
McFadden, Statistical Tools, © 2000                                                           Page 1

DISCRETE TIME STOCHASTIC PROCESSES

1. Introduction
A discrete-time stochastic process is essentially a random vector with components indexed by

time, and a time series observed in an economic application is one realization of this random vector.
Then, a useful way to introduce stochastic processes is to return to the basic development of the
theory of random variables and vectors, and use the analogy as a guide to the statistical analysis
needed in the more general stochastic setting.

Let S denote the universe of states of Nature.  A state s � S describes everything that has
happened and will happen.  In particular, this description includes the outcomes of all probability
and sampling experiments.  The family of potentially observable events in S is denoted by F, a

-field (or Boolean -algebra) of subsets of S satisfying
(i) The "anything can happen" event S is in F.
(ii) If event A is in F, then the event "not A", denoted Ac or S\A, is in F.
(iii) If A and B are events in F, then the event "both A and B", denoted A�B, is in F.

 (iv) If A1,A2,...  is a finite or countable sequence of events in F, then the event "one or more of

the events A1 or A2 or ...", denoted Ai, is in F.�4i'1

Implications of the definition of a -field are

 (v) If A1,A2,...  is a finite or countable sequence of events in F, then  is also in F.�4i'1 A i

 (vi) If A1,A2,...  is a countable sequence of events in F  that is monotone decreasing (i.e., A1 �
A2 � ...), then its limit, denoted Ai � A0, is also in F.  Similarly, if a sequence in F  is monotone

increasing (i.e., A1 � A2 � ...), then its limit A0 = is also in F �4i'1 A i

 (vii) The empty event  is in F.

A -field of subsets of S is sometimes identified with the information available to an observer.  One
method of constructing a -field of subsets of S is to start from a specified family A  of subsets of
S, such as the open intervals when S is the real line, and define F  to be the intersection of all -fields
containing the specified family; F   is then said to be the -field generated by A, and is sometimes
denoted (A).  The idea is that if the observer knows which of the events in A occur, then he can also
determine which of the events in (A) occur.  There may be more than one -field of subsets of S;
these may correspond to the information available to different observers.  If F  and G are both

-fields, and G � F, then G is said to be a sub-field of F, and F is said to contain more information
or refine G.  It is possible that neither F � G nor G �  F.  The intersection F�G  of two -fields is
again a -field that contains the common information in F and G.  Further, the intersection of an
arbitrary countable or uncountable collection of -fields is again a -field.  It is this property that
guarantees that there is always a smallest -field (A) containing any family A of subsets of S.  The
union F�G of two -fields is not necessarily a -field, but there is always a smallest -field that
refines both F and G, which is simply the -field (F�G) generated by the sets in the union of F and
G, or put another way, the intersection of all -fields that contain both F and G.  
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A pair (S,F) consisting of a set S and a -field F  of subsets of S is called a measurable space,
and the sets in F  are called the measurable events.  Then the universe of states of Nature with its

-field is a measurable space, but the definition of a measurable space will be used much more
generally, including the set of time indices and the image space of random functions. 

Finally, P is a probability defined on the measurable events in the universe of states of Nature
S; i.e., a function P:F � [0,1] with the properties

(i) P(A) � 0 for all A � F.
(ii) P(S) = 1.
(iii) [Countable Additivity] If A1, A2,...  is a finite or countable sequence of events in F  that are

mutually exclusive (i.e., Ai�Aj =  for all i � j), then P( Ai) = P(Ai). �4i'1 �4

i'1

With conditions (i)-(iii), P has the following additional intuitive properties of a probability when A
and B are events in F: 

(iv) P(A) + P(Ac) = 1.
(v) P( ) = 0.  
(vi) P(A�B) = P(A) + P(B) - P(A�B).
(vii) P(A) � P(B) when B � A, and P(B\A) = P(B) - P(A).  
(viii) If Ai in F  is monotone decreasing to  (denoted Ai � ), then P(Ai) 	 0.  

(ix) If Ai � F, not necessarily disjoint, then P( Ai) 
 P(Ai). �4i'1 �4

i'1

(x) If {Ai} is a finite or countable partition of S (i.e., the events Ai � F  are mutually exclusive

and exhaustive, or Ai�Aj =  for all i � j and  Ai = S), then P(B) = P(B�Ai).�4i'1 �4

i'1

The triplet (S,F,P) consisting of a measurable space (S,F) and a probability measure P is called a
probability space.  If A � F  has P(A) = 1, then A is said to occur almost surely (a.s.), or with
probability one (w.p.1).  If A � F  has P(A) = 0, then A is said to occur with probability zero (w.p.0).
Finite or countable intersections of events that occur almost surely again occur almost surely, and
finite or countable unions of events that occur with probability zero again occur with probability
zero.  We noted earlier that -fields of subsets of S formalize the concept of the information known
to an observer.  There is an additional technical reason for introducing -fields.  Starting from a
probability with reasonable properties on selected events in S, one can always extend it to a
probability on the -field generated by these selected events, but an extension to all the subsets of
S may be impossible due to the existence of non-measurable sets whose probabilities are not well-
defined.  It is often useful for analysis of a probability space (S,F,P) to work with the completion G
the -field F; we obtain G  by augmenting F   with all sets B satisfying B � A for some set A � F
that has P(A) = 0.  Since the additional sets B unambiguously have probability zero, their addition
causes no problem with the definition of the probability. 

Measurable spaces (S,F) will usually have an associated metric that measures distance between
points in S, and open neighborhoods consisting of all the points in S less than a given distance from
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each specified point.  Often, the -field F  will be defined as the smallest -field that contains all the
open neighborhoods, and will be said to be generated by these neighborhoods.  A space S with a
distance metric is complete if every Cauchy sequence (i.e., a sequence of points in S such that the
distance between any two points sufficiently far out in the sequence converges to zero) has a limit
contained in S.  Note that this is a different use of the word “complete” than the completion of a
probability space.  A metric space S is separable if it contains a countable dense subset; i.e., there
is a countable subset of S such that each point in S can be obtained as a limit of points in the subset.
An important measurable space is (�,B), where � is the real line and B is the Borel -field, the
smallest -field of subsets of � that contains all the open intervals in �.  The real line with the
Euclidean distance metric is a complete separable metric space.

Often a measurable space (S,F) will have an associated measure  that is a countably additive

function from F  into the nonnegative real line; i.e., ( Ai) = (Ai) for any sequence�4i'1 �4

i'1

of disjoint Ai � F.  The measure is non-negative if (A) � 0 for all A � F; we will consider only non-
negative measures.  The measure  is finite if � (S)� 
 M, and -finite if F  contains a countable
partition {Ai} of S such that the measure of each partition set is finite.  The measure  may be a
probability, but often is a measure of "length" or "volume".  For example, it is common when S is
the countable set of positive integers to define  to be counting measure with (A) equal to the
number of points in A.   For the real line (�,B), it is common to define  to be Lebesgue measure,
with ((a,b)) = b - a for any open interval (a,b).  Both counting measure and Lebesgue measure are
non-negative -finite measures.  A set A is said to be of -measure zero if (A) = 0.  A property that
holds except on a set of measure zero is said to hold almost everywhere (a.e.).  A set A � F is called
an atom if every set B � F  with B 
 A has either (B) = 0 or (B) = (A).  Every non-negative
measure can be decomposed into a countable sum of atoms plus a non-negative atomless measure.
Given two measures  and  on  F, one says that  is continuous with respect to  if (A) = 0 implies
(A) = 0.  Statistical analysis often uses -finite measure spaces (S,F,µ) where µ is non-negative and
-finite and may either be a probability measure or a more general counting or length measure such

as Lebesgue measure.  Often a measurable space (S,F) will have both a probability measure P and
a “length” measure . 

Suppose f is a real-valued function on a -finite measure space (S,F,µ).  This function is
measurable if f -1(C) � F  for each open set C in the real line.  A measurable function is integrable

on a set A � F  if �A|f(s)|�µ(ds), defined as the limit of (k/n)�µ({s�A|k/n
|f(s)|<(k+1)/n}),�n 2

k'0

exists and is finite.  If it is integrable, the integral �Af(s)µ(ds) is sometimes denoted �Af(s)dµ, or in
the case of Lebesgue measure, �Af(s)ds.  When A = S, the integral is often written as  �f(s)µ(ds).  In
general, the measure µ can have point masses (at atoms), or continuous measure, or both, so that the
notation for integration with respect to µ includes sums and mixed cases.  If a probability measure
P is continuous with respect to Lebesgue measure , then there exists a measurable non-negative
function g on the real line, called the density of P, such that �f(s)P(ds) = �f(s)g(s)ds; this result is
called the Radon-Nikodym theorem (see Chap. 3, Theorem 3.2).
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For a -finite measure space (S,F,µ), define Lq(S,F,µ) for 1 
 q < +� to be the set of measurable
real-valued functions on S with the property that |f|q is integrable, and define the norm of f to be �f�q

= [��f(s)�q µ(ds)]1/q .  Then, Lq(S,F,µ) is a linear space, since linear combinations of integrable
functions are again integrable.  This space has many, but not all, of familiar properties of finite-
dimensional Euclidean space.  The set of all linear functions on the space Lq(S,F,µ) for q > 1 is the
space Lr(S,F,µ), where 1/r = 1 - 1/q.  This follows from an application of Holder’s inequality, which
generalizes from finite vector spaces to the condition

f � Lq(S,F,µ) and g � Lr(S,F,µ) with q-1 + r-1 = 1 imply �|f(s)�g(s)� µ(ds) 
 �f�q��g�r.
The case q = r = 2 gives the Cauchy-Schwartz inequality in general form.  The space L2(S,F,µ),
called Hilbert space, occurs often in statistics.

A random variable X is a measurable real-valued function on the probability space (S,F,P), or
X:S � �.  Then each state of Nature s determines a value X(s) of the random variable, termed its
realization in state s.  When the functional nature of the random variable is to be emphasized, it is
denoted X(�), or simply X.  When its values or realizations are used, they are denoted X(s) or x.  For
each set B � B, the probability of the event that the realization of X is contained in B is well-defined
and equals P’(B) � P(X-1(B)), where P’ is termed the probability induced on � by the random
variable X.  The probability that X is contained in a half-line (-�,x] defines the CDF of X, which in
turn characterizes P’:

 FX(x) = P’((-�,x]) � P(X-1((-�,x])) � P({s�S|X(s)�(-�,x]}).

Multiplying a random variable by a scalar, or adding random variables, results in another random
variable.  Then, the family of random variables forms a linear vector space.  In addition, products
of random variables are again random variables, so that the family of random variables forms an
Abelian group under multiplication.  The family of random variables is also closed under
majorization, so that Z:S � � defined by Z(s) = max(X(s),Y(s)) for random variables X and Y is
again a random variable.  Then, the family of random variables forms a lattice with respect to the
partial order X 
 Y(i.e., X(s) 
 Y(s) almost surely). 

Most econometric applications deal with random variables which can be assumed to have finite
variances.  The space of these random variables is L2(S,F,P), the space of random variables X for
which E X2 = �SX(x)2P(ds)  < +�.  The space L2(S,F,P) is also termed the space of square-integrable
functions.  The norm in this space is root-mean-square, �X�2 = [�SX(s)2 P(ds)]½ .  Implications of X
� L2(S,F,P) are E |X| 
 �Smax(X(s),1)P(ds)
 �S(X(s)2+1)P(ds) =  �X�2

2 + 1 < +� and E (X - EX)2

= �X�2
2 - (E |X|)2 
 �X�2

2 < +�, so that X has a well-defined, finite mean and variance.

If T random variables are formed into a vector, X(�) = (X(�,1),...,X(�,T)), the result is termed a
random vector.  For each s � S, the realization of the random vector is a point (X(s,1),...,X(s,T)) in
�T, and the random vector has an induced probability on �T which is characterized by its multivariate
CDF, FX(x1,...,xT) = P({s�S|X(s,1)
x1,...,X(s,T)
xT}).  Note that all the components of a random
vector are functions of the same state of Nature s, and the random vector can be written as a function
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X:S � �T.  The measurability of X requires X-1(C) � S for each open rectangle C in �T.  The
independence or dependence of the components of X is determined by the fine structure of P on S.

Another way to write a random vector X is to define an index set T = {1,...,T}, and then define
X as a real-valued function on S and T, X:S×T��.  Then, X(�,t) is a simple random variable for each
t � T, and X(s,�) is a real vector that is a realization of X for each s � S.  The measurability
requirement on X is the same as before, but can be written in a different form as requiring that the
inverse image of each open interval in � be contained in F�T, where T is a -field of subsets of T
that can be taken to be the family of all subsets of T and “�” denotes the operation that forms the
smallest -field containing all sets A×B with A � F  and B � T.  There is then a complete duality
between random vectors in a T-dimensional linear space and random functions on a T-dimensional
index set.  This duality between vectors and functions will generalize and provide useful insights into
statistical applications in which T is a more general set indexing time.

2. Stochastic Processes 
Consider a measurable space (T,T) consisting of an ordered set T indexing time, and a -field

T  of subsets of T.  The set T is assumed to be a complete separable metric space.  The most
important cases are T discrete, either T = {1,2,3,...} with initial time t = 1, or T = {...,-2,-1,0,1,2,...}
with an indefinite past, and T continuous, either T = [0,+�) with an initial time t = 0, or T = (-�,+�)
with an indefinite past.  In the discrete case, T  is usually assumed to be the smallest -field
containing all sets of the form {...,t-2,t-1,t} for each integer t; this also guarantees that T contains all
finite subsets of T.  In the continuous case, T  is usually assumed to be the Borel -field relative to
T, so that it contains all sets of the form (-�,t), (-�,t], [0,t), and [0,t].

A real-valued function X:S×T � � is called a stochastic process. When T is discrete, X is called
a discrete-time stochastic process, and when T is continuous, X is called a continuous-time
stochastic process.  For each s � S, X(s,�) is a real-valued function on T. and is termed a realization,
trajectory, or sample path of the stochastic process, and for each t � T, X(�,t) is a random variable.
Alternately one can think of a stochastic process as a function X:S � �T that maps states of Nature
into random vectors in the product space �T whose coordinates are indexed by T, and think of a
trajectory as a vector X(s) in this linear space with components X(s,t).  There are substantial
technical differences between finite and infinite dimensional vector spaces, but it will nevertheless
be the case that much of the geometric intuition for manipulation of vectors in finite-dimensional
space will carry over to the manipulation of stochastic processes, even in the case of continuous time.

For a finite subset T1 = {t1,....,tn} of T, the random vector (X(�,t1),...,X(�,tn)) is termed the
restriction of X to T1.  Conversely, X is termed an extension of this finite-dimensional random
vector.  A rectangle in �T is a set of the form �t0TAt, where At is a set in the Borel -field of subsets
of � for each t � T, and At = � except for t in a finite set T1 � T.  The -field of subsets of �T

generated by the rectangles, called the product -field, is denoted �t0TB ; this is the smallest -field
with the property that if X is measurable with respect to �t0TB  (i.e., for each restriction Y of X to
a finite subset T1 = {t1,....,tn} of T and open rectangle C � �n, the set {s�S|Y(s) � C} is contained
in F), then all the restrictions of X to finite-dimensional coordinate subspaces are measurable.  A
family of random vectors defined on the finite subsets of T are compatible if for each pair of finite
subsets T1 and T2 of T satisfying T1 � T2, the restriction to T1 of the random vector assigned to T2
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coincides almost surely with the random vector assigned to T1.  An important result called the
Kolmogorov existence theorem states that the finite-dimensional restrictions of a stochastic process
on T are a compatible family of random vectors, and conversely any compatible family of random
vectors defined on the finite subsets of a complete separable metric space T have an almost surely
unique extension to (T,�t0TB).  These definitions were encountered previously in the discussion of
repeated trials and independence in Chapter 3.  There T was countable, but the existence theorem
holds for uncountable T as well.  One implication of this result is that the probability distribution
of a stochastic process on T is characterized by the finite-dimensional distributions associated with
its restrictions to finite-dimensional subsets of T.  Another implication of this result is that if one
starts with the family of random vectors (X(�,t1),...,X(�,tn)) on finite subsets T1 = {t1,....,tn} of [0,+�)
that are multivariate normal with mean zero and covariances E (X(�,ti)X(�,tj) = min(ti,tj), then these
random vectors are compatible, and hence are restrictions of a stochastic process X on [0,+�) that
has X(�,t) normal with mean zero and variance t for each t, has E X(�,t)[X(�,t’) - X(�,t)] = 0 for t’ >
t, and has trajectories that are almost surely continuous.  The process X is called the Weiner process;
it plays a fundamental role in the statistical theory of continuous time stochastic processes.

For analysis, one usually needs to restrict further the family of stochastic processes on the index
space (T,T).  One way to do this is to specify a general space of stochastic processes satisfying some
conditions, such as continuity and integrability conditions, and then argue that the time series
encountered in an econometric application are sample paths from stochastic processes meeting these
definitions.  A second way is to generate specific families of stochastic processes, say with a
particular dynamic structure such as finite-order autoregression, and study the properties of the
spaces of stochastic processes generated by these specific families.  We will begin with the first
approach, which is often quite useful for establishing statistical limit theory for stochastic processes.
The second is more commonly used in time series econometrics, which for many purposes does not
have to use the linear space characterizations of the stochastic processes it treats.

For most econometric time series and problems, it is natural to treat observations as coming from
discrete time stochastic processes.  The discrete time analysis is also technically simpler.
Consequently, it is the best starting point for a course in econometric time series analysis.  However,
there are some econometric and finance applications where continuous time processes are required,
so that it is useful to identify a few important cases and connections to the discrete time treatment
of time series that is the main subject of this course.  A stochastic process on continuous T is said
to be separable if T contains a countable dense subset T0, and almost surely the graph of the process
on T is contained in the closure of the graph of the process on T0; i.e., for s in a subset of S that
occurs with probability one, the set {(t,x)|x=X(s,t) for t�T} is contained in the closure of
{(t,x)|x=X(s,t) for t�T0}.  The concept of separability of a stochastic process is different than the
concept of a separable metric space, although the two are closely related.  A separable stochastic
process has the property that its behavior is effectively determined on a countable set of times,
similarly to a discrete time stochastic process.  This permits many of the properties of a separable
continuous time stochastic process to be deduced by limiting arguments from the properties of
discrete time stochastic processes.

One leading vector space for stochastic processes in continuous time is C(T), the space of
continuous real-valued functions X(s,�) on T.  Then, a continuous time stochastic process with a.s.
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continuous trajectories will be a measurable function from (S,F,P) into C(T).  A second common
vector space is D(T), the space of real-valued functions X(s,�) on T with the property that the sample
paths are almost surely right-continuous and have left-hand limits.  When T is the real line with the
Borel -field, both C(T) and D(T) are spaces of separable stochastic processes.  An important limit
theorem that is the basis for other limit results for continuous time processes, due to Donsker, states
that if Yi are i.i.d. random variables with mean zero and variance one, T = [0,1], and one constructs
the sequence of stochastic process in C[T] that satisfy

Xn(s,t) = n-1/2{Y1(s) + Y2(s) + ...+ Y[nt](s) + (nt - [nt])Y[nt]+1(s)},

where [nt] is the largest integer that does not exceed nt, then Xn converges in distribution to the
Weiner process (i.e., for every finite-dimensional subset of T, the restriction of Xn converges in
distribution to the corresponding restriction of the Weiner process.)

Thinking of stochastic processes as random vectors and their trajectories as points in a linear
vector space provides some insights that will be useful later.  First, linear transformations in finite
dimensional vector spaces are a familiar tool in econometrics, and linear operators in these spaces
are identified with matrices.  We give examples of linear operators that are important in time series
analysis, defined here in a finite-dimensional setting in �3.  They are the shift (or lag) operator L,

= = L ;

y1

y2

y3

0 0 1

1 0 0

0 1 0

x1

x2

x3

x1

x2

x3

the smoothing operator

= = (½I + ½L) ;

y1

y2

y3

1/2 0 1/2

1/2 1/2 0

0 1/2 1/2

x1

x2

x3

x1

x2

x3

the differencing operator

= = (I - L) ;

y1

y2

y3

1 0 �1

�1 1 0

0 �1 1

x1

x2

x3

x1

x2

x3
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and projections onto linear subspaces.  Operations like smoothing and differencing are sometimes
called filters.  These concepts carry over to infinite dimensions, where they are defined as linear
operators in linear spaces of stochastic processes.  When observed time series are finite dimensional,
operations on these series will coincide with finite-dimensional restrictions of linear operators on
stochastic processes.  Specifically, lag, filter, and projection operations on stochastic processes have
finite-dimensional matrix operator analogs that are used to manipulate data, and can be helpful in
understanding what these operators are doing.   This duality holds even in the case of continuous
time stochastic processes, where linear operators take the form of stochastic integrals and integral
equations.  Despite the different look, these are again just infinite-dimensional extensions of finite-
dimensional matrix transformations.

Another useful insight comes from considering different representations of vectors in finite-
dimensional spaces, and extending these ideas to infinite-dimensional situations.  To be specific,
consider �2.  When we express a function X on T = {1,2} as a point (X(1),X(2)) in this space, what
we are really doing is defining two functions Z1 = (1,0) and Z2 = (0,1) with the property that Z1 and
Z2 span the space, and then writing X as the linear combination X = X(1)�Z1 +X(2)�Z2.  The pair of
functions (points) Z1 and Z2 is called a Hamel basis for �2, and every point in the space has a unique
representation in terms of this basis.  However, there may be many different Hamel bases.  For
example, the unit function (1,1) and the function cos( t) or (-1,1) also form a Hamel basis, and in
terms of this basis X has the representation X = ½(X(1)+X(2))�(1,1) + ½(X(2)-X(1))�(-1,1).

For countably infinite T = {1,2,...}, the coordinate functions Zi = (0,...,0,1,0,...) with a one in the
i-th place form one Hamel basis.  Another Hamel basis is the list of trigonometric functions Z2i =
cos( t/2i) and Z2i+1= sin( t/2i) for i = 1,2,... .  The representation of X in terms of this basis is called
a Fourier representation.  The reason to consider different bases is that they may reveal a simple or
insightful characterization of a particular family of stochastic processes.  For example, the coordinate
basis representation above yields what is called the time domain representation of the process which
is particularly helpful when the process has a simple dynamic structure.  The Fourier representation
yields what is called the frequency domain representation of the process which is particularly helpful
when the process contains important cyclic components in different frequency ranges.
Geometrically, these are just different representations of the same point in linear space, and one can
switch from one to the other to gain insight into the structure of a particular economic time series.

3. Limit Theorems for Discrete-Time Stochastic Processes
The fundamental mechanisms that make statistics work are the data transformations that enhance

“signal” relative to “noise” by filtering out noise components.  For example, sample means can
provide good estimates of location when the averaging process operates to dampen the influence of
noise.  Statistical limit theorems such as Laws of Large Numbers and Central Limit Theorems
provide the analytic backbone for understanding how these filtering operations work, and also
provide the basis for large-sample approximations that in many applications are an adequate
foundation for statistical inference.  In cross-section statistics, you get the statistical limit theorems
to work through “ensemble” averages of independent observations obtained by random sampling.
Then, asymptotic theory as random sample sizes go to infinity will usually be an adequate
approximation for random samples of the sizes encountered in cross-section econometrics.
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It is possible in principle to develop a statistical limit theory for time series by taking the
ensemble approach.  To make this work, one has to treat each observed time series as one
observation, and consider the limit as the number of independent repeated draws of observed
trajectories goes to infinity.  This approach would be essentially the same as the usual cross-section
analysis, and the relatively simple and tight asymptotic theory for cross-sections would carry over
more or less directly.  The problem is that most commonly in time series analysis, only one
realization is observed, and the ensemble asymptotics is not relevant.  It is not that one can not in
principle envision “parallel universes” over which ensemble limits could be compiled, but rather that
our inability to draw observations from parallel universes implies that the ensemble asymptotics are
inadequate approximations to the actual finite sample observations.  A partial exception to this
dismissal of ensemble asymptotics is the analysis of panel data where the number of panel members
is moderately large.  For example, in study of time series for a panel of countries, counties, or firms,
a limit theory based on the number of panel members may be adequate.  

More commonly, the possibility of dampening noise and detecting signal in time series has to
come through filtering of a single realization of the series, and  the relevant limit theory has to come
through letting the number of time series observations increase.  This will lead us to consider time
averages T-1 Xt of a stochastic process X (which itself may be the result of filtering).  The�T

t'1
stochastic process is said to be ergodic if the time average converges in probability to a limit.  Then,
for statistical analysis we will be interested in conditions under which time averages are ergodic, and
under which suitably normalized time averages satisfy central limit theorems.  Even before turning
to statistical considerations, there are some common sense qualifications on what one can hope to
determine from the available time-series data.  First, a phenomenon that expresses itself globally,
such as the location of a stochastic process that contains no trends, can be investigated through time
averages.  For a moderately broad class of stochastic processes, such time averages will have
reasonable large sample properties that permit one to make useful statistical statements about the
global phenomenon.  By contrast, there are phenomenon that are intrinsically local, such as the exact
timing of a regime shift, or the location of a stochastic process between regime shifts.  The available
data that can shed light on these phenomena are intrinsically finite, with information on timing
limited by the periodicity of observations and information on location limited by the duration of the
intra-regime shift interval.  Statistical investigation of these phenomena must be limited to the finite
samples that are relevant, and asymptotics are not helpful.  In further discussion where we
concentrate on the limiting properties of time averages, one should keep in mind that there may be
time series phenomena of interest for which the behavior of such time averages is irrelevant.  Then,
to a greater degree than in cross-section econometrics, finite-sample statistis done analytically where
possible, and with bootstrap techniques otherwise, will be a major analytic tool, and large sample
approximations will be correspondingly less important.

A critical factor in the behavior of time averages is the relationship between a current observation
and the history of the process.  If history has too much influence, then there may be insufficient
opportunity for recent noise to average against and diminish the impact of noise from the past.  The
analysis of the impact of history requires that we formalize the concept of historical information, and
the conditional distribution of a stochastic process given historical information.  We do this by
identifying information with -fields of events.  
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Consider a stochastic process Y in discrete time, and let Yt = Y(�,t) denote its component in
period t.  The dependence of Yt on the state of Nature s will be suppressed.  We will take T to be the
infinite sequence T = {1,2,...}, or as a doubly infinite sequence, extending back in time as well as

forward, T = {...,-2,-1,0,1,2,...} .  The trajectories of Y are points in the product space W = �t0T �
or W = �T, where � is the real line.  The “complete information” -field of subsets of W is defined

as FT = �t0T B , where B is the Borel -field of subsets of the real line.  (The same apparatus, with
T equal to the real line, can be used to consider continuous time.)  Accumulation of information is
described by a nondecreasing sequence of -fields ... � G-1� G0 � G1 � G2 �... with Gt interpreted

as the historical information available to an observer at time t and defined as Gt = (�i#t

B)�(�i>t{ ,S}), capturing the idea that at time t the future is unknown.  The monotone sequence of
-fields Gt, i = ...,-1,0,1,2,... is called a filtration. The stochastic process is adapted to the filtration

if Yt is measurable with respect to Gt for each t.  Some authors use the notation (...,Yt-2,Yt-1,Yt) for
Gt to emphasize that it is the -field generated by the information contained in Ys for s 
 t.   Note
that there may be more than one sequence of -fields in operation for a particular stochastic process.
These might correspond, for example, to the information available to different economic agents.  We
will need in particular the sequence of -fields Ht = (Yt,Yt+1,Yt+2,...) adapted to the process from
time t forward; this is a nonincreasing sequence of -fields... � Ht-1 � Ht � Ht+1 � ... .  Sometimes Gt

is termed the natural upward filtration, and Ht the natural downward filtration.  If we start with a

stochastic process Y that is measurable with respect to the product -field FT = �t0T B , then the
natural upward and downward filtrations are subfields of FT , and Yt is adapted to the natural upward
filtration.  Conversely, if we construct a sequence of random variables Yt that are adapted to the
natural upward filtration for t � T, then they define a stochastic process on T that is measurable with
respect to FT.  

Each subsequence (Ym,...,Ym+n) of the stochastic process has a multivariate CDF
Fm,..,m+n(ym,...,ym+n).  The process is said to be strictly stationary, or simply stationary, if for each n,
this CDF is the same for every m.  The process is said to be covariance stationary or weakly
stationary if its means, variances, and covariances between random variables a fixed number of time
periods apart are the same for all times m.  A stationary process for which second moments exist is
obviously always covariance stationary.  A stochastic process composed of a sequence of i.i.d.
random variables is always stationary.  The concept of stationarity plays an important role in time
series econometrics because it is considered a plausible property for many economic time series and
because it excludes trends that complicate the definition and interpretation of time averages.
Stationarity alone is neither necessary and sufficient for ergodicity.  It is not necessary because time
averages may converge in the presence of seasonality and other kinds of limited heterogeneity that
are inconsistent with stationarity.  Conversely, if statistical dependence across time is too strong,
time averages may fail to converge even if the process is stationary.

Example 1:  The stochastic process Yt = �t + �cos( t/6), where �t is an i.i.d. standard normal
disturbance and  is a non-zero constant, is non-stationary, having a seasonal cycle of length 12.  The
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time average T-1 Yt is normally distributed with a mean that is bounded in magnitude by 2.37/T�T
t'1

and a variance 1/T.  Then, the process is ergodic even though it is not stationary.

Example 2:  The stochastic process Yt = �1, where �1 is a single standard normal draw, is
stationary, but T-1 Yt is standard normal for all T, so the process is not ergodic.�T

t'1

Example 3:  The stochastic process Yt = t + �t, where �t is an i.i.d. standard normal disturbance
and  is a non-zero constant, is nonstationary due to the deterministic trend in its location.  The time
average T-1 Yt is normal with mean (T+1)/2 and variance 1/T, so that the process is not ergodic.�T

t'1
Thus, trends may cause ergodicity to fail.  This is not true for all trends, however.  If the previous
process is modified to Yt = t/(1+t) + �t, so that it has a bounded nonlinear trend, then it is ergodic.

Example 4:  The non-stationary stochastic process Yt = �t + �cos( t/6), where �t is a i.i.d.
standard normal disturbance and  is a standard normal draw, has a stochastic seasonal cycle of
length 12.  The time average T-1 Yt is normally distributed with mean zero and a variance 1/T,�T

t'1
so that the process is ergodic.  However, cov(Yt,Yt+12k) = cos( t/6)2 for all k, so that covariances do
not all dampen out as the time interval between observations grows.  This pattern of covariances is
inconsistent with the usual conditions for weak stochastic dependence over time, and shows that
these conditions are not necessary for ergodicity.

Example 5:  The stochastic process Yt = �t, where the �t are i.i.d. with a Cauchy distribution, is
stationary, but not covariance stationary, and non-ergodic.  Thus, stationarity and a strong form of
weak dependence, namely independence, are not sufficient for ergodicity if the tails of the random
variables in the stochastic process are too thick.

Keeping these examples in mind, we will consider several forms of weak dependence that in
combination with other assumptions will lead to ergodicity.  Specifically, we consider conditional
moment restrictions, given history, that lead to what is called martingale limit theory, and restrictions
on the influence of historical information from the remote past, that lead to what are called mixing
conditions.  These cases will cover most of the econometric time series models that generate
stationary stochastic processes. 

Martingale Limit Theory
One circumstance that arises in some economic time series is that while the successive random

variables are not independent, they have the property that their expectation, given history, is zero.
Changes in stock market prices, for example, will have this property if the market is efficient, with
arbitragers finding and bidding away any component of change that is predictable from history. A
sequence of random variables Xt adapted to Gt is a martingale if almost surely E{Xt�Gt-1) = Xt-1.  If
Xt is a martingale, then Yt = Xt - Xt-1 satisfies E{Yt�Gt-1) = 0, and is called a martingale difference
(m.d.) sequence.  Thus, stock price changes in an efficient market form a m.d. sequence.  It is also
useful to define a supermartingale (resp., submartingale) if almost surely E{Xt�Gt-1) 
 Xt-1 (resp,,
E{Xt�Gt-1) � Xt-1).  The following result, called the Kolmogorov maximal inequality, is a useful
property of martingale difference sequences.  A proof can be found in Chapter 4.
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Theorem 1. If random variables Yk are have the property that E(Yk�Y1.,,,.Yk-1) = 0,  or more
technically the property that Yk adapted to (...,Yk-1,Yk) is a martingale difference sequence, and if

EYk
2 = k

2, then P(max1#k#n � Yi� > �) 
 i
2/�2.�k

i'1 �n
i'1

Mixing
Many economic time series exhibit correlation between different time periods, but these

correlations dampen away as time differences increase.  Bounds on correlations by themselves are
typically not enough to give a satisfactory theory of stochastic limits, but a related idea is to postulate
that the degree of statistical dependence between random variables approaches negligibility as the
variables get further apart in time, because the influence of ancient history is buried in an avalanche
of new information (shocks).  To formalize this, we introduce the concept of stochastic mixing.  For
a stochastic process Y, consider events A � Gt and B � Ht+s, where Gt is the natural upward filtration
and Ht+s is the natural downward filtration.  Then A draws only on information available up through
period t and B draws only on information available from period t+s on.  The idea is that when s is
large, the information in A is too “stale” to be of much use in determining the probability of B, so
that these events are nearly independent.  Three definitions of mixing are given in the table below;
they differ only in the manner in which they are normalized, but this changes their strength in terms
of how broadly they hold and what their implications are.  When the process is stationary, mixing
depends only on time differences, not on time location.

Form of Mixing  Coefficient Definition (for all A � Gt and B � Ht+s, and all t)

Strong (s) 	 0 |P(A�B) - P(A)�P(B)| 
 (s)

Uniform �(s) 	 0 |P(A�B) - P(A)�P(B)| 
 �(s)P(A)

Strict (s) 	 0 |P(A�B) - P(A)�P(B)| 
 (s)P(A)�P(B)

There are links between the mixing conditions and bounds on correlations between events that are
remote in time: 

(1) Strict mixing ��� Uniform mixing ��� Strong mixing.  
(2) (Serfling) If the Yi are uniform mixing with EYi = 0 and EYt

2 = t
2 < +�, then

�EYtYt+s� 
 2�(s)1/2
t t+s. 

(3) (Ibragimov) If the Yi are strong mixing with EYt = 0 and E�Yt�
d < +� for some d > 2, then

�EYtYt+s� 
 8 (s)1-2/d
t t+s. 

(4) If there exists a sequence t with limt64 t = 0 such that �E(U-EU)(W-EW)� 

t[(E(U-EU)2)(E(W-EW)2)]½ for all bounded continuous functions U = g(Y1,...,Yt) and  W =

h(Yt+n,...,Yt+n+m) and all t, n, m, then the Yt are strict mixing.  

An example gives an indication of the restrictions on a dependent stochastic process that produce
strong mixing at a specified rate.  First, suppose a stationary stochastic process Yt satisfies Yt = Yt-1
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+ Zt, with the Zt independent standard normal.  Then, var(Yt) = 1/(1- 2) and cov(Yt+s,Yt) = s/(1- 2),
and one can show with a little analysis that |P(Yt+s 
 a,Yt
b) - P(Yt+s 
 a)�P(Yt
b)| 
 s/ (1 - 2s)½.
Hence, this process is strong mixing with a mixing coefficient that declines at a geometric rate.  This
is true more generally of processes that are formed by taking stationary linear transformations of
independent processes. 

Consider a stochastic process Y and the time averages XT = Yi for T = 1,2,....  LawsT&1�T
i'1

of large numbers give conditions under which the time averages XT converge to a constant, either
in probability (weak laws, or WLLN) or almost surely (strong laws, or SLLN).  We give one WLLN
and two SLLN that can be applied to time averages of discrete-time stochastic processes. 

Theorem 2. (WLLN) If a stochastic process Y has limT64  E Yt = µ, E(Yt-µ)2 � t
2, andT &1 �T

t

|cov(Yt,Ys)| 
 ts t s with t
2/t3/2 < +� and limn64 km < +�, then the process�4

t'
1
n �n

k'1 �n
m'1

is ergodic; i.e.,  XT 	p µ.
    
Proof: Using Chebyshev's inequality, it is sufficient to show that E(Xn-EXn)

2 converges to zero.  The
Cauchy-Schwartz inequality (see Chap 2.1.11) is applied first to establish


 1
n �

n

m'1
m km

2
1
n �

n

m'1

2
m

1
n �

n

m'1

2
km

and then to establish that

     E(Xn-EXn)
2 = = 1

n 2 �
n

k'1
�

n

m'1
k m km

1
n �

n

k'1
k

1
n �

n

m'1
m km

 
 
    
1
n �

n

k'1

2
k

1/2
1
n �

n

k'1

1
n �

n

m'1
m km

2 1/2

1
n �

n

k'1

2
k

1/2
1
n �

n

m'1

2
m

1

n 2 �
n

k'1
�

n

m'1

2
km

1/2

= = .
1
n �

n

k'1

2
k

1

n 2 �
n

k'1
�

n

m'1

2
km

1/2
1

n 3/2 �
n

k'1

2
k

1
n �

n

k'1
�

n

m'1

2
km

1/2

The last form and Kronecker’s lemma (Chapter 2.1.11) give the result.  �
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Corollary 2.1:  If the Theorem 2 stochastic process Y is covariance stationary and

|cov(Yt,Yt+k)| < +�, then the process is ergodic.�4

k'

Corollary 2.2:  If the Theorem 2 stochastic process is covariance stationary and strong mixing

with E |Y|d < +� for some d > 2 and mixing coefficients that satisfy (k)1-2/d < +�, then the�4

k'

process is ergodic.

Theorem 3. (Martingale SLLN) If a stochastic process Yk adapted to (...,Yk-1,Yk) is a martingale

difference sequence, EYt
2 = t

2, and k
2/k2 < +�, then XT 	as 0.�4

k'1

Proof:  The theorem is stated and proved by J. Davidson (1994), p. 314.  To give an idea why SLLN

work, we give a simplified proof when the assumption k
2/k2 < +� is strengthened�4

k'1

to k
2/k3/2 < +�.  Either assumption handles the case of constant variances with room to�4

k'1

spare.  Kolmogorov’s maximal inequality (Theorem 1) with n = (m+1)2 and � = m2 implies that

  P(maxm2
#k#(m+1)2 �Xk� > ) 
 P(max1#k#n � Yi� > m2) 
 i

2/ 2m4.�k
i'1 �(m%1)2

i'1

The sum over m of the right-hand-side of this inequality satisfies

i
2/ 2m4 = i

2/ 2m4 
 36  i
2/i3/2 2.�4

m'1 �(m%1)2

i'1 �4

i'1 �4

m$i 1/2
&

�4

i'1

Then P(supk �Xk� > ) 
 36  i
2/i3/2 2 < +�.  The Borel-Cantelli theorem, which�4

m'1 �4

i'1

states that if Ai is any sequence of events in a probability space (S,F,P), then P(Ai) < +��4

n'1

implies that almost surely only a finite number of the events Ai occur, gives the result.  �

Corollary 3.1:  If the Theorem 3 stochastic process is covariance stationary with Ey1
2 < +�, then

XT 	as 0.

Theorem 4. (Serfling SLLN) If a stochastic process Y has limT64  E Yt = µ,T &1 �T
t

E(Yk-E(Yk))
2 = k

2, and �cov(Yk,Ym)� 
 |k-m| k m, with the bounds (log k)2
k

2/k2 < + ��4

k'1

and k < +�, then Xn 	as µ.�4

k'
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Corollary 4.1:  If the Theorem 4 stochastic process is covariance stationary and the covariances

satisfy |cov(Y1,Yk)| < +�, then Xn 	as µ. �4

k'

Corollary 4.2:  If the Theorem 4 stochastic process is covariance stationary and strong mixing

with E |Y|d < +� for some d > 2 and (k)1-1/d < +�, then Xn 	as µ.�4

k'

We next consider central limit theorems for time averages of stochastic processes.  For a mean

zero stochastic process Y, consider the scaled time averages ZT = T-1/2 Yt.  Central limit�T
i'1

theorems (CLT) are concerned with conditions under which the ZT, or variants with more generalized
scaling, converge in distribution to a normal random variable Zo.  We give CLT for martingale
difference processes and for stationary processes with strong mixing.  The proofs of these theorems
are quite technical, and are omitted.

When random variables are not identically distributed, a bound on the behavior of tails of their
distributions, called the Lindeberg condition, is needed to get a CLT.  This condition ensures that
sources of relatively large deviations are spread fairly evenly through the series, and not concentrated
in a limited number of observations.  The Lindeberg condition can be difficult to interpret and check,
but there are a number of sufficient conditions that are useful in applications.  For example, a
condition that random variables are uniformly bounded is always sufficient, and a condition that
some moment higher than two is uniformly bounded is usually enough.

The next theorem establishes a CLT for martingale differences.  The uniform boundedness
assumption in this theorem is a strong restriction, but it can be relaxed to a Lindeberg condition or
to a “uniform integratability” condition; see P. Billingsley (1984), p. 498-501, or J. Davidson (1994),
p. 385.

Theorem 5. Suppose Yk is a martingale difference sequence adapted to (...,Yk-1,Yk), and Yk

satisfies a uniform bound |Yk| < M.  Let EYk
2 = k

2, and assume that k
2 	 o

2 > 0.  Thenn&1�n
k'1

Zn 	d Zo ~ N(0, o
2).

Intuitively, the CLT results that hold for independent or martingale difference processes should
continue to hold if the degree of dependence between variables is asymptotically negligible.  The
following theorem from I. Ibragimov and Y. Linnik, 1971, gives a CLT for stationary strong mixing
processes.  This result will cover a variety of economic applications, including stationary linear
transformations of independent processes.
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Theorem 6. (Ibragimov-Linnik) Suppose Yk is stationary and strong mixing with mean zero,
positive finite variance 2, and covariances E Yk+sYk = 2

s. Suppose that for some r > 2, E�Yn�
r <

+� and (k)1-2/r < +�.  Then, | s| < +� and Zn 	d Zo ~ N(0, 2(1+2 s)).�4

k'1 �4

s'1 �4

s'1

In some applications, one encounters what are called “triangular arrays” of random variables,
indexed both by time period and by sample size.  This could arise, for example, if one applies a
linear operator or filter to a stochastic process and the filter used depends on sample size.  It is
convenient to have a limit theory for such arrays.  Let Ynt with t = 1,2,...,n and n = 1,2,3,... denote
a triangular array of random variables.  (One additional level of generality could be introduced by
letting t range from 1 up to a function of n that increases to infinity, but this is not needed for most
applications.)  This setup will include simple cases like Ynt = Zt/n or Ynt = Zt/n

1/2, and more general
weightings like Ynt = antZt with an array of constants ant, but can also cover more complicated cases.
Assume that for each n, the random variables Ynt for  t = 1,...,n form a martingale difference
sequence;  this is called a martingale difference array.  Formally, consider random variables Ynt for
t = 1,...,n and n = 1,2,3,... that are adapted to -fields Gnt that are a filtration in t for each n, with the
property that E{Ynt�Gn,t-1} = 0;  A WLLN for this case is adapted from J. Davidson (1994), p. 299.
Note that in this result, normalizing by sample size to form averages is subsumed in the definition
of the rows of the array, so that one works with sums rather than averages.

Theorem 7:  If Ynt and Gnt for t = 1,...,n and n = 1,2,3,... is an adapted martingale difference array

with �Ynt� 
 M, E Ynt
2 = nt

2, nt  uniformly bounded, and nt
2 	 0, then the array�n

t'1 �n
t'1

is ergodic; i.e., Ynt 	p 0.�n
t'1

It is also possible to establish a CLT for martingale difference arrays.  The following result is
taken from D. Pollard (1984), p. 170-174.  The last condition in this theorem is a Lindeberg
condition which will certainly be satisfied if the Ynt are constructed by multiplying uniformly
bounded random variables by scalars that uniformly tend to zero with n.

Theorem 8. Suppose Ynt and Gnt for t = 1,...,n and n = 1,2,3,... is an adapted martingale

difference array, nt
2 = E(Ynt

2�Gn,t-1) is the conditional variance of Ynt, nt
2   	p 

2 � (0,+�).�n
t'1

Suppose for each � > 0, E Ynt
2�1(|Ynt| > �) 	 0.  Then Xn = Ynt 	d Xo ~ N(0, 2).�n

t'1 �n
t'1


