Var(y)=oc> Y. w2 and v, = COV(YYem) =0% Y, WYelWeum fOr m>0.
s=0 s=0

Since coV (Y m Yo = CoV(Y,Y..m) for m>0, onehasy_,, =y, Itissometimesconvenient to summarize
the autocovariances of a stationary series x in terms of an autocovariance generating function
(ACGF)

oo

7 g@= Y, cov(XX.)Z

S=-o0

oo

The ACGF hasauseful convolution property: If alinear transformation C(L) = Z cl®isapplied

S=-c0

to a stationary series x,, then y, = C(L)x, has g,(z) = C(2)C(1/2)g,(2). To verify this, note that

COV(YuYem) = D Do GCOV(XyiXemy) AN COV(Xyj Xemy) = COV(X Xepmeis)- Then

j=—o0 j=—c

6@ = Y ZOVYY)= Y Y Y 20TV Xmy)
S=-o M=-0 |=- o

— — j:,

- Y Y Y o qrovnxn2i= Y Y croro)

m=—oco - j=- j=-c0  j=-c0

with the last equality holding since summing over m for each fixed i and j gives g,(2).

Letn, =g +be, + ... + be,. ThenEn =o’(by’+ ... + b, Enney, = 0(bb, + ... + bby,.,) for
1 <m < q, and zero for m > q, and Eny, ,, = 6*(b,y, + ... + byy,,,) for 0 < m < g, zero for m> g
Thei.i.d. series g, has the constant ACGF g,(z) = o® since all its autocovariances are zero. Then,
applying the ACGF convolution formulato n, = (I + B(L))e, yields

q
®) 0,2 =c{1+B@)(1+B(U2)=0® Y. (bgbo+ ... + by )2
s=—q
For example, q = 1yields g,(2) = o’((1+h,%) + b,z + b;z*), and q = 2 yields g,(2) = o*((1+b,*+b,’) +
b,(1+b,)z + b,(1+b,)z* + b,z +b,z"). Applying the convolution formulatoy, = (I - A(L)) ™, it has
the ACGF



1 1

) 2 1+B(2) . 1+B(1/2) =¢? Y(2)-¥(1/z2)
1-A(2 1-A(l/2) |

9 9(2= 1-A(2) 1-A(l/2)

‘9,2 = o

If all the roots of the polynomial 1 + B(z) lie outside the unit circle, then | + B(L) isinvertible,
and there is an AR(-) representation of (1), written formally as

|-AL) |
| +B(L)

(10) Y= &

It is not a condition for stationarity that | + B(L) be invertible. However, it is aways possible to
re-scale the €'s and redefine B(L) so that it has the same ACGF, but al the roots of 1 + B(2) lie
outside or on the unit circle. For example, n, = (I + L/z,)e, has ACGF o*((1+2,?) + z/z, + 1/zz,),
whilen, = (I + z,L)(g/z,) has ACGF (c%z,%)((1+2,) + zz, + z,/), which isthe same. Then one can
factor B(L) into an invertible term and a non-invertible term that has unit roots.

For some purposes, it is convenient to rewrite the ARMA model (1) by defining the (p+q)x1

vectorsh’ =(1,0,...,0) with aonein thefirst component, r’ = (1,0,...,0,1,0,...,0) with onesin thefirst
and p+1 components and zeros elsewhere, and (" = (Yi-H,..Yepri-Hi€peesErgen) - THEN

(11) Gy =F +re,, and y,-H = NG,

where
o b ]
l -1 0 -1
(12) F= p-Lp “p-1q
01'p 01’q
_Oq—l,p ! q-1,q]

witha' =(a,...,3,), b’ =(by,...,.b,), I ;an rxsmatrix with ones down the diagonal and zeros elsewhere,
and 0, an rxsmatrix of zeros. Thisiscalled astate space representation of the ARMA(p,q) model,
with ¢, called the state vector, ¢, = F(, + re,,, called the state equation, and y,,,-p = h'(,,, called the
observation equation. State space representations are not unique, and the one given hereis easy to
interpret but not minimal in terms of dimensionality; see Harvey, p. 95-98, for amore compact and
commonly used state space representation for the ARMA model.



2. Prediction
Let G, denote all of history up through t, including the realizations of y, and e, for s < t. Then,
(13) E(Yu1|G) = aE(y,|G) + ... + 3 E(Yipi1| G) + E(e1|G) + biE(e,|G) + ... + bE(e44|G)
=ay + ..+ Vi T hig . F b
Asashorthand, et Y., = E(Y.,| G)); thisistheforecast of y,., given G, that minimizes mean square

error. Animplication of the formulafor y,,, isthat e, =y, - ;... Similarly, the minimum-MSE
m-period ahead forecast Y, = E(Y..m| Gy is obtained using the recursion

(14) yt+m\t = a1'y’[—1+m\t Tt %.yt—p+m\t + b1€t+m—1\t ot bq8t+m—q\t’

Where Yy i imi¢ = Yerem N €t = € If 1 > M, and g, 1, = 0if I <m. The conditional variance of
the forecast €mor At = Yerm = Yeemt IS

(15) Vt+m\t = EO‘“Hm\t‘Gt)-

A convenient way of summarizing the forecasting formulas is in terms of the state space
representation above, where the minimum M SE forecast is

(16) Ct+m\t = FCt+m—1\t = FmCt'

3
N

Theforecast error isrlt+m\t = Ceam ™ Coompt = Freums=Eumt Fllemeajo implying €, =Gy 41 - it
S

I
o

The conditional covariance matrix of the forecast errorsis

3
iR

(17) Vit = FVt+m-1\tF’ +o°U = o’FUF?,

S

Il
o

where U is an array that has a one in the northwest corner and zeros elsewhere. The updating
formulas i, = Fluma @AV = FV e F' + 6°U areversionsof what is called the Kalmanfilter.
Thisformulation has broader application in state space modelsfor time series analysis, atopic that
will be discussed elsewhere.

For some purposes, it is useful to predict backwards to period t from information after t.
Multiplying the equations (I-A(L))y, = n, and n, = (I+B(L))e, by L™ and L™ respectively gives

(18) E(ytlyt+1!---!nt+1!"-) = (yt+p - aiyt+p—l Tt ap-lyt+l'nt+p)/ap7

E(nt|8t+1!---!nt+1!"') = (nt+q " 8uq - b1€t+q-l toot bq-18t+1)/bq'



3. Method of Moments Estimation

The model (1) can be written as a regression model

(19) y,=c+ay,, +..+ AYrp T M

wherec=(1-a, - ... - )M and the MA(q) disturbances n, have a covariance matrix given by the
formulas following (6). Sincem, iscorrelated with'y,,,...,y,, but uncorrelated with earlier y's, (19)
can be estimated using 2SLS with 1.y, ;4,...,Y.qp 8 instruments, and observationst = p+g+1,...,T.
This method then loses the first p+q observations in order to get the instruments.

Toestimatethe MA coefficients, first retrieve theresidual sm,; fromthe 2SL S estimation of (19),
and form the empirical ACGF,

q
(20 9= ). «Z

s=—q

.
where k, = 1 Y MMusrisanempirica estimate of E .
t=p+q-+|s|+1

From (8), the theoretical ACGF for 7 is a bilinear function of the MA coefficients. Then,
estimating the MA coefficients so that the theoretical and empirical ACGF coincide is relatively
practical. Asnoted earlier, thesolutionisnot in general unique, and it ispreferableto pick estimates
that give a stable root rather than an unstable one. This can be achieved by conducting the search
over theq possiblerootsof 1 + B(z) subject to the constraint that these rootslie outside or onthe unit
circle.

For the example of aMA (1) component inthe ARMA model, matching the ACGF termsyields
K, = 62(1 + b,%) and x; = 6°b,, which yields the quadratic «; - kb, + k,b,>=0. Thishasthe solution
b, = k2K, + (17-4x, D)2, If x,> 2k, there are two real roots, and 1/ 2x; - (k,>-4x,) "2k, gives
the stableroot. If k, < 2x;, thereisno real root, and the empirical ACGF cannot be matched exactly
by aMA(1) model. Inthiscase, b, = sign(x,) yieldsthe MA (1) model with aroot on or outside the
unit circle that is closest to the empirical ACGF. For the example of aMA(2) component, writing
1+ B(2) in terms of its roots and matching the ACGF terms yields x, = 6°(1 + 1/z,* + 1/z,?), x, =
oX(Uz)(1+ 1/z;z, + Uz,?), and x, = 6°/z,Z,. Theestimator would then be obtained by asearchin ¢?,
z,, and z, subject to the restriction that z, and z, are in the complex plane, on or outside the unit
circle, and either are both real, or are convex congugates.

The estimators described above are not the most efficient avail able among those employing only
moment conditions. However, it will be convenient to develop the alternatives as estimatorsfor the
case of normal disturbances, and then note that they will be consistent even without normality.



4. Maximum Likelihood Estimation

Supposethedisturbancese, in (1) arenormal. Then, vector (y;,...,y;) isthen multivariate normal
with mean g and a covariance matrix that is aband matrix X, with all coefficients s places off the
diagonal equal to vy

Yoo Y2 Y2 - T2 Y1
1. Yo Y1 - T3 Y12
(21) 3= Yo Y1 Yo - Yra Y73

Yr2 Y13 Y14 - Yo M1

Y11 Y12 Y73 = Y1 Yo |

Theautocovariancesy, in X arefunctions of the deep parametersof themodel, 6 and the coefficients
of A(L) and B(L); these are given by the coefficients of the ACGF (9). A brute force approach to
estimating the model, which is efficient under the assumptions of normality, isthen to maximizethe
log likelihood function

(22) L =~(T/2)log(2n) - (Y2)log(det(Z)) - (YD (YitsoYr ) ZH(YarHsonsYr-1)’

in the parameters {4, 6%, &,..., &, by,...,b,. Thelikelihood function is minimized in p at the sample
mean ;. Using the formulas for differentiation of determinants and inverses, the
first-order-condition for a parameter 0 is

(23) AL/A0 = -¥=Y(1 - uu'S)-0%/08,

where u’ = (y;-H+,...Yr-Hy) iSthe vector of deviations from sample mean.

Thepractical problem with the brute force approach isthat the parameters of the ARMA process
appear inL non-linearly, deep withinthe TXT matrix X. Therefore, considerableeffortintime-series
analysis goes to reformulating the maximum likelihood problem in ways that are more tractable
computationaly.

The model (1) can be rewritten as

(24) &=y,-aV - .. - AVip be.-..- bqat_q.

Taking expectations conditioned on the information G, this equation implies0 =y, ; - &Y4 - ..
- aYip - Dig s - ... - beg,, and hence



(25) &=Y;- Yijea-

Themapping from e’sto y’'sislinear, with atransformation matrix that istriangular (i.e., y, depends
only on e’sat or beforet) with ones on the diagonal. Then, the Jacobean of the transformation from
(Yq,e-- Y1) tO (€4,....&7) iISONE, and the log density of (e,,...,e;) conditioned on earlier e'sis

T
(26) L =-(T/2)log(2n) - (v2)log(c?) - Y2 e’lo?,

t-1
with the g, defined (recursively) as functions of the lag parameters from (24). Thisis caled the
predictive error decomposition of the likelihood. One approach to estimation is to condition on
(Yire-Yp) @A (€,q--,0), SO that (24) gives the g's for t = p+1,...,T, and then to maximize the
conditional log likelihood, which is equivalent to minimizing the conditional sum of sguares,

(27) CSS= XTj e2,

t=p+1

inthelag parameters. Thisgivesapre-estimator (because of dependenceonce, ,,..) thatisequivalent
to the solution at convergence obtained by iteratively applying least squares to the equation below,
with the lagged &'s computed using (24) and the lag coefficient estimates from the previous round:

(28) Yi=ay, +..+ay.,the,+..+bg,+v fort=p+l,.. T.

Thefinal step isto get rid of the dependence of the estimator on theinitial e's. Thisis often done
in the computationally expedient way of replacing them by their unconditional expectations, which
are zero. A superior procedure, only moderately more difficult, is described | ater.

For AR(p) models, auseful simplification of (22) comesfrom noting that the density of (y;,...,Yr)
can be written as the product of the p-dimensional multivariate normal density of (y;,...,y,) and the
1-dimensional conditional densities of y, giveny,,,....y,, for t = p+1,..., T. In this formulation, the
log likelihood is

(29) L=-(T/2)log(2n) - V4 og(det(Eg):- L2 PR TR VAT)) o (VS TRRRVASTY

-1dog(c?) - (U267 Pt (Yrayum-aYiw)

where X isthe covariance matrix of thefirst p observations. If, further, one conditionson (y,...,y,),

T
the resulting log likelihood is maximized when the quadratic form E (Yeayi--ay.p)’ is

t=p+1



minimized; thisisexactly the same astheregression (19) in the caseq = 0. Conditioning onthefirst
p observations, maximization of thislikelihood functionisequivaent to (non-iterative) least squares
applied to the model (28), or to minimizing CSSin (27).

Now consider thefull stationary ARMA(p,q) model (1), and itsrepresentation (11) in state space
form. Let z, denote the conditional expectation of {, giveny,,y,.,,....y;- Thisisthe optimal predictor
of ¢, given thisinformation. Given normality, thisisalinear function of they’s. Let P, denote the
conditional MSE of thedeviation &, - z; i.e., P, = E{({; - 2)(C - 2)" |YuYe1r--nYa}- Similarly, define
Zyq1 = E(Ctlyt—l’""yl) and Pt|t—1 = E{ (Ct - Zt)(Ct - Zt)’ ‘Yt-l:---:)ﬁ} . Given the state equation Ct = FC:t—l tre
and the observation equationy, = h’(,, and taking conditional expectations, one obtainsthe formulas

(B0) zyy =Fzuy, Py =FPF + oA, Y1 = N'Zea,
and from these the updating relationships for projections,

(Bl) vi=V;- Yirr = h'(C, - Zt\t—l):

f = h'Pyh

Z = Zt\t-l + Pt\t-lh(yt - hlzt\t-l)/ft
Pt = Pt\t-l - Pt\t—lhhlpt\t—llft'

Theseformulas (with adifferent notation) are derived and discussed in Harvey, p. 85-86, for amore
general model that includes stationary ARMA as a specia case.

Theformulasin (31) can be employed, with aninitialization for z, and P,, to cal cul ate the exact
joint normal density function of (y;,...,y;):

T T
(32) L=-(T/2)log2n)-% Y log(f)-% Y v,

t=1 t=1
This is a predictive error decomposition form of the log likelihood. The maximum likelihood
estimates can also be given an interpretation of minimizing a CSS; see Harvey, p. 90.

Harvey, p. 88, also describes the construction of starting values. For the stationary ARMA
model, they are z, = (I - F)'c, where c is a vector with i in the first p components and 0 in the
remaining g components, and vec(P,) = o*(l - FeF)vec(rr’). Absent normality, the predictorsabove
remain best linear predictors, and the estimators continue to have an interpretation of minimum CSS
estimators that use all of the sample information on the first two moments, with a Bayesian
interpretation of the starting values.



