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DISCRETE TIME STOCHASTIC PROCESSES

1. Introduction

A discrete-time stochastic process is essentially a random vector with components indexed by
time, and atime series observed in an economic application isonerealization of thisrandom vector.
Then, a useful way to introduce stochastic processes is to return to the basic development of the
theory of random variables and vectors, and use the analogy as a guide to the statistical anaysis
needed in the more general stochastic setting.

Let S denote the universe of states of Nature. A state s € S describes everything that has
happened and will happen. In particular, this description includes the outcomes of all probability
and sampling experiments. The family of potentially observable eventsin Sis denoted by F, a
o-field (or Boolean c-algebra) of subsets of S satisfying

(i) The "anything can happen” event Sisin F.

(ii) If event A'isin F, then the event "not A", denoted A or S\A, isin F.

(iii) If A and B are eventsin F, then the event "both A and B", denoted AnB, isin F.

(iv) If A,A,,... isafinite or countable sequence of eventsin F, then the event "one or more of

theevents A, or A, or..",denoted U, A, isinF.
Implications of the definition of ac-field are
(V) If AA,,... isafinite or countable sequence of eventsin F, then ﬂi“;lAi isdsoinF.

(vi) If ALA,,... isacountable sequence of eventsin F that is monotone decreasing (i.e., A,
A, > ..), thenitslimit, denoted A, « A, isalsoinF. Similarly, if asequencein F ismonotone

increasing (i.e., A; c A, c ...), thenitslimit A;= U, A, isdsoinF

(vii) Theempty event ¢ isin F.

A o-field of subsetsof Sissometimesidentified with theinformation availableto an observer. One
method of constructing a c-field of subsets of Sisto start from a specified family A of subsets of
S, such astheopenintervalswhen Sisthereal line, and defineF to betheintersection of al o-fields
containing the specified family; F isthen said to be the o-field generated by A, and is sometimes
denoted 6(A). Theideaisthat if the observer knowswhich of theeventsin A occur, then hecanalso
determine which of the eventsin ¢(A) occur. There may be more than one o-field of subsets of S;
these may correspond to the information available to different observers. If F and G are both
o-fields, and G c F, then G issaid to be asub-field of F, and F is said to contain more information
or refine G. Itispossiblethat neither F < G nor G ¢ F. Theintersection FNG of two o-fieldsis
again ac-field that contains the common information in F and G. Further, the intersection of an
arbitrary countable or uncountable collection of o-fieldsis again ao-field. It isthis property that
guaranteesthat thereisawaysasmallest o-field 6(A) containing any family A of subsetsof S. The
union FuG of two o-fields is not necessarily a o-field, but there is always a smallest o-field that
refinesboth F and G, whichissimply the o-field o(FUG) generated by the setsin the union of F and
G, or put another way, the intersection of all o-fields that contain both F and G.



M cFadden, Statistical Tools, © 2000 Page 2

A pair (S,F) consisting of aset Sand ac-field F of subsets of Sis called a measurable space,
and the setsin F are called the measurable events. Then the universe of states of Nature with its
o-field is a measurable space, but the definition of a measurable space will be used much more
generally, including the set of time indices and the image space of random functions.

Finally, P is aprobability defined on the measurable events in the universe of states of Nature
S, i.e., afunction P:F — [0,1] with the properties

(i) P(A) > Oforal A e F.
(i) P(S) = 1.
(iii) [Countable Additivity] If A, A,,... isafinite or countable sequence of eventsin F that are

00

mutually exclusive (i.e., AnA; = ¢ forali =j), thenP( U7, A)= ZH P(A).

With conditions (i)-(iii), P has the following additional intuitive properties of a probability when A
and B areeventsin F:

(iv) P(A) + P(A°) = 1.

(V) P(9) = 0.

(vi) P(AUB) = P(A) + P(B) - P(ANB).

(vii) P(A) > P(B) when B < A, and P(B\A) = P(B) - P(A).

(viii) If A; in F ismonotone decreasing to ¢ (denoted A, ~ ¢), then P(A;) - 0.

(ix) If A; € F, not necessarily digioint, thenP( U™, A)< Y. P(A).
(x) If {A;} isafinite or countable partition of S (i.e., the events A, e F are mutually exclusive
and exhaustive, or AnA =g forali=jand U, A =9),thenP(B)= Y, P(BNA).

Thetriplet (S,F,P) consisting of a measurable space (S,F) and a probability measure P iscalled a
probability space. If A € F has P(A) = 1, then A is said to occur almost surely (a.s.), or with
probability one (w.p.1). If A e F hasP(A) =0, then A issaid to occur with probability zero (w.p.0).
Finite or countable intersections of events that occur almost surely again occur amost surely, and
finite or countable unions of events that occur with probability zero again occur with probability
zero. Wenoted earlier that o-fields of subsets of Sformalize the concept of the information known
to an observer. There is an additional technical reason for introducing o-fields. Starting from a
probability with reasonable properties on selected events in S, one can always extend it to a
probability on the o-field generated by these selected events, but an extension to all the subsets of
S may be impossible due to the existence of non-measurable sets whose probabilities are not well-
defined. Itisoften useful for analysis of aprobability space (S,F,P) to work with the completion G
the o-field F; we obtain G by augmenting F  with all sets B satisfying B < A for someset A € F
that has P(A) = 0. Since the additional sets B unambiguously have probability zero, their addition
causes no problem with the definition of the probability.

M easurable spaces (S,F) will usually have an associated metric that measures distance between
pointsin S, and open neighborhoods consisting of all the pointsin Slessthan agiven distance from
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each specified point. Often, theo-field F will be defined asthe smallest o-field that containsall the
open neighborhoods, and will be said to be generated by these neighborhoods. A space Swith a
distance metric is complete if every Cauchy sequence (i.e., a sequence of pointsin S such that the
distance between any two points sufficiently far out in the sequence convergesto zero) has alimit
contained in S. Note that thisis a different use of the word “complete’ than the completion of a
probability space. A metric space Sis separableif it contains a countable dense subset; i.e., there
isacountable subset of S such that each point in S can be obtained asalimit of pointsin the subset.
An important measurable space is (R,B), where R is the real line and B is the Borel o-field, the
smallest o-field of subsets of R that contains all the open intervals in R. The real line with the
Euclidean distance metric is a complete separable metric space.

Often a measurable space (S,F) will have an associated measure v that is a countably additive

function from F into the nonnegativeredl ling;i.e, v( U, A)= Y., v(A) for any sequence

of digoint A, € F. Themeasureisnon-negativeif v(A) > Ofor all A € F; wewill consider only non-
negative measures. The measure v isfiniteif [v(S)| < M, and o-finiteif F contains a countable
partition { A} of S such that the measure of each partition set isfinite. The measure v may be a
probability, but often is ameasure of "length” or "volume". For example, it iscommon when Sis
the countable set of positive integers to define v to be counting measure with v(A) equa to the
number of pointsin A. For therea line (R,B), it iscommon to define v to be Lebesgue measure,
with v((a,b)) = b - afor any open interval (a,b). Both counting measure and Lebesgue measure are
non-negative o-finite measures. A set A issaid to be of v-measure zero if v(A) = 0. A property that
holds except on aset of measure zero issaid to hold almost everywhere (a.e.). A set A € Fiscalled
an atom if every set B € F with B < A has either v(B) = 0 or v(B) = v(A). Every non-negative
measure can be decomposed into a countable sum of atoms plus a non-negative atomless measure.
Given two measuresv and A on F, one saysthat ) is continuouswith respecttov if v(A) =0implies
MA) =0. Statistical analysisoften useso-finite measure spaces (S,F, ) where L isnon-negative and
o-finite and may either be a probability measure or amore general counting or length measure such
as Lebesgue measure. Often a measurable space (S,F) will have both a probability measure P and
a“length” measurev.

Suppose f is a real-valued function on a o-finite measure space (S,F,i). This function is
measurableif f (C) € F for each open set C inthereal line. A measurable function isintegrable

onasetA € F if [,[f(9u(ds), defined asthelimitof 0y (k/n)-u({scAlkn<[f(9i(k+1)/n}),

existsand isfinite. If itisintegrable, theintegral [,f(S)u(ds) is sometimes denoted [ ,f(s)dy, or in
the case of Lebesgue measure, [ ,f(s)ds. When A =S, theintegral isoftenwrittenas [f(S)u(ds). In
general, the measure |1 can have point masses (at atoms), or continuous measure, or both, so that the
notation for integration with respect to p includes sums and mixed cases. If a probability measure
P is continuous with respect to Lebesgue measure v, then there exists a measurable non-negative
function g on the real line, called the density of P, such that [f(s)P(ds) = [f(s)g(s)ds; thisresult is
called the Radon-Nikodym theorem (see Chap. 3, Theorem 3.2).
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For ac-finite measure space (S,F, 1), define L (S,F,1) for 1 < g <+ to bethe set of measurable
real-valued functions on Swith the property that [f[* isintegrable, and define the normof f to be | f|,
= [J1f(9)]? p(ds)]™ . Then, L (SF.u) is alinear space, since linear combinations of integrable
functions are again integrable. This space has many, but not all, of familiar properties of finite-
dimensional Euclidean space. The set of all linear functions on the space L ,(S,F,u) for > listhe
spacel (S,F,u), where 1/r =1 - 1/q. Thisfollowsfrom an application of Holder’ sinequality, which
generalizes from finite vector spaces to the condition

fel(SFuandge L (SFuwithg+rt=1imply [[f(s)-g(s)| u(ds) < fly gl
The case q = r = 2 gives the Cauchy-Schwartz inequality in general form. The space L,(S,F,1),
called Hilbert space, occurs often in statistics.

A randomvariable X isameasurable real-valued function on the probability space (S,F,P), or
X:S — R. Then each state of Nature s determines a value X(s) of the random variable, termed its
realization in state s. When the functional nature of the random variableisto be emphasized, itis
denoted X(+), or simply X. Whenitsvaluesor realizations are used, they are denoted X(s) or x. For
each set B € B, the probability of the event that therealization of X iscontained in B iswell-defined
and equals P’'(B) = P(X*(B)), where P’ is termed the probability induced on R by the random
variable X. The probability that X iscontained in ahalf-line (--,x] definesthe CDF of X, whichin
turn characterizes P':

Fx() = P ((-=,X]) = P(X((-=X])) = P({ seSX () (== x1}).

Multiplying arandom variable by a scalar, or adding random variables, results in another random
variable. Then, the family of random variables forms alinear vector space. In addition, products
of random variables are again random variables, so that the family of random variables forms an
Abelian group under multiplication. The family of random variables is also closed under
majorization, so that Z:S — R defined by Z(s) = max(X(s),Y (s)) for random variables X and Y is
again arandom variable. Then, the family of random variables forms a lattice with respect to the
partial order X < Y(i.e., X(s) < Y(s) dmost surely).

Most econometric applications deal with random variables which can be assumed to havefinite
variances. The space of these random variablesis L ,(S,F,P), the space of random variables X for
which E X?= [ X (x)?P(ds) <+x. ThespaceL ,(S,F,P) isalsotermed the space of square-integrable
functions. The normin this spaceisroot-mean-square, | X |, =[[<¢X(S)* P(ds)]*. Implications of X
€ L,(SF,P) areE [X| < [smax(X(s),1)P(ds)< [4(X(s)*+1)P(ds) = |X|,* + 1 <+ and E (X - EX)?
= |X],2- (E [X])? < | X],2 < +e, so that X has awell-defined, finite mean and variance.

If T random variables are formed into a vector, X(-) = (X(-,2),...,X(:,T)), theresult istermed a
randomvector. For each se S, therealization of the random vector isapoint (X(s,1),...,.X(s,T)) in
RT, and therandom vector hasaninduced probability on R" whichischaracterized by itsmultivariate
CDF, F(Xq,.--,X7) = P{seSIX(s,1) <Xy,....X(S,T)<X;}). Note that all the components of a random
vector arefunctionsof the same state of Nature s, and the random vector can be written asafunction
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X:S — R". The measurability of X requires X*(C) € S for each open rectangle C in R". The
independence or dependence of the components of X is determined by the fine structure of P on S.

Another way to write arandom vector X isto defineanindex set T ={1,..., T}, and then define
X asareal-valued functionon Sand T, X:SxT —R. Then, X(-,t) isasimplerandom variablefor each
t e T, and X(s,) is a rea vector that is a realization of X for each s € S. The measurability
requirement on X is the same as before, but can be written in adifferent form as requiring that the
inverse image of each openinterval in R be contained in FoT, where T isac-field of subsets of T
that can be taken to be the family of all subsetsof T and “®” denotes the operation that forms the
smallest o-field containing all sets AxB with A € F and B € T. Thereisthen a complete duality
between random vectorsin a T-dimensional linear space and random functions on a T-dimensional
index set. Thisduality between vectorsand functionswill generalizeand provideuseful insightsinto
statistical applicationsin which T isamore general set indexing time.

2. Stochastic Processes

Consider a measurable space (T,T) consisting of an ordered set T indexing time, and a o-field
T of subsetsof T. The set T is assumed to be a complete separable metric space. The most
important casesare T discrete, either T ={1,2,3,...} withinitial timet=1,0or T ={...,-2,-1,0,1,2,...}
with anindefinite past, and T continuous, either T =[0,+e) withaninitial timet =0, or T = (-0, +)
with an indefinite past. In the discrete case, T is usualy assumed to be the smallest o-field
containing all setsof theform{...,t-2,t-1,t} for each integer t; thisalso guaranteesthat T containsall
finite subsetsof T. Inthe continuous case, T isusually assumed to be the Borel o-field relative to
T, so that it contains all sets of the form (-«,t), (-=,t], [O,t), and [O,t].

A real-valued function X:SxT — R iscalled astochastic process. When T isdiscrete, X iscalled
a discrete-time stochastic process, and when T is continuous, X is called a continuous-time
stochastic process. For eachse S, X(s,’) isareal-valued functionon T. and istermed arealization,
trajectory, or sample path of the stochastic process, and for eacht € T, X(-,t) isarandom variable.
Alternately one can think of astochastic processasafunction X:S — R' that maps states of Nature
into random vectors in the product space R™ whose coordinates are indexed by T, and think of a
trajectory as a vector X(s) in this linear space with components X(s,t). There are substantia
technical differences between finite and infinite dimensional vector spaces, but it will nevertheless
be the case that much of the geometric intuition for manipulation of vectorsin finite-dimensional
spacewill carry over to themanipul ation of stochastic processes, even inthe case of continuoustime.

For a finite subset T, = {t,,....,t.} of T, the random vector (X(-,t),....X(:,t,)) is termed the
restriction of X to T,. Conversely, X is termed an extension of this finite-dimensional random
vector. A rectangleinR" isaset of theform [].+A,, where A, isaset inthe Borel o-field of subsets
of R foreacht e T, and A, = R except for tin afiniteset T, = T. The o-field of subsets of R”
generated by the rectangles, called the product o-field, is denoted ®tETB ; thisisthesmallest o-field
with the property that if X is measurable with respect to ®t€TB (i.e., for eachrestriction Y of X to
afinitesubset T, = {t,,....,t .} of T and open rectangle C c R", the set {s=S]Y(s) € C} is contained
in F), then all the restrictions of X to finite-dimensional coordinate subspaces are measurable. A
family of random vectors defined on the finite subsets of T are compatibleif for each pair of finite
subsets T, and T, of T satisfying T, c T,, therestriction to T, of the random vector assignedto T,
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coincides almost surely with the random vector assigned to T,. An important result called the
Kolmogorov existence theorem states that the finite-dimensional restrictions of a stochastic process
on T are acompatible family of random vectors, and conversely any compatible family of random
vectors defined on the finite subsets of a complete separable metric space T have an amost surely
unique extensionto (T ,®tETB). These definitions were encountered previously in the discussion of
repeated trials and independence in Chapter 3. There T was countable, but the existence theorem
holds for uncountable T aswell. Oneimplication of this result is that the probability distribution
of astochastic processon T is characterized by the finite-dimensional distributions associated with
its restrictions to finite-dimensional subsets of T. Another implication of this result isthat if one
starts with the family of random vectors (X(-,t,),...,X(:,t,)) onfinitesubsets T, = {t,,....,t.} of [0,+)
that are multivariate normal with mean zero and covariances E (X(-,t)X(-,t;) = min(t;,t,), then these
random vectors are compatible, and hence are restrictions of a stochastic process X on [0,+) that
has X (-,t) normal with mean zero and variancet for each t, has E X(-,t)[X(-,t') - X(-,t)] =0for t’ >
t, and hastrajectoriesthat are amost surely continuous. The process X iscalled the \Weiner process;
it plays afundamental role in the statistical theory of continuous time stochastic processes.

For analysis, one usually needsto restrict further the family of stochastic processes on the index
space(T,T). Oneway to do thisisto specify ageneral space of stochastic processes satisfying some
conditions, such as continuity and integrability conditions, and then argue that the time series
encountered in an econometric application are sampl e paths from stochasti c processes meeting these
definitions. A second way is to generate specific families of stochastic processes, say with a
particular dynamic structure such as finite-order autoregression, and study the properties of the
spaces of stochastic processes generated by these specific families. We will begin with the first
approach, whichisoften quiteuseful for establishing statistical [imit theory for stochastic processes.
The second ismore commonly used in time series econometrics, which for many purposes does not
have to use the linear space characterizations of the stochastic processesit treats.

For most econometrictime seriesand problems, itisnatural to treat observationsascoming from
discrete time stochastic processes. The discrete time analysis is also technically simpler.
Consequently, it isthe best starting point for acoursein econometrictime seriesanalysis. However,
there are some econometric and finance applications where continuous time processes are required,
so that it is useful to identify afew important cases and connections to the discrete time treatment
of time series that is the main subject of this course. A stochastic process on continuous T issaid
to beseparableif T containsacountable dense subset T ,, and almost surely the graph of the process
on T is contained in the closure of the graph of the processon T, i.e., for sin a subset of S that
occurs with probability one, the set {(t,x)[x=X(st) for teT} is contained in the closure of
{{tx)[x=X(s;t) for teT,}. The concept of separability of a stochastic process is different than the
concept of a separable metric space, athough the two are closely related. A separable stochastic
process has the property that its behavior is effectively determined on a countable set of times,
similarly to adiscrete time stochastic process. This permits many of the properties of a separable
continuous time stochastic process to be deduced by limiting arguments from the properties of
discrete time stochastic processes.

One leading vector space for stochastic processes in continuous time is C(T), the space of
continuous real-valued functions X(s,-) on T. Then, a continuous time stochastic process with a.s.
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continuous trajectories will be a measurable function from (S,F,P) into C(T). A second common
vector spaceisD(T), thespace of real-valued functions X(s,-) on T with the property that the sample
paths are amost surely right-continuous and have left-hand limits. When T isthereal linewith the
Borel o-field, both C(T) and D(T) are spaces of separable stochastic processes. Animportant limit
theorem that isthe basisfor other limit resultsfor continuoustime processes, dueto Donsker, states
that if Y, arei.i.d. random variables with mean zero and variance one, T =[0,1], and one constructs
the sequence of stochastic processin C[T] that satisfy

Xn(St) =Y (9) + Y (5) + ..t Y () + (nt - [N])Y (g:4(9)}

where [nt] is the largest integer that does not exceed nt, then X,, converges in distribution to the
Weiner process (i.e., for every finite-dimensional subset of T, the restriction of X, converges in
distribution to the corresponding restriction of the Weiner process.)

Thinking of stochastic processes as random vectors and their trgjectories as points in a linear
vector space provides some insights that will be useful later. First, linear transformationsin finite
dimensional vector spaces are afamiliar tool in econometrics, and linear operators in these spaces
areidentified with matrices. We give examples of linear operatorsthat areimportant in time series
analysis, defined here in afinite-dimensional setting in R®. They are the shift (or lag) operator L,

Y1 00 1/[*% X;
Yol = |1 0 O [X| =L [X];
y;| 10 1 0f|x, X3

the smoothing operator

Y1 12 0 12||*% Xy
Yo = |12 12 0|%|=0A+1) [%] :
A 0 12 1/2 X, X,

the differencing operator

Y1 1 0 -1|*% X
Yol = (-1 1 Of||%|=(0-L) %];
Vs 0 -1 1]|x X,
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and projections onto linear subspaces. Operations like smoothing and differencing are sometimes
called filters. These concepts carry over to infinite dimensions, where they are defined as linear
operatorsinlinear spacesof stochastic processes. When observed timeseriesarefinitedimensional,
operations on these series will coincide with finite-dimensional restrictions of linear operators on
stochastic processes. Specificaly, lag, filter, and projection operations on stochastic processes have
finite-dimensional matrix operator analogs that are used to manipulate data, and can be helpful in
understanding what these operators are doing. This duality holds even in the case of continuous
time stochastic processes, where linear operators take the form of stochastic integrals and integra
equations. Despitethe different look, these are again just infinite-dimensional extensions of finite-
dimensiona matrix transformations.

Another useful insight comes from considering different representations of vectors in finite-
dimensional spaces, and extending these ideas to infinite-dimensional situations. To be specific,
consider R2. When we expressafunction X on T ={1,2} asapoint (X(1),X(2)) in this space, what
we arereally doing is defining two functions Z, = (1,0) and Z, = (0,1) with the property that Z, and
Z, span the space, and then writing X asthe linear combination X = X(1)-Z, +X(2)-Z,. The pair of
functions (points) Z, and Z, is called aHamel basisfor R?, and every point in the space has a unique
representation in terms of this basis. However, there may be many different Hamel bases. For
example, the unit function (1,1) and the function cos(xnt) or (-1,1) also form aHamel basis, and in
terms of this basis X has the representation X = %2(X(1)+X(2))-(1,1) + %X (2)-X(1))-(-1,1).

For countably infinite T ={1,2,...}, the coordinate functions Z, = (0,...,0,1,0,...) withaonein the
i-th place form one Hamel basis. Another Hamel basisis the list of trigonometric functions Z,; =
cos(nt/2i) and Z,,,,,= sin(wt/2i) for i = 1,2,... . Therepresentation of X intermsof thisbasisiscalled
aFourier representation. Thereason to consider different basesisthat they may reveal asimpleor
insightful characterization of aparticular family of stochastic processes. For example, thecoordinate
basi srepresentation aboveyieldswhat is called the time domai n representation of the processwhich
isparticularly hel pful when the process has asimple dynamic structure. The Fourier representation
yieldswhat iscalled the frequency domain representation of the processwhichisparticularly helpful
when the process contains important cyclic components in different frequency ranges.
Geometrically, these are just different representations of the same point in linear space, and one can
switch from one to the other to gain insight into the structure of a particular economic time series.

3. Limit Theoremsfor Discrete-Time Stochastic Processes

Thefundamental mechanismsthat make statisticswork arethedatatransformationsthat enhance
“signal” relative to “noise” by filtering out noise components. For example, sample means can
provide good estimates of |ocation when the averaging process operates to dampen the influence of
noise. Statistical limit theorems such as Laws of Large Numbers and Central Limit Theorems
provide the analytic backbone for understanding how these filtering operations work, and aso
provide the basis for large-sample approximations that in many applications are an adequate
foundation for statistical inference. In cross-section statistics, you get the statistical limit theorems
to work through “ensemble’ averages of independent observations obtained by random sampling.
Then, asymptotic theory as random sample sizes go to infinity will usually be an adequate
approximation for random samples of the sizes encountered in cross-section econometrics.
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It is possible in principle to develop a statistical limit theory for time series by taking the
ensemble approach. To make this work, one has to treat each observed time series as one
observation, and consider the limit as the number of independent repeated draws of observed
tragjectories goesto infinity. Thisapproach would be essentially the same as the usual cross-section
analysis, and the relatively simple and tight asymptotic theory for cross-sections would carry over
more or less directly. The problem is that most commonly in time series analysis, only one
realization is observed, and the ensemble asymptoticsis not relevant. It is not that one can not in
principleenvision*parallel universes’ over which ensemblelimitscould becompiled, but rather that
our inability to draw observationsfrom parallel universesimpliesthat the ensemble asymptoticsare
inadequate approximations to the actual finite sample observations. A partial exception to this
dismissal of ensemble asymptoticsistheanaysisof panel datawhere the number of panel members
ismoderately large. For example, in study of time seriesfor apanel of countries, counties, or firms,
alimit theory based on the number of panel members may be adequate.

More commonly, the possibility of dampening noise and detecting signal in time series has to
comethrough filtering of asinglerealization of the series, and therelevant limit theory hasto come
through letting the number of time series observationsincrease. Thiswill lead usto consider time
averages T‘lztll X, of a stochastic process X (which itself may be the result of filtering). The
stochastic processissaid to be ergodicif thetime average convergesin probability toalimit. Then,
for statistical analysiswewill beinterestedin conditionsunder which time averagesareergodic, and
under which suitably normalized time averages satisfy central limit theorems. Even before turning
to statistical considerations, there are some common sense qualifications on what one can hope to
determine from the available time-series data. First, a phenomenon that expresses itself globally,
such asthe location of astochastic processthat contains no trends, can beinvestigated through time
averages. For a moderately broad class of stochastic processes, such time averages will have
reasonable large sample properties that permit one to make useful statistical statements about the
global phenomenon. By contrast, there are phenomenon that areintrinsically local, such asthe exact
timing of aregime shift, or thelocation of astochastic process between regime shifts. Theavailable
data that can shed light on these phenomena are intrinsically finite, with information on timing
limited by the periodicity of observations and information on location limited by the duration of the
intracregime shift interval. Statistical investigation of these phenomenamust belimited to thefinite
samples that are relevant, and asymptotics are not helpful. In further discussion where we
concentrate on the limiting properties of time averages, one should keep in mind that there may be
time series phenomenaof interest for which the behavior of such time averagesisirrelevant. Then,
toagreater degreethan in cross-section econometrics, finite-sample statistisdone analytically where
possible, and with bootstrap techniques otherwise, will be a major analytic tool, and large sample
approximations will be correspondingly less important.

A critical factor inthebehavior of timeaveragesistherel ationship between acurrent observation
and the history of the process. If history has too much influence, then there may be insufficient
opportunity for recent noise to average against and diminish the impact of noisefrom the past. The
analysisof theimpact of history requiresthat weformalizethe concept of historical information, and
the conditional distribution of a stochastic process given historical information. We do this by
identifying information with o-fields of events.
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Consider a stochastic process Y in discrete time, and let Y, = Y(-,t) denote its component in
periodt. The dependence of Y, on the state of Nature swill be suppressed. Wewill take T to bethe
infinite sequence T ={1,2,...}, or as adoubly infinite sequence, extending back in time as well as

forward, T ={...,-2,-1,0,1,2,...} . Thetrajectoriesof Y are pointsin the product space W = Hm R
or W =R", whereR isthereal line. The“completeinformation” c-field of subsets of W isdefined

asF; = ®,.; B, where B isthe Borel o-field of subsets of thereal line. (The same apparatus, with
T equal to thereal line, can be used to consider continuoustime.) Accumulation of informationis
described by a nondecreasing sequence of o-fields ... ¢ G ,c G, < G, < G,c... with G, interpreted

as the historical information available to an observer at time t and defined as G, = (&,

B)e(®..{9,S}), capturing theideathat at timet the future is unknown. The monotone sequence of
o-fieldsG, i =...,-1,0,1,2,... iscalled afiltration. The stochastic processis adapted to the filtration
if Y, ismeasurable with respect to G, for eacht. Some authors use the notation o(...,Y,, YY) for
G, to emphasize that it is the o-field generated by the information contained in Y for s < t. Note
that there may be more than one sequence of o-fieldsin operation for aparticul ar stochastic process.
Thesemight correspond, for exampl e, to theinformation availableto different economic agents. We
will need in particular the sequence of o-fields H, = 6(Y,Y .1, Y 1.0:-..) @dapted to the process from
timet forward; thisis anonincreasing sequence of o-fields... o H,; o H,2 H,,; ... . Sometimes G,
istermed the natural upward filtration, and H, the natural downward filtration. If we start with a

stochastic process Y that is measurable with respect to the product o-field F; = @, ; B , then the
natural upward and downward filtrationsaresubfieldsof F; , and Y, isadapted to the natural upward
filtration. Conversely, if we construct a sequence of random variables Y, that are adapted to the
natural upward filtrationfor t € T, then they define astochastic processon T that is measurablewith
respect to F.

Each subsequence (Y,,...,.Y.,) Of the stochastic process has a multivariate CDF
FomsnYms-Ymen)- The processissaid to be strictly stationary, or simply stationary, if for each n,
this CDF is the same for every m. The process is said to be covariance stationary or weakly
stationary if itsmeans, variances, and covariances between random variablesafixed number of time
periods apart are the samefor all timesm. A stationary process for which second momentsexist is
obviously always covariance stationary. A stochastic process composed of a sequence of i.i.d.
random variablesis always stationary. The concept of stationarity plays an important role in time
series econometrics becauseit is considered aplausible property for many economic time seriesand
because it excludes trends that complicate the definition and interpretation of time averages.
Stationarity aloneis neither necessary and sufficient for ergodicity. It isnot necessary becausetime
averages may converge in the presence of seasonality and other kinds of limited heterogeneity that
are inconsistent with stationarity. Conversely, if statistical dependence across time is too strong,
time averages may fail to converge even if the process is stationary.

Example 1: The stochastic process Y, = ¢, + a-cos(nt/6), where g, isan i.i.d. standard normal
disturbanceand o.isanon-zero constant, isnon-stationary, having aseasonal cycle of length 12. The
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timeaverage T ZtTl Y isnormally distributed with amean that isbounded in magnitude by 2.37/T
and avariance UT. Then, the processis ergodic even though it is not stationary.

Example 2: The stochastic process Y, = ¢,, where ¢, is a single standard normal draw, is
stationary, but T* ZtTl Y, isstandard normal for all T, so the processis not ergodic.

Example3: Thestochastic processY, = at + ¢, wheree,isani.i.d. standard normal disturbance
and o iIsanon-zero constant, isnonstationary dueto thedeterministic trend initslocation. Thetime
averageT* ZtTl Y, isnormal with mean (T+1)/2 and variance 1/T, so that the processisnot ergodic.
Thus, trends may cause ergodicity to fail. Thisisnot true for al trends, however. If the previous
processismodified to Y, = at/(1+t) + ¢, so that it has a bounded nonlinear trend, then it is ergodic.

Example 4. The non-stationary stochastic process Y, = ¢, + a-cos(nt/6), where ¢, is ai.i.d.
standard normal disturbance and o is a standard normal draw, has a stochastic seasonal cycle of
length 12. ThetimeaverageT™ EtTl Y. isnormally distributed with mean zero and avariance 1/T,
so that the processis ergodic. However, cov(Y,,Y,,.,) = cos(nt/6)? for al k, so that covariances do
not al dampen out as the time interval between observations grows. This pattern of covariancesis
inconsistent with the usual conditions for weak stochastic dependence over time, and shows that
these conditions are not necessary for ergodicity.

Example5: The stochastic processY, = ¢, wherethe g,arei.i.d. with a Cauchy distribution, is
stationary, but not covariance stationary, and non-ergodic. Thus, stationarity and a strong form of
weak dependence, namely independence, are not sufficient for ergodicity if the tails of the random
variables in the stochastic process are too thick.

Keeping these examples in mind, we will consider several forms of weak dependence that in
combination with other assumptions will lead to ergodicity. Specifically, we consider conditional
moment restrictions, given history, that |lead to what iscalled martingalelimit theory, and restrictions
on theinfluence of historical information from the remote past, that lead to what are called mixing
conditions. These cases will cover most of the econometric time series models that generate
stationary stochastic processes.

Martingale Limit Theory

One circumstance that arisesin some economic time seriesisthat while the successive random
variables are not independent, they have the property that their expectation, given history, is zero.
Changes in stock market prices, for example, will have this property if the market is efficient, with
arbitragers finding and bidding away any component of change that is predictable from history. A
sequence of random variables X, adapted to G, isamartingaleif aimost surely E{ X,|G, ) = X,,. If
X,isamartingale, then Y, = X, - X, satisfiesE{Y,|G,,) =0, and is called a martingal e difference
(m.d.) sequence. Thus, stock price changesin an efficient market form am.d. sequence. Itisaso
useful to define a supermartingale (resp., submartingale) if amost surely E{ X,|G,,) < X, (resp,,
E{X,|G.,) > X,,). The following result, called the Kolmogorov maximal inequality, is a useful
property of martingale difference sequences. A proof can be found in Chapter 4.
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Theorem 1. If random variables Y, are have the property that E(Y,|Y;.,,,.Y,,) =0, or more
technically the property that Y, adapted to o(...,Y ;.Y ) isamartingale difference sequence, and if

EY2= o2 then P(max,., | Yy Y[ >€)< Y, o

Mixing

Many economic time series exhibit correlation between different time periods, but these
correlations dampen away as time differences increase. Bounds on correlations by themselves are
typically not enough to give asatisfactory theory of stochastic limits, but arelated ideaisto postul ate
that the degree of statistical dependence between random variables approaches negligibility as the
variables get further apart in time, because the influence of ancient history isburied in an avalanche
of new information (shocks). Toformalizethis, weintroduce the concept of stochastic mixing. For
astochastic processY, consider eventsA € G, and B € H,,, where G, isthe natural upward filtration
and H,, isthe natural downwardfiltration. Then A drawsonly on information available up through
period t and B draws only on information available from period t+son. Theideaisthat when sis
large, the information in A istoo “stale” to be of much use in determining the probability of B, so
that these events are nearly independent. Three definitions of mixing are given in the table below;
they differ only in the manner in which they are normalized, but this changestheir strength in terms
of how broadly they hold and what their implications are. When the process is stationary, mixing
depends only on time differences, not on time location.

Form of Mixing  Coefficient Definition (for all A € G,and B € H,,, and all t)
Strong a(s) -~ 0 [P(ANB) - P(A)-P(B)| < a(9)
Uniform () -0 IP(ANB) - P(A)-P(B)| < @(S)P(A)
Strict y(s) -0 IP(ANB) - P(A)-P(B)| < w(S)P(A)-P(B)

There are links between the mixing conditions and bounds on correlations between events that are
remote in time;

(1) Strict mixing == Uniform mixing == Strong mixing.

(2) (Serfling) If the Y, are uniform mixing with EY, = 0 and EY/? = o2 < +x, then
[EY,Y sl < 20(9"0,0,.s

(3) (Ibragimov) If the Y, are strong mixing with EY,=0and E|Y,|? < + for somed > 2, then
[EY,Y | < 8a(9)"*6,0,.

(4) If there exists a sequence p, with lim_p, = O such that |E(U-EU)(W-EW)| <
p(E(U-EU)))(E(W-EW))]* for al bounded continuous functions U = g(Y,,...,Y,) and W =
DY terpees Y tenem) @0d @l t, N, m, then the Y, are strict mixing.

Anexamplegivesanindication of therestrictionson adependent stochastic processthat produce
strong mixing at aspecified rate. First, suppose astationary stochastic process Y, satisfiesY,=pY,,
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+ Z,, with the Z, independent standard normal. Then, var(Y,) = 1/(1-p? and cov(Y .., Y,) = p¥(1-p?),
and one can show with alittle analysisthat [P(Y,,s < &Y,<b) - P(Y . < 8P(Y,<b)| < p¥xn(1 - p®)*.
Hence, thisprocessis strong mixing with amixing coefficient that declinesat ageometricrate. This
is true more generally of processes that are formed by taking stationary linear transformations of
independent processes.

Consider astochastic process Y and thetime averagesX;= T! ,Tl Y, forT=1.2,.... Laws

of large numbers give conditions under which the time averages X converge to a constant, either
in probability (weak laws, or WLLN) or ailmost surely (strong laws, or SLLN). Wegiveone WLLN
and two SLLN that can be applied to time averages of discrete-time stochastic processes.

Theorem 2. (WLLN) If astochasticprocessY haslim, .. T 1 Y| EY,=p, E(Y-)’= o2 and

lcov(Y,Y )| < pooswith Y+ 62t¥2 <+ and lim,_., %Zﬂl 3 L Pum < o, then the process
isergodic; i.e., Xy~ L.

Proof: Using Chebyshev'sinequality, it issufficient to show that E(X -EX,)? convergesto zero. The
Cauchy-Schwartz inequality (see Chap 2.1.11) is applied first to establish

(1% 0n) < (282 50)

N m=1

and then to establish that

5 1 n n 1 n
E(Xn'EXn) = _ZZ Z OO0 Pkm = EZ Ok

N< k=1 m=1

12

D Ee|

Ng-1 m-1

(s - (24

k=1 m=1 n

Thelast form and Kronecker’ s lemma (Chapter 2.1.11) give the result. [
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Corollary 2.1: If the Theorem 2 stochastic process Y is covariance stationary and

Z:: lcov(Y,,Y )| < +e°, then the processis ergodic.

Corollary 2.2: If the Theorem 2 stochastic process is covariance stationary and strong mixing
with E |Y|* < + for some d > 2 and mixing coefficients that satisfy Y , a(K)*?? < +x, then the

processis ergodic.

Theorem 3. (Martingale SLLN) If astochastic processY, adaptedtoo(...,Y,,,Y,) isamartingale
difference sequence, EY?=c2 and Y ,, 0,2k? < +x, then X; -, 0.
Proof: Thetheorem isstated and proved by J. Davidson (1994), p. 314. Togiveanideawhy SLLN

work, we give a simplified proof when the assumption Y ., 6 2k? < + is strengthened

to Y r, 04k <+, Either assumption handles the case of constant variances with room to
spare. Kolmogorov's maximal inequality (Theorem 1) with n = (m+1)? and &€ = dm? implies that

+1)2
P(maxmzsks(m+l)2 ‘Xk‘ > 8) < P(maxlsksn Z:(:]_ YI| > 8m2) < I(r:nl Y 0i2/82m4'

The sum over m of the right-hand-side of thisinequality satisfies

Do i(r:n1+1)2 ofdPmt= YT N e oll8mt <36 Y, ol

Then Y ., P(sup |X| >8)<36 Y, 0%i%?<+=. TheBorel-Cantelli theorem, which

00

states that if A; is any sequence of eventsin a probability space (S,F,P), then ZM P(A,) <+

implies that amost surely only afinite number of the events A; occur, givesthe result. [J

Corollary 3.1: If the Theorem 3 stochastic processis covariance stationary with Ey,? < +e, then
X: =4 0.

Theorem 4. (Serfling SLLN) If a stochastic process Y has lim,. T1 ZtT EY =
E(YE(YY))* =62 and [cov(Y,,Y )| < PrmOiOm With the bounds Y, (log k)*6,2/K? < + o

and Y pi< -+, then X, o .
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Corollary 4.1: If the Theorem 4 stochastic processis covariance stationary and the covariances

satisfy Y r. [cov(Y,,Y )| < +oo, then X, = M.

Corollary 4.2: If the Theorem 4 stochastic process is covariance stationary and strong mixing

With E [Y|' <+ for somed >2and Y ;. a(k)* < +o, then X, 1.

We next consider central limit theorems for time averages of stochastic processes. For amean

T, Y. Central limit

zero stochastic process Y, consider the scaled time averages Z, = T2 Z
theorems(CLT) areconcerned with conditionsunder whichtheZ,, or variantswith moregeneralized
scaling, converge in distribution to a normal random variable Z,. We give CLT for martingale
difference processes and for stationary processes with strong mixing. The proofs of these theorems
are quite technical, and are omitted.

When random variables are not identically distributed, a bound on the behavior of tails of their
distributions, called the Lindeberg condition, is needed to get a CLT. This condition ensures that
sourcesof relatively largedeviationsare spread fairly evenly through the series, and not concentrated
inalimited number of observations. The Lindeberg condition can bedifficult tointerpret and check,
but there are a number of sufficient conditions that are useful in applications. For example, a
condition that random variables are uniformly bounded is always sufficient, and a condition that
some moment higher than two is uniformly bounded is usually enough.

The next theorem establishes a CLT for martingale differences. The uniform boundedness
assumption in this theorem isastrong restriction, but it can be relaxed to a Lindeberg condition or
toa“uniformintegratability” condition; seeP. Billingsley (1984), p. 498-501, or J. Davidson (1994),
p. 385.

Theorem 5. Suppose Y, is a martingal e difference sequence adapted to o(...,Y,;,Y,), and Y,
satisfiesauniformbound |Y,|<M. LetEY,2=c,2 andassumethat n*Y ;. o2~ c,2>0. Then

Z,-4Z,~N(0,6).

Intuitively, the CLT resultsthat hold for independent or martingal e difference processes should
continue to hold if the degree of dependence between variables is asymptotically negligible. The
following theorem from . Ibragimov and Y. Linnik, 1971, givesaCLT for stationary strong mixing
processes. This result will cover a variety of economic applications, including stationary linear
transformations of independent processes.
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Theorem 6. (Ibragimov-Linnik) Suppose Y, is stationary and strong mixing with mean zero,
positive finite variance 6%, and covariancesE Y ,..Y, = 6°p.. Suppose that for somer > 2, E|Y, | <

+oand Y o, o(K)'? <+w. Then, Yo, |pd<+=andZ,-4Z,~N@OX1+2 Y o, pJ).

In some applications, one encounters what are called “triangular arrays’ of random variables,
indexed both by time period and by sample size. This could arise, for example, if one applies a
linear operator or filter to a stochastic process and the filter used depends on sample size. It is
convenient to have alimit theory for such arrays. Let Y, witht=1,2,...,.,nand n=1,2,3,... denote
atriangular array of random variables. (One additional level of generality could be introduced by
letting t range from 1 up to afunction of n that increasesto infinity, but thisis not needed for most
applications.) Thissetup will includesimple caseslikeY ,=Z/nor Y, = Z/n"?, and more general
weightingslike Y, = a,Z, with an array of constants a,,, but can al so cover more complicated cases.
Assume that for each n, the random variables Y, for t = 1,...,n form a martingale difference
sequence; thisiscalled amartingaledifferencearray. Formally, consider random variablesY , for
t=1,..,nandn=1,23,... that are adapted to o-fields G,, that are afiltrationin t for each n, with the
property that E{Y |G, ..} =0; A WLLN for this caseis adapted from J. Davidson (1994), p. 299.
Note that in this result, normalizing by sample size to form averages is subsumed in the definition
of the rows of the array, so that one works with sums rather than averages.

Theorem7: If Y ,and G, fort=1,..,nandn=1,23,...isan adapted martingale difference array
with |Y,| <M,EY 2=0,% Y., oy uniformlybounded,and Y, o,2- 0, thenthearray

isergodic;i.e, Y 1 Yn-,0.

It is also possible to establish a CLT for martingale difference arrays. The following result is
taken from D. Pollard (1984), p. 170-174. The last condition in this theorem is a Lindeberg
condition which will certainly be satisfied if the Y, are constructed by multiplying uniformly
bounded random variables by scalars that uniformly tend to zero with n.

Theorem 8. Suppose Y,, and G, for t = 1,...,n and n = 1,2,3,... is an adapted martingale

difference array, A, = E(Y ,%| Gy,,.1) isthe conditional varianceof Y, Y 1y A ~,0%€ (0,4).

Supposeforeache>0, Y 1, EY.21(Y./>€)~ 0. ThenX,= Y1, Y. ~4X,~N(O3.



