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CHAPTER 2. ANALYSISAND LINEAR ALGEBRA INA NUTSHELL

2.1. SOME ELEMENTSOF MATHEMATICAL ANALYSIS

2.1.1. Real numbers are denoted by lower case Greek or Roman numbers; the space of real
numbers is the real line, denotediy Theabsolute value of a real numbea is denoted bya.
Complex numbers are rarely required in econometrics before the study of time series and dynamic
systems. For future reference, a complex number is wattaih, wherea andb are real numbers
andt is the square root of -1, withtermed theeal part andib termed themaginary part. The
complex number can also be written as r@es sin®), where r =§2+b%"? is themodulus of the
number and = cos'(a/r). The properties of complex numbers we will need in basic econometrics
are the rules for sums,afib) + (ctud) = (at+c)+yb+d), and products, afb)-(ctid) =
(ab-cd)+u(ad+bc).

2.1.2. For sets of objecésandB, theunion AuB is the set of objects in either; timter section
AnB is the set of objects in both; aAB is the set of objects i that are not if8B. The empty set
is denotedp. Set inclusion is denotédc B; we sayA iscontained in B. The complement of a set
A (which may be relative to a dgtthat contains it) is denotéf. A family of sets igligoint if the
intersection of each pair is empty. The symdelA means thah is a member oA; anda ¢ A
means tha& is not a member ok. The symboH means "there exists", the symboimeans "for
all", and the symbol means "such that". A proposition that A implies B is denoted=AB”", and
a proposition that A and B are equivalent is denotee==AB”. The proposition that A implies B,
but B does not imply A, is denoted “A<4 B”. The phrase “if and only if” is often abbreviated to
“iff”.

2.1.3. Afunctionf:A - B is a mapping from each objedin thedomain A into an objecb = f(a)
in therange B. The termdunction, mapping, andtransformation will be used interchangeably. The
symbol fC), termed themage of C, is used for the set of all objecta)fforac C. ForD c B, the
symbol f}(D) denotes thenverseimage of D: the set of all € A such that ) ¢ D. The function
fisonto if B = f(A); it is one-to-oneif it is onto and ifa,c € A anda # cimplies f@) # f(c). When
f is one-to-one, the mapping ik a function fronB ontoA. If C c A, define thendicator function
for C, denotedl.:A ~ R, by1.(a) = 1 forae C, and1.(a) = O otherwise. The notatidifacC) is
also used for the indicator functidp. A function is termedeal-valued if its range isR.

2.1.4. Thesupremumof A, denoted sup, is the least upper bound An A typical application
has a function € - R andA = f(C); then sup. f© is used to denote su. If the supremum is
achieved by an objedte C, so fd) = sup.c f(c), then we write f(d) = max. f(c). When there is
a unigue maximizing argument, write d = argmak(c). When there is a non-unique maximizing
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argument; we will assume that argmax(c) is aselection of any one of the maximizing arguments.
Analogous definitions hold for the infimum and minimum, denoted inf, min, and for argmin.

2.1.5. Ifg, is a sequence of real numbers indexed by i =1,2,..., then the sequence is said to have
alimit (equal toa,) if for eache > 0, there exists n such that - a,| <e for all i > n; the notation
foralimitislim_._a =a,ora ~ a,, TheCauchy criterion says that a sequenaéhas a limit if and
only if, for eache > 0, there exists n such that - a;| <e fori,j > n. The notation limsyp a means
the limit of the supremum of the sets,§..,,...}; because it is nonincreasing, it always exists (but
may equal + or <°). An analogous definition holds for liminf.

2.1.6. A real-valued functign(a,b) defined for pairs of objects in a gets adistance function
if it is non-negative, gives a positive distance between all distinct poiAtshasp(a,b) = p(b,a),
and satisfies the triangle inequalipya,b) < p(a,c) + p(c,b). A setA with a distance functiop is
termed ametric space. A real-valued functiomia| defined for objects in a set A i;armif |a-b|
has the properties of a distance function. A typical example is the re&)] i the absolute value
of the difference of two numbers taken as the distance between therR;ithemetric space and
a normed space. A-jneighborhood of a pointa in a metric spacé is a set of the formbeA |
p(ab) <e}. AsetC c A isopen if for each point inC, some neighborhood of this point is also
contained inC. A setC c A isclosed if its complement is open. Thatosure of a setC is the
intersection of all closed sets that containTheinterior of C is the union of all open sets contained
in C; it can be empty. A&overing of a setC is a family of open sets whose union cont&nsThe
setC is said to b&ompact if every covering contains a finite sub-family which is also a covering.
A family of sets is said to have tlimite-intersection property if every finite sub-family has a
non-empty intersection. Another characterization of a compact set is that every family of closed
subsets with the finite intersection property has a non-empty intersection. A metriAsj{gace
separableif there exists a countable subBesuch that every neighborhood contains a member of
B. All of the metric spaces encountered in econometrics will be separable. A seguaree
separable metric spages convergent (to a pointa,) if the sequence is eventually contained in each
neighborhood o&; we writea, -~ a, or lim.__ a = a, to denote a convergent sequence. ACsefA
Is compact if and only if every sequenceCimas a convergent subsequence (which converges to a
cluster point of the original sequence).

2.1.7. Consider separable metric spageandB, and a function A - B. The function f is
continuous on A if the inverse image of every open set is open. Another characterization of
continuity is that for any sequence satisfyang a,, one has #) - f(a,); the function is said to be
continuous or€C c A if this property holds for eachy € C. Stated another way, f is continuous on
C if for eache > 0 anda e C, there exist$ > 0 such that for eadhin as-neighborhood o4, f(b)

Is in ae-neighborhood of ). For real valued functions on separable metric spaces, the concepts
of supremium and limsup defined earlier for sequences have a natural extensjqri(syuenotes
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the least upper bound on the setjfecA}, and limsup_, f(a) denotes the limit as - 0 of the
suprema of ) one-neighborhoods db. Analogous definitions hold for inf and liminf. A real-
valued function f is continuous htif limsup,_, f(a) = liminf__, f(a). Continuity of real-valued
functions f and g is preserved by the operations of absolute \fé#)e multiplication f@)-g(a),
addition f@)+g(@), and maximization max{#),g@@} and minimization min{f@),g@}. The
function f isuniformly continuouson C if for eache > 0, there exist§> 0 such that for ai « C and
b € A with bin ad-neighborhood o#, one has ff) in ae-neighborhood of ). The distinction
between continuity and uniform continuity is that for the latter a sihgl® works for_alla € C.
A function that is continuous on a compact set is uniformly continuous. The functiapdaksitz
onC if there exist L > 0 anél > 0 such that |) - f(a)| < L-p(a,b) for allae C andb e A withbin
ad-neighborhood oé.

2.1.8. Consider a real-valued function flonThederivative of f ata,, denoted fa,), Vf(a,), or
df(a,)/da, has the property if it exists thd(b) - f(a,) - f'(a,)(b-a,)| < e(b-a,)-(b-a,), where lim_,€©
=0. The function isontinuously differentiableata, if f' is a continuous function a§. If a function
is k-times continuously differentiable in a neighborhood of a @gititten forb in this neighborhood

it has aTaylor’s expansion
K (b-a,) (b-a )
i! k!

)= Y a) —> + {{¥0b+(1-Na) -f¥a)} -

i=0

where ) denotes the i-th derivative, ahds a scalar between zero and one.

If im,..a =a,and fis a continuous functionay then lim._ f(a) = f(a,). One useful result for
limits is L'Hopital’s rule, which states that if f(1/n) and g(1/n) are functions that are continuously
differentiable at zero with f(0) = g(0) = 0, so that f(n)/g(n) approaches the indeterminate expression
0/0, one haslim ,._f(n)/g(n) = f'(0)/g’(0), provided the last ratio exists.

2.1.9.1f a fori =0,1,2,... isasequence of real numbers, the partial sumss, = Z,”O a define

aseries We say the sequence is summableor that the seriesis convergentif lim -_s, exists and
isfinite. Anexampleisthe geometric seriea, = r', which has s, = (1-r")/(1-r) if r = 1. When |r|
<1, thisseriesis convergent, with thelimit 1/(1-r). Whenr<-1orr > 1, theseriesdiverges Inthe
borderline caser = -1, the series aternates between 0 and 1, so the limit does not exist. Applying

the Cauchy criterion, asummable sequence haslim,,__a,=0andlim . )

i=n

8 =0. A sequence

satisfies amore general form of summability, caled Cesaro summabilityif lim, _ n™* Z,”o a

exists. Summability implies Cesaro summability, but not vice versa. A useful result known as
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Kronecker’'s lemmatatesthat if a, and b, are positive series, b, is monotonically increasing to +ee,
and Y ', a/bisbounded foraln, thenlim, b* Y, a=0.
2.1.10. The exponentia function €, also written exp(a), and natural logarithm log(a) appear

frequently in econometrics. Theexponential functionisdefined for both real and complex arguments,

e i
and hasthe propertiesthat €° = €, € = 1, and the Taylor'sexpansion €= ) "_’I—I that isvalid for
i=0 I

al a. The trigonometric functions cos(a) and sin(a) are also defined for both real and complex

, ] 3 had (_1)ia2i ] 3 e (_1)ia2i +1
arguments, and have Taylor’s expansions cos(a) = Z _ ,and sin(a) = Z —
i=0 (2I)! i=0 (2I +1)!

These expansions combine to show that € = €¥(cos(b) + -sin(b)). The logarithm is defined for
positive arguments, and has the propertiesthat log(1) = 0, log(a:b) = log(a) + log(b), and log(€”) = a.

It hasa Taylor's expansion log(1+a) = Eiil a' ,validfor |a] <1. A useful bound on logarithms

isthat for |a| <1/3and |b| < 1/3, |Log(1+at+b) - a| <4|b| + 3|al?. Another useful result, obtained
by applying L’'Hopital’s rule to the expression logél/)/(1/n), is that lim .. (1+a/n)" = exp@)
when lim,__ &, = a, exists.

A few specific series appear occasionally in probability theory. The ser@sfori=1,2,...is
summable fon < -1, and divergent otherwise, with=sn(n+1)/2 fora = 1, § = n(n+1)(2n+1)/6 for
o = 2, and $= rf(n+1y/4 for o = 3. Differentiating the formulg, s (1-*)/(1-r) for a convergent

geometric series leads to the expressioﬁ§i1 j-r ! = d@dnrg Z}’il iZr' = r(1+n/1-B

2.1.11. Ifa; andb; are real numbers amgare non-negative numbers fori=1,2,..., tHetder’s
Inequalitystates that for p> 0, g> 0, and 1/p + 1/q = 1, one has

Ycabl < X el < (X calPfP(X el

When p = q=1/2, thisiscaled the Cauchy-Schwartz inequalityDbviousdly, theinequality is useful
only if the sumson theright converge. Theinequality also holdsin thelimiting case where sumsare
replaced by integrals, and a(i), b(i), and c(i) are functions of a continuousindex i.

2.2. VECTORSAND LINEAR SPACES

2.2.1. A finite-dimensional linear spaceisa set such that (a) linear combinations of pointsin the
set are defined and are again in the set, and (b) there is afinite number of pointsin the set (abasig
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such that every point in the set is a linear combination of this finite number of pointdiméhgon
of the space is the minimum number of points needed to form a basis. A& poalinear space of
dimension n has ardinate representation x = (X;,X,,...,X,), given abasis for the spacelf,,...b.},
wherex,...,x, are real numbers such that x,b, + ... +xpb,. The point is called avector, and
Xy, X, are called it€omponents. The notationx); will sometimes also be used for component i of
a vectorx. In econometrics, we work mostly witimite-dimensional real space. When this space
Is of dimension n, it is denoteékl. Points in this space are vectors of real numbegrs, k.); this
corresponds to the previous terminology with Hasis for R" being theunit vectors (1,0,..,0),
(0,1,0,..,0),...,(0,..,0,1). Usually, we assume this representation without being explicit about the basis
for the space. However, it is worth noting that the coordinate representation of a vector depends on
the particular basis chosen for a space. Sometimes this fact can be used to choose bases in which
vectors and transformations have particularly simple coordinate representations.

The Euclidean norm of a vectorx is x|, = (X,*+...+x,%)Y2 This norm can be used to define the
distance between vectors, or neighborhoods of a vector. Other possible norms |ixiclucle

A, XL = MaX {3 ,.on %[}, OF fOr 1< p < e, X, = [[,]P+...+[x,|P[* . Each norm

defines aopology on the linear space, based on neighborhoods of a vector that are less than each
positive distance away. The sp@&Cavith the normix|, and associated topology is calleatlidean
n-space.

Thevector product of x andy in R" is defined ax-y = x,y,+...+x.y,. Other notations for vector
products are xy> or (whenx andy are interpreted aow vectors)xy’ or (whenx andy are
interpreted as column vectorsy.

2.2.2. Alinear subspace of a linear space such RS is a subset that has the property that all
linear combinations of its members remain in the subset. Examples of linear subspéaees ihe
plane {@b,c)|b = 0} and the line {&b,c)|a=b = 2c}. The linear subspacgpanned by a set of
vectors {x,...,x} is the set of all linear combinations of these vectbrs,{X,o,+...+X04| (01,... &1y
€ R%}. The vectors &,,...x;} arelinearly independent if and only if one cannot be written as a linear
combination of the remainder. The linear subspace that is spanned by a set of J linearly independent
vectors is said to baf dimensionJ. Conversely, each linear space of dimension J can be represented
as the set of linear combinations of J linearly independent vectors, which are in fact a basis for the
subspace. A linear subspace of dimension onkne éhrough the origin), and a linear subspace of
dimension (n-1) is &yperplane (through the origin). It is a subspace, thér = {xeR"| x'y =0
for allyeL } is termed thecomplementary subspace. Subspacek andM with the property that-y
=0 for ally e L andx € M are termecbrthogonal, and denoted. 1M. Theangle 6 between
subspacek andM is defined by co8 = Min {x-y| y e L, |y|, = 1,x € M, | x|, = 1}. Then, the angle
between orthogonal subspaces/& and the angle between subspaces that have a nonzero point in
common is zero. A subspace that is translated by adding a nonzerocviectdt points in the
subspace is termed affine subspace.
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2.2.3. The concept of a finite-dimensional space can be generalized. An examplg fot-3,

is the familyL (R") of real-valued functions f dR" such that the integréd|, = U () |Pdx P is
Rn

well-defined and finite. This is a linear space with n¢ffpsince linear combinations of functions

that satisfy this property also satisfy (using convexity of the norm function) this property. One can
think of the function f as a vector in(R"), and f(x) for a particular value of x as a component of this
vector. Many, but not all, of the properties of finite-dimensional space extend to infinite dimensions.

In basic econometrics, we will not need the infinite-dimensional generalization. It appears in more
advanced econometrics, in stochastic processes in time series, and in nonlinear and nonparametric
problems.

2.3. LINEAR TRANSFORMATIONSAND MATRICES

2.3.1. A mappincA from one linear space (idlomain) into another (itsange) is alinear
transformation if it satisfiesA(x+z) = A(x) + A(z) for anyx andz in the domain. When the domain
and range are finite-dimensional linear spaces, a linear transformation can be represemdas a
Specifically, a linear transformatighfrom R" into R™ can be represented by a mxn avkawith

n
elements gfor 1< i < mand 1< j < n, withy = A(x) having componentg = Z gx forl<i<
i-1

m. In matrix notation, this is writtgn=Ax. A matrixA isreal if all its elements are real numbers,
complex if some of its elements are complex numbers. Throughout, matrices are assumed to be real
unless explicitly assumed otherwise. Thel$et {xeR"|Ax =0} is termed thenull space of the
transformatiomA. The subspacd* containing all linear combinations of the column vectora of
is termed theolumn space of A; it is the complementary subspaceé\to

If A denotes a mxn matrix, théd denotes its nxrtranspose (rows become columns and vice
versa). Thedentity matrix of dimension n is nxn with one's down the diagonal, zero's elsewhere, and
is denoted,, orl if the dimension is clear from the context. A matrix of zeros is deriptaad a
nx1 vector of ones is denotéd A permutation matrix is obtained by permuting the columns of an
identity matrix. IfA is a mxn matrix an@® is a nxp matrix, then thmatrix product C = AB is of

dimension mxp with elementg e gb, for1<i<mand 1< k< p. Forthe matrix product

n
j=1
to be defined, the number of column&imust equal the number of rowd{i.e., the matrices must
becommensurate). A matrixA issquareif it has the same number of rows and columns. A square
matrix A is symmetric if A = A’, diagonal if all off-diagonal elements are zeropper (lower)



McFadden, Statistical Tools, © 2000 Chapter 2-7, Page 21

triangular if all its elements below (above) the diagonal are zerojdengpotent if it is symmetric
andA?=A. A matrixA is column orthonormal if A’A =1; simplyorthonormal if it is both square
and column orthonormal.
A set of linearly independent vectorsiihcan be recursively orthonormalized; i.e., transformed
so they are orthogonal and scaled to have unit length: Suppose xgctors have previously been
J-1
orthonormalized, anglis the next vector in the set. Then, ) (x'2)x is orthogonal tay,... X;;,
-1
and is non-zero since it is linearly independent. Scale it to unit length; this defiliesch column
of a nxm matrixA is a vector ilR". Therank of A, denoted r p(A), is the largest number of
columns that arBnearly independent. ThenA is of rank m if and only ik =0 is the only solution
to Ax =0. If Ais of rank r, then orthonormalization applied to the linearly independent columns of
A can be interpreted as defining a rxm lower triangluar matriguch thatAU’ is column
orthonormal. A nxm matriR is of full rank if p(A) = min(n,m). A nxn matribA of full rank is
termednonsingular. A nonsingular nxn matri& has arninverse matrix A such that bothA™* and
AA equal the identity matrik. An orthonormal matri@ satisfiesA’A =1, implying thatA’ =A™,
and henc&’A =AA’ =1,. The trace ti) of a square matriA is the sum of its diagonal elements.

2.3.2. The tables in this section summarize useful matrix and vector operations. In addition to
the operations in these tables, there are statistical operations that can be performed on a matrix when
its columns are vectors of observations on various variables. Discussion of these operations is
postponed until later. Most of the operations in Tables 2.1-2.3 are available as part of the matrix
programming languages in econometrics computer packages such as SST, TSP, GAUSS, or
MATLAB. The notation in these tables is close to the notation for the corresponding matrix
commands in SST and GAUSS.

TABLE 2.1. BASIC OPERATIONS

Name Notation Definition
n
1. Matrix Product C=AB For mxnA and nxpB: ¢, = aby
j=1
2. | Scalar Multiplication] C =bA For a scalab: ¢; =bg,
3. | Matrix Sum C=A+B | ForA andB mxn: ¢ =g, +
4. | Transpose C=A For mxnA: ¢; = g
5. | Matrix Inverse C=A" | ForA nxn nonsingularAA™ =1,
n
6. | Trace c =tr(A) For nxnA: ¢ = a
i=1
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TABLE 2.2. OPERATIONSON ELEMENTS

Name Notation Definition
1. | Element Product C=A*B ForA,B mxn: ¢ = g b,
2. | Element Division C=A-B ForA, B mxn: ¢ = a/b
3. | Logical Condition C=Ax<B ForA, B mxn: ¢ =1(g;<b;) (Note 1)
4. | Row Minimum c=vminA) For mxnA: ¢ = min_,_, &, (Note 2)
5. | Row Min Replace C =rmin(A) For mxnA: ¢ = min_,_, &, (Note 3)
6.

Column Min Replacg C =cmin@) For mxnA: ¢, = min_,_, g, (Note 4)

|
7. | Cumulative Sum C =cumsuml) | For mxnA: G = Z a
k=1

NOTES:
1. 1(P) isoneof Pistrue, zero otherwise. The condition isalso defined for thelogical operations"<", ">", ">","=", and " #".
2. cis a mx1 vector. The operation is also defined for "max".
3.C is a mxn matrix, with all columns the same. The operation is also defined for "max"
4. Cis a mxn matrix, with all rows the same. The operation is also defined for "max".

TABLE 2.3. SHAPING OPERATIONS

Name Notation Definition

1. | Kronecker Product C=AcB Note 1

2. | Direct Sum C=AeB Note 2

3. | diag C =diag(x) | C adiagona matrix with vector x
down the diagonal

4. | vec or vecr c=vecr(A) | vector c containsrows of A, stacked

5. | vecc c=vecc(A) | vector ¢ contains columns of A, stacked

6. | vech c=vech(A) | vector c contains upper triangle
of A, row by row, stacked

7. | vecd c=vecd(A) | vector c contains diagonal of A

8. | horizontal contatination | C ={A,B} Partitioned matrix C=[ A B ]

9. | vertical contatination C={A;B} Partitioned matrix C ' =[ A’ B']

10. | reshape C =rsh(Ak) | Note 3

NOTES:

1. Also termed thdirect product, the Kronecker product creates an array made up of blockseagthblock the duct of
an element oA and the matriB; see Section 2.11.

A0

2. Thedirect sumis defined for a mxn matrik and a pxq matriB by the (m+p)x(n+q) partitioned arréyB = 0B

3. IfA is mxn, then k must be a divisor offm The operation takes the elementd @bw by row, and rewrites the successive
elements as rows of a matfixthat has k rows and-nik columns.
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2.3.3. Thedeterminant of a nxn matrixA is denoted A| or det@), and has a geometric
interpretation as the volume of the parallelepiped formed by the column vectard b matrixA
is nonsingular if and only if det@) # 0. Aminor of a matrixA (of order r) is the determinant of a
submatrix formed by striking out n-r rows and columnsrifscipal minor is formed by striking out
symmetric rows and columns Af A leading principal minor (of order r) is formed by striking out
the last n-r rows and columns. Timor of an element;zof A is the determinant of the submatrix
A" formed by striking out row i and column j Af Determinants satisfy the recursion relation

n n
detp) = Y (-1)adetd’) = Y (-1)Yadet@A’),
i=1 j=1
with the first equality holding for any j and the second holding for any i. This formula can be used
as a recursive definition of determinants, starting from the result that the determinant of a scalar is
the scalar. A useful related formula is

Xn: (-1y7a,detA")/detA) = &,

i=1

wheres,; is one if k = j and zero otherwise.

2.3.4. We list without proof a number of useful elementary properties of matrices:

(1) A7) =A

(2) If A exists, thenA™)* = A.

(3) If A exists, thenA")* = (A™).

(4) (AB) =B'A".

(5) If A,B are square, nonsingular, and commensurate, &@n'E B*A™,
(6) If A is mxn, then Min {m,n}> p(A) =p(A’) =p(A’'A) =p(AA").

(7) If A'is mxn and is mxr, therp(AB) < min(p(A),p(B)).

(8) If A is mxn withp(A) = m, andB is mxr, therp(AB) = p(B).

(9) p(A+B) < p(A) +p(B).

(10) If A is nxn, then de&) = O if and only ifp(A) = n.

(11) If B andC are nonsingular and commensurate Wtlthenp(BAC) =p(A).

(12) If A, B are nxn, thep(AB) > p(A) +p(B) - n.

(13) detAB) = det@)-det®).

(14) If cis a scalar and is nxn, then det@) = c"det(A)

(15) The determinant of a matrix is unchanged if a scalar times one column (row) is added to
another column (row).

(16) If A is nxn and diagonal or triangular, then Agtis the product of the diagonal elements.

(17) detd™) = 1/det@).
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(18) If Ais nxn andB = A™, then |y = (-1)"detA")/det@).

(19) The determinant of an orthonormal matrix is +1 or -1.

(20) If A is mxn and is nxm, then tB) = tr(BA).

(22) trQ,) = n.

(22) tr(A+B) = tr(A) + tr(B).

(23) A permutation matrif is orthonormal; henc®’ =P™.

(24) The inverse of a (upper) triangular matrix is (upper) triangular, and the inverse of a
diagonal matrixD is diagonal, with@™),, = 1D,

(25) The product of orthonormal matrices is orthonormal, and the product of permutation
matrices is a permutation matrix.

2.4. EIGENVALUESAND EIGENVECTORS

An eigenvalue of a nxn matriXA is a scalak such thafx =Ax for some vectox # 0. The vector
x is called a (rightgigenvector. The conditionA&-Al)x = 0 associated with an eigenvalue implies
A-\l simgular, and hence dat¢.l) = 0. This determanental equation defines a polynomiabin
order n, and the n roots of this polynomial are the eigenvalues. For each eigentrew®ndition
thatA-Al is less than rank n implies the existence of one or more linearly independent eigenvectors;
the number equals the multiplicity of the r@otThe following basic properties of eigenvalues and
eigenvectors of a nxn matri are stated without proof:

() If A is real and symmetric, then its eigenvalues and eigenvectors are real. Howgvsr, if
nonsymmetric, then its eigenvalues and eigenvectors in general are complex.

(2) The number of nonzero eigenvalue®\aéquals its rank(A).

(3) If & is an eigenvalue &, then\*is an eigenvalue &, and 14 is an eigenvalue & (if the
inverse exists).

(4) If Alis real and symmetric, then the eigenvalues corresponding to distinct roots are orthogonal.
[AX; =hx; impliesx;"Ax; =Ax;'X =AX'X;, which can be true for4 j only if x;’x; = 0.]

(5) If A is real and symmetric, amtl is a diagonal matrix with the roots of the polynomial
det(A-Al) along the diagonal, then there exists an orthonormal n@agich thaC’'C =1 andAC

= CA, and henc€'AC = A andCAC’ = A. The transformatio® is said todiagonalize A.
[TakeC to be an array whose columns are eigenvectofs staled to unit length. In the case
of a multiple root, orthonormalize the eigenvectors corresponding to this root.].

(6) If A is real and nonsymmetric, there exists a nonsingular complex ri@agixd a upper
triangular complex matriX with the eigenvalues & on its diagonal such thg*'AQ =T.

(7) A real and symmetric implies &f equals the sum of the eigenvaluesfof [SinceA =
CAC/, tr(A) =tr(CAC’) = tr(C'CA) = tr(A) by 2.3.20.]
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(8) If A, are real and symmetric for i = 1,...,p, then there egisigthonormal such th&’'A,C,
are all diagonal if and only &A, =AA, forij=1,..,p.

Results (5) and (6) combined with the result 2.3.13 that the determinant of a matrix product is the
product of the determinants of the matrices, implies that the determinant of a matrix is the product
of its eigenvalues. The transformations in (5) and (6) are cafléldrity transformations, and can

be interpreted as representations of the transformatiamen the basis of the domain is transformed
by C (or Q) and the basis of the range is transforme@b{or Q). These transformations are used
extensively in econometric theory.

2.5. PARTITIONED MATRICES

It is sometimes useful oartition a matrix into submatrices,
All A12

A, A

21 22

whereA is mxn,A,; is mxn,, A, IS mxn,, A, IS mxn,, A,, is mXn,, and m+m, = m and p+n, =
n. Matrix products can be written for partitioned matrices, applying the usual algorithm to the
partition blocks, provided the blocks are commensurate. For exanBls,ixp and is partitioned

B, A;Bi+AB,
AyBi+A,B,

B= whereB, is nxp andB, is n,xp, one ha&\B =

2
Partitioned matrices have the following elementary properties:

(1) A square and\,, square and nonsingular implies detE det@,,)-det@d,,-A,,A ;A L).
(2) A andA,; square and nonsingular implies

“1a -1 - -1 -1 -
A= A +AnALC AyAT AR AL
= ) N 7

-C 1A21A11 c+

with C =A,,-A,, A, "A,. WhenA., is nonsingular, the northwest matrix in this partition can also
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2.6. QUADRATIC FORMS

The scalar function Q(A) = x’'Ax, whereA is a nxn matrix and is a nx1 vector, is termed a
guadratic form; we callx thewingsandA thecenter of the quadratic form. The value of a quadratic
form is unchanged iA is replaced by itsymmetrized version A+A’)/2. ThereforeA will be
assumed symmetric for the discussion of quadratic forms.

A quadratic form Q{,A) may fall into one of the classes in the table below:

Class Defining Condition
Positive Definite x#0=QXx,A)>0
Positive Semidefinite x#0=QXx,A)>0
Negative Definite x#0=QXx,A)<0
Negative Semidefinite x#0= QX,A) <0

A quadratic form that is not in one of these four classes is tardefthite. The basic properties of
guadratic forms are listed below:

(2) If Bis mxn and is of rank(B) = r, thenB’'B andBB’ are both positive semidefinite; and if
r =m< n, thenB'B is positive definite.
(2) If A is symmetric and positive semidefinite (positive definite), then the eigenvalfesref
nonnegative (positive). Similarly A is symmetric and negative semidefinite (negative definite),
then the eigenvalues &f are nonpositive (negative).
(3) Every symmetric positive semidefinite ma#has a symmetric positive semidefinite square
root A¥? [By 2.4.4,C’'AC = D for someC orthonormal and a diagonal matrix with the
nonnegative eigenvalues down the diagonal. TAenCDC’ andAY? = CD¥?C’ with D' a
diagonal matrix of the positive square roots of the diagonal]of
(4) If A is positive definite, theA™ is positive definite.
(5) If A andB are real, symmetric nxn matrices & positive definite, then there exists a nxn
matrix Q that simultaneously diagonaliz&sandB: Q'AQ = A diagonal an@'BQ =1. [From
2.4(5), there exists a nxn orthonormal matdisuch that)’BU =D is diagonal. LeG be an
orthonormal matrix that diagonalizBs”2U’AUD™?, and defin€Q = UDY?G.]
(6) B positive definite and - B positive semidefinite impl™ - A positive semidefinite. [For
avectorz, letx =Q"z, whereQ is the diagonalizing matrix from (5). ThetB - A)z=x'Q’(B -
A)Qx =x'(A -1)x > 0, so no diagonal element Afis less than one. Alternately, let- Q’z.
Thenz'(B*-AHz=x'Q*YB™* - AN)(Q')™x =x'(I - AY)x must be non-negative.]
(7) The following conditions are equivalent:

(i) A is positive definite

(if) The principal minors of are positive

(i) The leading principal minors & are positive.
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2.7. THE LDU AND CHOLESKY FACTORIZATIONSOF A MATRIX

A nxn matrixA has a LDU factorization if it can be writtén=LDU’, whereD is a diagonal
matrix andL andU are lower triangular matrices. This factorization is useful for computation of
inverses, as triangular matrices are easily inverted by recursion.

Theorem 2.1. Each nxn matriA can be written a& = PLDU’'Q’, whereP andQ are
permutation matriceg, andU are lower triangular matrices, each with ones on the diagonal, and
D is a diagonal matrix. If the leading principal minorg\cére all non-zero, theld andQ can

be taken to be identity matrices.

Proof: First assume that the leading principal minoré @fre all nonzero. We give a recursive
construction of the requirddandU. Suppose the result has been established for matrices up to order
n-1. Then, write the required decomposithorr LDU’ for a nxn matrix in partitioned form

Ay Ay L, 0] [p, ©
A21 A22 L 1 0 D22

whereA,;, L, Dy;, andU,," are (n-1)x(n-1)L,, is 1x(n-1),U,, is 1x(n-1), and A and D, are 1x1.
Assume that ,,, D,;, andU,; have been defined so thfgt = L,,D,,U,,’, and that.,,;* andU,,* also
exist and have been computed. SetL* andT = U™, and partitiorS andT commensurately with
L andU. ThenA,;*=U,,"'D,; 'L, and the remaining elements must satisfy the equations

1

/ /
11 Ull UZl

0 1

21

Ay =LyDyUy" = Ly =AyuU; "Dyt = AyT Dyt

A, =LyuDyUy" = Uy =Dy 'Ly Ay = Dy 'SpAy,

Ay =L DUy + Dy = Dy = Ay - AUy "Day 'Ly Ag = Ay - ApAy Ay,
S =15, S,=1

Ty =-Tyu'Uy’ T,=1

where detd) = det@,,)-det@A,, - A,,A;;*A,,) # 0 implies D, # 0. Since the decomposition is trivial
for n = 1, this recursion establishes the result, and furthermore gives the triangular r8ainid€s
from the same recursion that can be multiplied to give- T'D™S.

Now assume tha is of rank r < n, and that the first r columns2oére linearly independent,
with non-zero leading principal minors up to order r. Partition

All A12 Lll O Dll O Ull/ UZl/
Ay Ay Ly 1] [0 of [0

21
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whereA ; is rxr and the remaining blocks are commensurate. Thghz= D,;'S,A,, andL,, =
A,,T,,'D,; %, and one must satisfy,, =L ,,D,,U," =A, A, A, But the rank condition implies the

A A
12 11
last n-r columns oA can be written as a linear combinationA Z C of the first r
22 21

columns, wher€ is some rx(n-r) matrix. B#,, =A,,C impliesC =A,,*A,, and hencé,,=A,,C
=A,A;;"A,, as required.

Finally, consider any real matri of rank r. By column permutations, the first r columns can
be made linearly independent. Then, by row permutations, the first r rows of these r columns can be
made linearly independent. Repeat this process recursively on the remaining northwest principal
submatrices to obtain products of permutation matrices that give nonzero leading principal minors
up to order r. This definddandQ, and completes the proof of the theordm.

Corollary 2.1.1. If A is symmetric, theh =U.
Corollary 2.1.2. (LU Factorization) IfA has nonzero leading principal minors, ti#enan be
written A =L V', whereV' =DU'’ is upper triangular with a diagonal coinciding with thabDof

Corollary 2.1.3. (Cholesky Factorization) K is symmetric and positive definite, th&rcan be
written A =VV', whereV = LD is lower triangular with a positive diagonal.

Corollary 2.1.4. A symmetric positive semidefinite implies = PVV'P’, with V lower
triangular with a nonnegative diagonBla permutation matrix.

Corollary 2.1.5. If A is mxn with m> n, then there exists a factorizatidr= PLDU’'Q’, with

D nxn diagonalP a mxm permutation matriXQ a nxn permutation matrix) a nxn lower
triangular matrix with ones on the diagonal, &nd mxn lower triangular matrix with ones on
the diagonal (i.el. has the formb" =[L,," L,,'] with L,; nxn and lower triangular with ones
on the diagonal, and,, (m-n)xn. Further, ip(A) = n, then A’A)*A’ = QU DL 'L)'L'P".
Corollary 2.1.6. If the system of equatiodsx =y with A mxn of rank n has a solution, then the
solution is given bk = (A’A)*A’y = QU 'D*(L'L)™'L"'P'y.

Proof outline: To show Corollary 3, note that a positive definite matrix has positive leading principal
minors, and note from the proof of the theorem that this implies that the diag@nh& pbsitive.
TakeV’ =DYU’, whereD"? is the positive square root. The same construction applied itdide
factorization ofA after permutation gives Corollary 4. To show Corollary 5, note first that the rows
of A can be permuted so that the first n rows are of maximum pgéhk SupposeA =
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All A12

A is of this form, and apply the theorem to ob#ajp=P,,L ;,DU'Q’. The rank condition

21 22
implies thatA,, =FA , for some (m-n)xn arrdy. ThenA,, =L,,DU'Q’, withL,, =FP,,L ;;, so that
L
L

11

A= DU'Q’.

21

To complete the proof, apply a left permutation if necessary to undo the initial row permutation of
A. Corollary 6 is an implication of the last resuili.

The recursion in the proof of the theorem is calleaut’'salgorithm, and is the method for matrix
inversion of positive definite matrices used in many computer programs. It is unnecessary to do the
permutations in advance of the factorizations; they can also be carried out recursively, bringing in
rows (in what is termed pivot) to make the successive elementPods large in magnitude as
possible. This pivot step is important for numerical accuracy.

The Cholesky factorization of a nxn positive definite mafithat was obtained above as a
corollary of theL DU decomposition states thatcan be written a# = LL’, whereL is lower
triangular with a positive diagonal. This factorization is readily computed and widely used in
econometrics. We give a direct recursive constructiantofit forms the basis for its computation.
Write the factorization in partitioned form

All A12 A13 Lll 0 0 Lll 0 0
A= AZl A22 A23 - L21 I‘22 0 L21 I‘22 0

Ay Ay Agl Uy Ly Lygllly Ly L

31 32 33[| 731 32 33

Also, let V =L, and partition it commensurately, so that
I, 00/ L, 0 ofv, 0 o
0 I2 0 :L21 I-22 0 V21 V22 0

0 0 Iy |Lyy Ly Lag|[Vay Vi Vi

3 31 32

ThenAp =Lyl Ap=Lyly Ap =Lyl + Lol Vy =Ly V=L, and0=1,V,, +
L,,'V,. Notefirst that if A,; is 1x1, therL ,, = A, ;Y2 andV,, = 1L,,. Now suppose that one has
proceeded recursively from the northwest corner of these matrices, aing #radV,, have already
been computed up through dimensign 8uppose that,, is 1x1. Then, compute in sequehcg
=V, AL, Ly=(A,-Ly,L,) 2V, =10, andV,, =-V,,L,,'V,,. This gives the required factors
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up through dimension,;fil. Repeat this for each dimension in turn to construct thé fahdV
matrices.
An extension of the Cholesky decomposition holds for an nxn positive semidefinite Aatrix

rank r, which can be written @s=PLL 'P’ with P a permutation matrix and a lower triangular
matrix whose first r diagonal elements are positive. The construction proceeds recursively as before,
but at each stage one may have to search among remaining columns to find one fary#hih
determining thé®> matrix. Once dimension r is reached, all remaining columns will lhaye 0.
Now reinterpret ,, andL ,, as a partition corresponding to all the remaining columns and compute

' =V;'A, andL,, =0to complete the Cholesky factor.

2.8. THE SINGULAR VALUE DECOMPOSITION OF A MATRIX

A factorization that is useful as a tool for finding the eigenvalues and eigenvectors of a symmetric
matrix, and for calculation of inverses of moment matrices of data with high multicollinearity, is the
singular value decomposition (SVD):

Theorem 2.2. Every real mxn matriA of rank r can be decomposed into a produstUDV"’,
whereD is a rxr diagonal matrix with positive nonincreasing elements down the diagasahxr,
V is nxr, andJ andV are column-orthonormal; i.dJ’U =1, =V'V.

Proof: Note that the SVD is an extension of the LDU decomposition to non-square matrices. To
prove that the SVD is possible, note first that the mxm m&Ax is symmetric and positive
semidefinite. Then, there exists a mxm orthonormal méiriwhose columns are eigenvectors of
AA’ arranged in non-increasing order for the eigenvalues, partithedW, W,] with W, of
dimension mxr, such thaw/,"(AA" )W, = A is diagonal with positive, non-increasing diagonal
elements, andlV,'(AA" )W, = 0, implyingA’'W, = 0. DefineD from A by replacing the diagonal
elements ofA by their positive square roots. Note tN&tW =1 = WW' = W, W, + W,W,".
DefineU =W, andV’ =D'U’A. ThenU’U =1,andV'V =D*U’AA'UD*=D?'AD™ =1,. Further,
A=(1,W,W,)A =UU'A =UDV'. This establishes the decompositian.

If A is symmetric, thelJ is the array of eigenvectors Afcorresponding to the non-zero roots,
so thatA'U = UD,, with D, the rxr diagonal matrix with the non-zero eigenvalues in descending
magnitude down the diagonal. In this cage; A’UD* =UD,D™. Since the elements Bf andD
are identical except possibly for sign, the columnd ahdV are either equal (for positive roots) or
reversed in sign (for negative roots). Then, the SVD of a square symmetric nonsingular matrix
provides the pieces necessary to write down its eigenvalues and eigenvectors. For a positive definite
matrix, the connection is direct.
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When the mxn matriA is of rank n, so thak’A is symmetric and positive definite, the SVD
provides a method of calculating @)™ that is particularly numerically accurate: Substituting the
form A =UDV’, one obtains’A)*=VD?V’. One also obtains convenient forms for a square root
of A’A and its inverse A’'A)¥2=VDV' and A'A)Y2=VD?V".

The numerical accuracy of the SVD is most advantageous when m is large and some of the
columns of A are nearly linearly dependent. Then, roundoff errors in the matrix pté8uzan lead
to quite inaccurate results when a matrix invers®’édfis computed directly. The SVD extracts the
required information fromh before the roundoff errors &'A are introduced. Computer programs
for the Singular Value Decomposition can be found in Reeals NumericalRecipes Cambridge
University Press, 1986.

2.9. IDEMPOTENT MATRICESAND GENERALIZED INVERSES

A symmetric nxn matriA is idempotent if A>=A. Examples of idempotent matrices @re,
and for any nxr matrixX of rank r,X(X'X)*X’. Idempotent matrices are intimately related to
projections, discussed in the following section. Some of the properties of an nxn idemadtent
A are listed below:

(1) The eigenvalues & are either zero or one.

(2) The rank oA equals trd).

(3) The matrix -A is idempotent.

(4) If B is an orthonormal matrix, thé1AB is idempotent.

(5) If p(A) =, then there exists a nxr matBof rank r such thad =B(B’B)™*B’. [LetC be an
orthonormal matrix that diagonaliz&s and takdB to be the columns & corresponding to the
non-zero elements in the diagonalization.]

(6) A, B idempotent implie&\B =0 if and only ifA+B is idempotent.

(7) A, B idempotent anéB = BA impliesAB idempotent.

(8) A, B idempotent implie®\-B idempotent if and only iBA = B.

Recall that a nxn non-singular matdxhas an inversd™ that satisfiedAA* =A*A =1. Itis
useful to extend the concept of an inverse to matrices that are not necessarily non-singular, or even
square. For an mxk matri (of rank r), define itd/oore-Penrose generalized inverse A~ to be a
kxm matrix with the following three properties:

(i) AAA = A,
(i) AFAA- =A"
(i) AA~ andA~A are symmetric
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The next theorem shows that the Moore-Penrose generalized inverse always exists, and is unique.
Conditions (i) and (ii) imply that the matricésA~— and A"A are idempotent. There are other
generalized inverse definitions that have some, but not all, of the properties (i)-(iii); in pa&icular

will denote any matrix that satisfies (i), AA*A = A.

Theorem 2.3. The Moore-Penrose generalized inverse of a mxk matrixA of rank r (which has
a SVDA = UDV’, whereU is mxr, V is kxr,U andV are column-orthogonal, adlis rxr diagonal
with positive diagonal elements) is the matix=VDU’. LetA* denote any matrix, including,
that satisfieAA*A = A. These matrices satisfy:

(1)A =A*=A"if A is square and non-singular.

(2) The system of equatioAx =y has a solution if and onlyyf=AA"y, and the linear subspace
of all solutions is the set of vectorss A*y + [I - A*A]z for z € R,

(3) AA" andA*A are idempotent.

(4) If A is idempotent, theA = A .

(5) If A =BCD with B andD nonsingular, thed~ =D* C B*, and any matriA* = D'C*B™
satisfiesAA™A = A.

6 @A) =)

(7)) A'AY =AA)Y

B)A) =A=AA'(A) =(A)'A'A.

Q) IfA= Y AwithA’A =0andAA; =0fori=j thenA" = } A
| |

Theorem 2.4. If A is mxm, symmetric, and positive semidefinite of rank r, then
(1) There exisQ positive definite an® idempotent of rank r such that=QRQ andA~ =
Q'RQ™
(2) There exists an mxr column-orthonormal matrisuch that)’AU =D is positive diagonal,
A =UDU’, A" = UDW’ = U(U’'AU)™’, and any matriXA* satisfying condition (i) for a
generalized invers@&A*A = A, hasU’A*U =D™.
(3) A has a symmetric square rdbt AY2, andA =B B.

Proof: LetU be an mxr column-orthonormal matrix of eigenvectora abrresponding to the
positive characteristic roots, aMd be a mx(m-r) column-orthonormal matrix of eigenvectors
corresponding to the zero characteristic roots. ThaW] is an orthonormal matrix diagonalizing

!

D 0 u’
AlUWw =
Wl

W/
andR =UU’. The diagonalizing transformation impligsAU =D andAW =0. One hatJ'U =1,

DY 0
0 |

m-r

A, with andD positive diagonal. Defin@= [U W]
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W'W =1, andUU’ + WW’ =1_. SinceAW =0, A =A[UU’ + WW'] = AUU’ andD = U’AU =
U’AA*AU = UAUU’A*UU’AU = DU’A*UD, implying U’A*U = D. DefineB = UD¥2U’. O

2.10. PROJECTIONS

Consider a Euclidean spakeof dimension n, and suppoXes a nxp array with columns that
are vectors in this space. L¥tenote the linear subspaceRdfthat isspanned or generated by X;

i.e., the space formed by all linear combinations of the vectots iBvery linear subspace can be
identified with an array such a& The dimension of the subspace is the rank.ofThe array

need not be of full rank, although if it is not, then a subarray of linearly independent columns also
generatesY.) A givenX determines a unique subspace, so ¥atharacterizes the subspace.
However, any set of vectors contained in the subspace that form an array with the rank of the
subspace, in particular any ardéx with rank equal to the dimensionXf also generate¥. Then,

X is not a unique characterization of the subspace it generates.

The projection of a vector y inR" into the subspac is defined as the pointin X that is the
minimum Euclidean distance frogn Since each vector in X can be represented as a linear
combinationXa. of an arrayX that generateX, the projection is characterized by the value tifat
minimizes the squared Euclidean distancgfodm X, (y-Xa)'(y-Xa). The solution to this problem
is the vectora = (X'X)" X'y giving v = Xa = X(X'X)"X'y. In these formulas, we use the
Moore-Penrose generalizaw/erse K’'X)™ rather thanX’X)™ so that the solution is defined even
if X is not of full rank. The array, = X(X'X)~ X" is termed therojection matrix for the subspace
X; it is the linear transformation iR" that maps any vector in the space into its projeation.X.

The matrixPy is idempotent (i.e., PxPyx = Py andP, = Py’), and every idempotent matrix can be
interpreted as a projection matrix. These observations have two important implications: First, the
projection matrix is uniquely determined Ky so that starting from a different array that generates

X, say an arra§ = XA, impliesP, =Ps. (One could use the notatiBg rather tharP, to emphasize

that the projection matrix depends only on the subspace, and not on any particular set of vectors that
generateX.) Second, if a vectgris contained inX, then the projection int&” leaves it unchanged,

Pxy =Y.

DefineQ, =1 - P, =1 - X(X'X)*X’; it is the projection to the subspace orthogonal to that
spanned b¥. Every vectol in R" is uniquely decomposed into the sum of its projeddgnonto
Xand its projectioyy onto the subspace orthogonakioNote thaP, Q, =0, a property that holds
in general for two projections onto orthogonal subspaces.

If X'is a subspace generated by an axand Wis a subspace generated by a more inclusive
arrayW = [X Z], thenX<c W. This implies thak,P,, =P,,P, =Py; i.e., a projection onto a subspace
is left invariant by a further projection onto a larger subspace, and a two-stage projection onto a large
subspace followed by a projection onto a smaller one is the same as projecting directly onto the
smaller one. The subspaceMlf that is orthogonal t& is generated b, W; i.e., it is the set of
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linear combinations of the residuals, orthogonaKioobtained by the difference o¥ and its
projection ontdX. Note that any in R" has a unique decompositiepy + Q.P,y + Q.Y into the
sum of projections onto three mutually orthogonal subspA¢ése subspace d¥ orthogonal toX,
and the subspace orthogonalo The projectiorQ,P,, can be rewritte@,P,, =P,, - Py = P,,Qy

= QxPwQx, or sinceQW = Q[X Z] = [0 QuZ], QxPw = PQxW = PQXZ =QZ(2'QxZ)” Z'Qx.

This establishes th&, andQ, commute. This condition is necessary and sufficient for the product
of two projections to be a projection; equivalently, it implies QaP,, is idempotent since

(QxPw)(QxPyw) = Qx(PwQy)Py = Qx(QxPyw)Py = QxPy,.
2.11. KRONECKER PRODUCTS

If A is a mxn matrix anB is a pxq matrix, then theronecker (direct) product of A andB is the
(mp)x(nq) partitioned array

B aB | ay,B]
B B B

AeB = aﬂ a” " az”‘
8B a,B - a,B|

In generalAeB = B®A. The Kronecker product has the following properties:

(1) For a scalae, (cA)eB = Az(cB) = c(A®B).

(2) (AeB)eC = As(B&C).

(3) (AeB)’ = (A")=(B’).

(4) tr(AeB) = (tr(A))-(tr(B)) whenA andB are square.

(5) If the matrix product&C andBF are defined, then
(A®B)(CeF) = (AC)=(BF).

(6) If A andB are square and nonsingular, thAmB)™* = A'eB™.

(7) If A andB are orthonormal, theA®B is orthonormal.

(8) If A andB are positive semidefinite, thémzB is positive
semidefinite.

(9) If A is kxk andB is nxn, then def{=B) = det@)"™det®)*.

(10) p(AeB) = p(A)-p(B).

(11) A+B)eC =A=C + BeC.
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2.12. SHAPING OPERATIONS

The most common operations used to reshape vectors and matricesGarediBigk) which
creates a diagonal matrix with the elements of the v&atown the diagonal; (2)= veccf) which
creates a vector by stacking the columm&,and vecif) = veccA’); (3) c = vech@) which creates
a vector by stacking the portions of the row#dhat are in the upper triangle of the matrix; and (4)
¢ = vecdp) which creates a vector containing the diagonafof (In some computer matrix
languages, ve&() stacks by row rather than by column.) There are a few rules that can be used to
manipulate these operations:

(1) If x andy are commensurate vectors, diegy) = diagk) + diagf).

(2) veccA+B) = vecc@) + veccB).

(3) If A is mxk andB is kxn, then vecAB) = (I,®A)vecr@) = (B'#l ,)vecr@).

(4) If A'is mxk,B is kxn,C is nxp, then vecABC) = (I,®(AB))vecr© = C'®A)vecr@) =
((c'B")@l )vecr@).

(5) If A is nxn, then veclX) is of length n(n+1)/2.

(6) vecd(diagf)) = x.

2.13. VECTOR AND MATRIX DERIVATIVES
The derivatives of functions with respect to the elements of vectors or matrices can sometimes

be expressed in a convenient matrix form. First, a scalar function of a nx1 vector of varigbles, f(
has partial derivatives that are usually written as the arrays

ofox,] of2lox,  of2lox, 0%, ... of%ox,0x,

oflo of2loxox,  of4ox, ... af%ox,0

of/ox = |X2 , of2laxox’ = 2% % %%
I I I

oflox, | of%ox ox, of%ox ox, ... of2lax,

Other common notation igk) or V,f(x) for the vector of first derivatives, ang(k) orV,,f(x) for the
matrix of second derivatives. Sometimes, the vector of first derivatives will be interpreted as a row
vector rather than a column vector. Some examples of scalar functions of a vector are the linear
function f(x) = a’x, which hasv,f = a, and the quadratic functionj(= x’Ax, which hasv/f = 2Ax.

Whenf is a column vector of scalar functiofigs) = [f(x) f3(x) ... #(x)]’, then the array of first
partial derivatives is called tRlacobean matrix and is written
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of tfox, oftfox, ... of'fox,
J(x) = |of?lox, of?lox, ... of%ox,
of¥ox, of¥lox, ... of¥fox,

When calculating multivariate integrals of the forrﬁ y)d{, wherey ¢ R", A c R", and g is a
A

scalar or vector function of, one may want to make a nonlinear one-to-one transformation of
variablesy =f(x). In terms of the transformed variables, the integral becomes

f gly)dy = fﬁl g (x))-[detd(x))|dx,
A f(A)

where f*(A) is the set ofx vectors that map ontd, and the Jacobean matrix is square and
nonsingular for well-behaved one-to-one transformations. The intuition for the presence of the
Jacobean determinant in the transformed integral is tlgais'dhe volume of a small rectangle in
y-space, and because determinants give the volume of the parallelepiped formed by the columns of
a linear transformation, “del(x))dx” gives the volume (with a plus or minus sign) of the image in
x-space of the @' rectangle irny-space.

It is useful to define the derivative of a scalar function with respect to a matrix as an array of
commensurate dimensions. Consider the bilinear folh=#(x'Ay, wherex is nx1,y is mx1, and
A is nxm. By collecting the individual terna§/oA; = xy,, one obtains the resulf/oA = xy’.
Another example for a nxn matri is f(A) = tr(A), which has3f/0A =1,. There are a few other
derivatives that are particularly useful for statistical applications. In these forAuksg, square
nonsingular matrix. We do_noéquire thatA be symmetric, and the derivatives do mopose
symmetry. One will still get valid calculations involving derivatives when these expressions are
evaluated at matrices that happen to be symmetric. There are alternative, and somewhat more
complicated, derivative formulas that hold when symmetry is imposed. For analysis, itis unnecessary
to introduce this complication.

(1) If det@) > 0, therdlog(det@))/oA = AL,
(2) If A is nonsingular, thed(x'A™y)/0A = - A'xy’'A™,
(3) IFA =TT’, with T square and nonsingular, the@'A™y)/oT = - 2Axy’A™T.

We prove the formulas in order. For (1), recall thatdet( Y (-1)*a.det@*), whereA is the
k

minor of g. Then, ddet@d)/oA; = (-1)"detA’). From 2.3.17, the ij element &A™ is
(-1)"det(A")/det(A). For (2), apply the chain rule to the idenfih™ = | to getA,A™ + A-0A /oA,
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= 0, whereA; denotes a matrix with a one in row i and column j, zeros elsewhere. Jkh&ty/oA,
=-x'A*AA Yy = (A7X),(Ay),. For (3), first note thaiA /0T (=8, T+, T,. Combine this with (2)
to get

aX/A-ly/aTrS: Z (A-lx)i(A-ly)j(sirTjs"-Seris)
J

= Z (A_lx)r(A_ly)jTjs-i_ Z (A_lx)i(A_ly)rTis:2(A_1Xy/A_1T)rS'
J i

2.14. UPDATING AND BACKDATING MATRIX OPERATIONS

Often in statistical applications, one needs to modify the calculation of a matrix inverse or other
matrix operation to accommodate the addition of data, or deletion of data in bootstrap methods. It
is convenient to have quick methods for these calculations. Some of the useful formulas are given
below:

(1) If A is nxn and nonsingular, ard" has been calculated, andifandC are arrays that are nxk
of rank k, then&A+BC’)* =A™ - A'B(1,+C’A'B)'C’'A", provided! +C’'A™B is nonsingular. No
matrix inversion is required if k = 1.

(2) If A'is mxn with m= n andp(A) = n, so that it has a LDU factorizatién=PLDU’Q’ with D nxn

A
diagonal P andQ permutation matrice&, andU lower triangular, then the arraPB , WBhkxn,
~|P Of|L
has the LDU factorization 0 DU'Q" ,whe@=BQU''D™
k
: A yi .
(3) Suppos@ is mxn of rank n, and = (A’A)*A’y. Supposé* = c and yx* = withC kxn
w

andw kx1, andb* = (A*'A*)* A*'y* Then,
b* -b = (A’A)IC'[I +C(A’AYICT{W-Cb) = (A*'A*YIC[I -C(A*'A*)1C']{(w-Cb*).

One can verify (1) by multiplication. To show (2), use Corollary 5 of Theorem 2.1. To show (3),
apply (1) toA*’'A* =A’A +C'C, or toA’'A =A*'A* - C'C, and usé\*'y* = Ay + Cw.
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NOTESAND COMMENTS
The basic results of linear algebra, including the results stated without proof in this summary, can

be found in standard linear algebra texts, such as G. Hadley (1961)Aigelra Addison-Wesley

or F. Graybill (1983) Matricewith Applicationsin Statistics Wadsworth. The organization of this
summary is based on the admirable synopsis of matrix theory in the first chapter of F. Graybill (1961)
An Introductionto Linear StatisticalModels McGraw-Hill. For computations involving matrices,

W. Presst al (1986) NumericaRecipes Cambridge Univ. Press, provides a good discussion of
algorithms and accompanying computer code. For numerical issues in statistical computation, see
R. Thisted (1988) Elementd StatisticalComputing Chapman and Hall.




