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Abstract

In certain auction, search, and related models, the boundary of the support of the observed data

depends on some of the parameters of interest. For such nonregular models, standard asymptotic

distribution theory does not apply. Previous work has focused on characterizing the nonstandard

limiting distributions of particular estimators in these models. In contrast, we study the problem

of constructing eÆcient point estimators. We show that the ML estimator is generally ineÆcient,

but that the Bayes estimator is eÆcient according to the usual local asymptotic minmax criterion.

We provide intuition for this result using Le Cam's limits of experiments framework.



1 Introduction

This paper studies eÆcient point estimation of structural econometric models in which the boundary

of the support of the observed data depends on some of the parameters of interest, and on regressor

variables. Some leading examples of such models are certain parametric auction models, search

models, and production frontier models. These models violate standard regularity conditions, so

that conventional asymptotic theory does not apply.

Previous work on asymptotics for models with parameter-dependent support includes Flinn and

Heckman (1982), Smith (1985), Christensen and Kiefer (1991), Donald and Paarsch (1993), Hong

(1998), Donald and Paarsch (1999), and Chernozhukov and Hong (2001). These papers derive

large-sample properties of speci�c estimators for various models. Most of these papers focus on ML

estimators. Donald and Paarsch (1993) and Donald and Paarsch (1999) also consider some alter-

native analog-type estimators, and Chernozhukov and Hong (2001) also consider Bayes estimators.

From this earlier work, we know that di�erent estimators have di�erent limiting distributions, so

we focus on making eÆciency comparisons and on identifying a class of optimal estimators.

We use the standard local asymptotic minmax criterion for optimality. This criterion compares

estimators by their maximum expected loss over a localized parameter space. In regular �nite-

dimensional parametric models, this criterion coincides with other familiar optimality de�nitions

(for bowl-shaped loss functions) and leads to the conclusion that the maximum likelihood esti-

mator is optimal. However, inspection of proofs of the eÆciency of the ML estimator show that

this property is quite closely tied to regularity of the underlying model. Because the models we

consider here are nonregular, there is no guarantee that ML will be eÆcient. In fact, we show that

for standard loss functions such as squared error loss, ML is generally ineÆcient in models with

parameter-dependent support.

We then consider Bayes estimators, which provide an alternative, likelihood-based method

of inference in parametric models. Recent work on Bayesian inference for search and auction

models includes Lancaster (1997), Kiefer and Steele (1998), Bajari (1998), Sareen (2000), and

Chernozhukov and Hong (2001). In regular parametric models, Bayes estimators are typically
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asymptotically equivalent to ML (see for example Ibragimov and Hasminskii (1981)). Hence, Bayes

estimators are also eÆcient in regular models. In nonregular models, ML and Bayes estimators are

no longer necessarily asymptotically equivalent. We show that, for the class of nonregular models

where the boundary of the support depends on at least some of the parameters, Bayes estimators

are eÆcient. Thus Bayes estimators remain eÆcient under this form of nonregularity, while ML

loses its eÆciency properties.

We develop intuition for our result on the eÆciency of Bayes estimators by applying Le Cam's

theory of limits of statistical experiments to various special cases. Using the limits of experiments

approach, we can characterize the entire class of attainable limit distributions for estimators in a

given model. In the case where the covariates have a discrete distribution, the model we consider is

asymptotically equivalent to a simpler model consisting of a vector of draws from shifted exponential

distributions. Asymptotic equivalence means that any limit distribution for a statistic in our

model of interest can be obtained as the exact distribution of a statistic in the shifted exponential

model. This result is useful, because the exponential shift experiment has a simple structure

which can be exploited to verify optimality of certain estimators. The shifted exponential limit

experiment is equivariant under a group of transformations. Under certain conditions on the group

of transformations and the loss function, a generalized Bayes procedure with respect to a 
at prior

is both minimum risk equivariant and minmax. Since Bayes estimators in the original nonregular

model have a limiting distribution equal to the distribution of the 
at-prior Bayes estimator in the

limit experiment, the Bayes procedure in the nonregular model is locally asymptotically minmax.

Our �ndings are closely related to earlier work on simpler nonregular models without covari-

ates, in particular models for i.i.d. sampling from univariate densities with jumps (Ibragimov and

Hasminskii (1981), P
ug (1983), Ghosal and Samanta (1995)). Our work extends these results to

the case where there are regressor variables that can shift the support of the outcome variable (as

well as a�ect the shape of the outcome distribution in other ways). Allowing for covariates leads to

more complicated limit experiments and requires an extension of the asymptotic results on Bayes

estimators in Ibragimov and Hasminskii (1981).
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In the next section, we consider a special case of our general model: the experiment of observing

n independent and identically distributed draws from a uniform distribution on the interval [0; �].

This model has been well studied, but is useful for introducing notation, discussing the general limits

of experiments framework, and providing intuition for our later results. Moreover, the ineÆciency

of ML can be seen quite easily in this case. In section 3 we consider a more general model where the

support of an outcome can depend on both parameters and covariates. Our �rst step is to provide

a limits of experiments characterization of such models in cases where the covariates are discrete.

This directly yields intuition for optimality of the Bayes estimator, using the group structure of the

limit experiment. Then, in section 4, we study the asymptotics of Bayes estimators and provide a

general eÆciency result. Section 5 concludes.

2 Uniform Model

Under standard classical conditions, maximum likelihood estimators are consistent, asymptotically

normal, and eÆcient. A well known example of a model where the classical conditions do not hold, is

the experiment of observing n random samples from a uniform distribution on the interval [0; �], for

� 2 � � R++ . Here, maximum likelihood estimation of � is still consistent, but not asymptotically

normal or eÆcient. We use this example to illustrate the ineÆciency of ML, and to show that an

eÆciency bound can still be obtained in this nonregular case and that Bayes estimators attain the

bound. The intuition from the uniform model will carry over in a very direct way to the more

general models considered in section 3.

2.1 Maximum Likelihood Estimator

Let Z1; : : : ; Zn be an i.i.d. sample from U [0; �], the uniform distribution with density p(Zj�) =

1f0 � Z � �g=�, where 1fAg is the indicator function for the event A. The likelihood function is

p(Z1; : : : ; Znj�) =
�
1

�

�n
1f0 � Z(n) � �g;

where Z(n) denotes the nth order statistic, i.e. the sample maximum. The maximum likelihood

estimator is simply �̂ML = Z(n). It is straightforward to derive its limiting distribution by direct
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calculations:

n(�̂ML � �); �Exp
�
1

�

�
;

where Exp(1=�) denotes an exponentially distributed random variable with hazard rate 1=�, and;

denotes convergence in distribution. Clearly, the estimator is not asymptotically normal. Although

it converges at rate n, much faster than the usual
p
n rate, the fact that the limiting distribution

lies completely to one side of the true parameter suggests that even better estimators may exist.

2.2 Bayes Estimator

Bayesian estimation of � provides an alternative approach to maximum likelihood estimation. Given

a prior �(�) on �, the posterior distribution is given by Bayes Theorem as:

p(�jZ1; : : : ; Zn) = �(�)p(Z1; : : : ; Znj�)R
�(�)p(Z1; : : : ; Znj�)d� :

Given a loss function l(�; a), the Bayes estimate chooses a to minimize posterior expected loss

E[l(�; a)jZ1; : : : ; Zn] =
Z
l(�; a)p(�jZ1; : : : ; Zn)d�:

Here, a is interpreted as an estimate of �. For a given prior � and loss l, the corresponding Bayes

estimator can be regarded as a decision rule that takes the observed values of Z1; : : : ; Zn and

produces an estimate of �. So we can study its frequency properties. For example, suppose we

choose squared error loss, l(�; a) = (a � �)2, and the (improper) prior �(�) = 1f0 < �g=�2. Then
the posterior density can be calculated to be p(�jZ1; : : : ; Zn) = (n+1)Zn+1

(n) 1fZ(n) � �g=�n+2. The

Bayes estimator for squared error loss is the posterior mean, ~�B = Z(n)(n + 1)=n. As with the

maximum likelihood estimator, the limiting distribution can be derived directly:

n(~�B � �); � �Exp

�
1

�

�
:

The convergence rate is the same as maximum likelihood estimator, but now the limiting distri-

bution is centered (in the sense that it has mean zero). It follows that the Bayes estimator will

dominate the ML estimator for squared error loss. It can also be shown that using a di�erent prior

typically does not change the asymptotic distribution of the Bayes estimator, because the prior is

dominated by the likelihood as the sample size increases.
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In the case of squared error loss, the Bayes estimator can be interpreted as a bias-corrected

version of ML.� However, this interpretation does not generally hold for other loss functions. More-

over, the reasoning so far does not guarantee that the Bayes estimator will be eÆcient among all

estimators even for squared error loss. The limits of experiments framework, described next, allows

us to obtain stronger results on the eÆciency of Bayes estimators for a wide class of loss functions.

2.3 Limits of Experiments

The limits of experiments theory is an approximation theory for statistical models rather than

for estimators within a given model. It provides a parsimonious description of the entire set of

attainable limit distributions among estimators in the statistical model. This description, in turn,

can often suggest the form of optimal estimators.

An experiment is de�ned as a measurable space (the sample space) along with a collection of

probability measures on that space indexed by a parameter h; we denote this by (Z;A; Ph : h 2

H). The experiment is interpreted as the situation where we observed a random variable Z on

a measurable space (Z;A), distributed as Ph for some h in a parameter space H. We use h to

denote a local parameter, related to the original model by � +  nh for some �xed � in the original

parameter space and a normalization sequence  n �! 0. In regular cases  n = 1p
n
I, where I is

the identity matrix, while in the nonregular cases we consider here, some of the diagonal elements

of  n are 1=n rather than 1=
p
n.

The likelihood ratio process based at h0 2 H is de�ned as

�
dPh
dPh0

(Z)

�
h2H

:

Because it depends on the random variable Z, it can be regarded as a stochastic process de�ned

on H. A sequence of experiments En = (Pn;h : h 2 H) is said to converge to the experiments

E = (Ph : h 2 H) if the �nite dimensional distributions of the likelihood ratio process converge

to the corresponding distributions of the likelihood ratio process for E , i.e. for every �nite subset

�Cavanagh, Jones, and Rothenberg (1990) consider bias-corrected ML estimators in regular models under general
loss functions. They show that bias-corrected ML (with the bias-correction depending on the loss function) is eÆcient
among asymptotically normal estimators, but do not consider more general estimators or nonregular models.
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I � H and every h0 2 H, �
dPn;h
dPn;h0

�
h2I

h0
;

�
dPh
dPh0

�
h2I

:

Here
h0
; denotes weak convergence under the local parameter sequence f� +  nh0g. Since the

likelihood is a suÆcient statistic, it is not surprising that properties of an experiment can be

explored through the likelihood ratio process. A key result from the limits of experiments theory

is the following:

Theorem 1 (Asymptotic Representation Theorem) Suppose that a sequence of experiments En =

(Pn;h : h 2 H) converges to an experiment E such that E, regarded as a set of measures, is dominated

by a �-�nite measure. Let Tn be a sequence of statistics in En that converges weakly to a limit law

Qh for every parameter h, where the Qh concentrate on a �xed Polish set. Then there exists a

(possibly randomized) statistic T in E such that for every h 2 H, Tn
h
; T .

Proof: See Van der Vaart (2001).

Thus, by studying the limit experiment E we can characterize the set of attainable limit distri-

butions in the original experiment.

Limit experiments are a useful way to understand the eÆciency of maximum likelihood estima-

tion in regular models. Regular models are locally asymptotically normal, which means that the

limit experiment corresponds to a single observation Z from a shifted multivariate normal distri-

bution N(h; I�1� ) for h 2 Rk unknown and I� known and equal to the Fisher information matrix in

the original model. The maximum likelihood estimator of h is simply Z; this is also the generalized

Bayes estimator with respect to a 
at prior. For any \bowl-shaped" loss function this estimator can

be shown to be minmax. Not surprisingly, the sequence of maximum likelihood estimators in En
converges to the maximum likelihood estimator of the limit experiment E , showing the asymptotic

eÆciency of maximum likelihood estimation.

2.4 Limits of Experiments Analysis of the Uniform Model

Now we return to our example of observing a random sample from U [0; �]. In contrast to the usual

regular case, here the appropriate scaling factor for a local parameter sequence is  n = 1=n. Thus
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a local parameter h 2 R corresponds to the sequence of models U [0; ��(h=n)]. The likelihood ratio

has the form

dPn;h
dPn;h0

=
(� � h=n)�n

(� � h0=n)�n
1fZ(n) � � � h=ng
1fZ(n) � � � h0=ng

=
(� � h0=n)

n

(� � h=n)n
1fZ(n) � � � h=ng

almost surely under Pn;h0 . It can be calculated that

�n(Z(n) � �)
h0
; W;

where W is distributed as a shifted exponential with density

fW (w) = exp

�
(h0 � w)

�

�
1fw � h0g=�:

Thus, by straightforward calculations,

dPn;h
dPn;h0

h0
; exp

�
(h� h0)

�

�
1fW � hg:

Next, consider the situation where we observe a single draw W from the shifted exponential

distribution with density fW . The likelihood ratio for this experiment is

[exp((h�W )=�)1fW � hg=�]=[exp((h0 �W )=�)1fW � h0g=�] = exp((h� h0)=�)1fW � hg;

exactly the same as the limiting likelihood ratio in the uniform case. Hence the �nite-dimensional

distributions of the likelihood ratio process from the U [0; �] experiment converge to the �nite-

dimensional distributions for an observation from a shifted exponential with hazard rate 1=�.

From the asymptotic representation theorem, we know that estimators of � have a limiting

distribution equal to the distribution of some randomized estimator in the shifted exponential limit

experiment. Consider a randomized estimator, T , in the limit experiment. This estimator has

maximum risk, suphEhl(T � h) where the expectation is taken under h. The minmax risk bound

in the limit experiment is then

R = inf
T
sup
h
Ehl(T � h);
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where the in�mum is taken over all randomized estimators. It follows that this expression is also

the asymptotic minmax risk bound for estimators in the original experiment, i.e.

lim inf
n�!1 sup

h2H
Ehl(n(�̂ � � + h=n)) � R

provided �̂ has a limit distribution under every h, and l is lower semicontinuous. So the (exact)

lower bound for an estimator of the shift from a single observation from a shifted exponential gives

the asymptotic bound for estimators of � from a random sample from U [0; �]. The lower bound,

and the form of optimal estimators, will generally depend on the choice of loss function; this �nding

can be contrasted with the local asymptotic normal case, in which a single estimator, the MLE, is

known to be minmax for all bowl-shaped loss functions.

For the shifted exponential experiment with squared error loss, this bound is known from

classical decision theory to be R = �2. Given this bound, we can analyze the eÆciency of the

maximum likelihood and Bayes estimators proposed above. From the limiting distribution of the

maximum likelihood estimator, Z(n), the asymptotic risk isZ 0

�1
w2 exp(w=�)=�dw = 2�2 > R:

On the other hand, the Bayes estimator, Z(n)(n+ 1)=n, attains this bound:Z �

�1
w2 exp((w � �)=�)=�dw = �2 = R:

So the Bayes estimator with squared error loss is eÆcient for squared error loss minimax risk.

Similar calculations can be carried out for other risk functions. However, there is a useful

heuristic argument that shows that Bayes estimators will generally be eÆcient, following Berger

(1985), Section 6.3. Suppose we observe a single draw for a random variable W with density

f(w�h), where h is a location parameter in R. Assume the loss l(h; a) has the form l(a�h). Since

the problem is location equivariant, it is natural to focus on equivariant estimators, i.e. estimators

which have the form

Æ(w + c) = Æ(w) + c

Then

Æ(0) = Æ(w) �w
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or

Æ(w) = w + Æ(0) = w +K:

It can be shown that an equivariant rule has constant risk

R(h; Æ) = R(0; Æ) =

Z
l(w +K)f(w)dw

The minimum risk equivariant (MRE) rule minimizes the previous expression. According to the

Hunt-Stein theorem (see e.g. Kiefer (1957) and Wesler (1959)), under some conditions the MRE

rule turns out to be minmax over all possible decision rules.

Now consider the (generalized) Bayes estimator with respect to the constant prior. This mini-

mizes expected loss with respect to the posterior

p(hjw) = c � f(w � h) = f(w � h):

The posterior expected loss is

E(l(a � h)jw) =
Z
l(a� h)f(w � h)dh

Setting y = w � h this is Z
l(y + a� w)f(y)dy =

Z
l(y +K)f(y)dy

(where K = a � w) Minimizing this is the same as �nding the MRE rule; hence the generalized

Bayes estimator is minmax.

Under weak conditions on the prior, the Bayes estimator in the uniform model for a given loss

function will have the same limit distribution as the Bayes estimate with 
at prior in the shifted

exponential experiment, because the prior gets dominated by the likelihood function in the limit. It

follows that the Bayes estimator in the uniform experiment will be locally asymptotically minmax,

for a fairly arbitrary choice of prior.

3 Limit Experiments for Regression Models with Parameter-Dependent

Support

Having developed intuition from the simple uniform case, we examine more general models using

the limits of experiment framework. We are interested in econometric models where the conditional
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density of yi given xi has the form

f(yijxi; �; 
)1(yi � g(xi; �));

where � and 
 are �nite-dimensional parameters, and where, for xi in some set with positive

probability, the conditional density of yi at its support boundary g(xi; �) is strictly positive. A

general optimality result will be given in Section 4 along with precise conditions on the model. In

this section, our focus is on using the limits of experiments framework to provide intuition for the

eÆciency result to come.

3.1 Limit Experiment with No Covariates

First, let us consider the special case with no covariates and a scalar parameter. We assume that

the yi are i.i.d. with density

f(yij�)1(yi � g(�));

where � 2 �, a compact subset of R. Let P n
� denote the joint law of y1; : : : ; yn. Assume that

f(g(�)j�) > 0, and that g is continuously di�erentiable with derivative g0 > 0. As a consequence of

the general limit experiment result in Theorem 2 below, we have the following �nite-dimensional

limit likelihood ratio process: for every h0 2 R and every �nite set I � R, 
dP n

�+h=n

dP n
�+h0=n

!
h2I

h0
;

�
exp

�
(h� h0)

�

�
1(W > h)

�
h2I

;

where � = [f(g(�)j�)g0(�)]�1 and W is a random variable with the shifted exponential density

fW (w) = exp (�(w � h0)=�) 1(w > h0)=�. This is essentially the same likelihood ratio process as

in the uniform model. It follows that the experiment consisting of observing one draw from the

shifted exponential density

fW (w) = exp (�(w � h)=�) 1(w > h)=�;

where � = [f(g(�)j�)g0(�)]�1, is asymptotically equivalent. By the reasoning we used in the uniform

case, the Bayes estimator will be optimal.
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3.2 Limit Experiment with Covariates

We next turn to the case with covariates. We assume that (yi; xi) is i.i.d. on Y � X , where Y � R

and X � R
m . Assume X is compact, and that x has marginal distribution Px. The outcome

variable y has a conditional density with respect to Lebesgue measure of the form:

f(yijxi; 
; �)1(yi � g(xi; �));

where 
 2 � � R
d , � 2 � � R

k , � and � are compact.

We will use local parameter sequences

� +
u

n
; u 2 Rk ;


 +
vp
n
; v 2 Rd :

Let � = (�; 
), h = (u0; v0)0, and h0 = (u00; v00)0.

Next we state a result on the limit of the likelihood ratio process for the general model. The

assumptions referred to below consist of fairly standard regularity conditions, which will be dis-

cussed in detail in Section 4. For now, we focus on using the conclusion of the theorem to provide

further intuition.

Theorem 2 Let P n
h denote the joint law of (y1; x1); : : : ; (yn; xn) under �+ 'nh. Under Assump-

tions 1 - 6, for every h0 and every �nite I � H, 
dP n

h

dP n
h0

(Y n;Xn)

!
h2I

h0
;

�
exp((v � v0)

0T � 1

2
(v � v0)

0I
(v � v0)) exp
�
E[f(g(x; �)jx; �; 
)r�g

0](u� u0)
�
Dh

�
h2I

where I
 = E� [r
 ln f(yjx; �)r
 ln f(yjx; �)0], and under h0, T and (Dh)h2I are independent with

T � N(0; I
). (Dh)h2I are jointly distributed Bernoulli random variables whose distribution is

speci�ed by the following marginal probabilities. Let fh1; : : : ; hlg � I.

P�(Dh1 = 1; : : : ;Dhl = 1)

= exp(�E[1fmaxfr�g(x; �)
0(u1 � u0); : : : ;r�g(x; �)

0(ul � u0)g > 0g

�f(g(x; �)jx; �)maxfr�g(x; �)
0(u1 � u0); : : : ;r�g(x; �)

0(ul � u0)g]):
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The limiting likelihood ratio process now depends on the marginal distribution of the covariates,

through the expectation terms. To our knowledge, this more complicated likelihood ratio process

has not been studied before in the limits of experiments literature. In the continuous covariates

case, the corresponding limit experiment would likely only be expressable as a stochastic process

with index set X . Here, we concentrate on the simpler discrete covariates case, where it is possible

to obtain a useful limit experiment which provides intuition for the optimality of Bayes estimators.

Assume that in the original model, x takes on the values fa1; a2; : : : ; aLg. Let px(aj) := Pr(x =

aj). Consider the experiment consisting of observing a draw from (S;W1; : : : ;WL), where S is

distributed as N(v; I�1
 ), and Wj is a random variable with the shifted exponential density

fWj
(w) = exp (�(w � gj)=�j)1(w > gj)=�;

with gj = r�g(aj ; �)
0u and �j = [px(aj)f(g(aj ; �)jaj ; �; 
)]�1, and (S;W1; : : : ;WL) are jointly

independent. This experiment can be veri�ed to have the same likelihood ratio process, so it can

serve as a limit experiment for the general model with discrete covariates.

This limit experiment is more complicated than in the usual local asymptotic normal case, or

the pure exponential shift case. Nevertheless, its structure has enough in common with these more

conventional limit experiments that we can obtain some useful intuition. The normally distributed

component is independent of the other variables, so we can consider it separately. By standard

arguments, the Bayes estimator with a 
at prior will be minmax for this component.

The remaining components of the limit experiment correspond to an L�1 vector of exponential

random variables W = (W1; : : : ;WL), with known hazard and a vector shift H 0u, where

H =

2
64
r�g(a1; �)

0
...

r�g(aL; �)
0

3
75 :

We shall refer to this as the generalized exponential shift model. Assume that L � m and that the

L � m matrix H has full column rank. This is not a pure shift experiment, but it does have a

similar equivariance property. For any c 2 Rm , consider a transformation of the original data

gc(W ) =W +Hc:
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Notice that ifW is distributed according to the generalized exponential shift model with parameter

u, then gc(W ) has the same distribution, but with parameter u + c. By reasoning similar to that

used at the end of Section 2, it can be shown that the Bayes estimator with a 
at prior is equivariant.

That is, if the Bayes estimate given an observation W is ~a, then the Bayes estimate given gc(W ) is

~a+ c. Furthermore, the Bayes estimate is actually the minimum risk equivariant estimator. Under

a condition known as amenability, which can be veri�ed here, the Hunt-Stein theorem applies, and

the minimum risk equivariant estimator is also minmax.

For completeness, we show these steps formally in Appendix A. We can then conclude that in the

original problem, estimators which asymptotically have limit distributions equal to the distribution

of the Bayes estimator with respect to a 
at prior, will be locally asymptotically minmax. An

obvious choice is any Bayes estimator; since the prior will typically be dominated as the sample

size increases, it will behave like 
at-prior Bayes asymptotically. The results to follow establish this

formally.

4 Asymptotic Properties of Bayes Estimators

The results of the previous two sections showed that, in various special cases, the limit experiment

had an equivariance property which implied that 
at-prior Bayes is minmax. (Of course, there may

be other estimators which have di�erent risk functions but the same minmax risk.) In looking for

local asymptotic minmax estimators for the original model, it is therefore natural to investigate

the asymptotic properties of Bayes estimators for general priors. In this section, we show that

Bayes estimators behave asymptotically like 
at-prior Bayes with respect to the limiting likelihood

ratio process. We then show that for the general model (including the case where covariates

are continuous), the Bayes estimator is local asymptotic minmax, using a strategy suggested by

Ibragimov and Hasminskii (1981).

As in the previous section we will use the local parameter sequences � + u
n , for u 2 R

k ; and
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 + vp
n
, for v 2 Rd . De�ne the local parameter spaces as

Un = n(�� �0);

Vn =
p
n(�� 
0):

Let

h =

�
u
v

�
; and h0 =

�
u0
v0

�
:

To de�ne a Bayes estimator, let the prior � be a (possibly improper) Lebesgue density on �� �.

The Bayes estimator ~�n is any solution to

min
~�

Z
l('�1n (~�� �0))

nY
i=1

f(yijxi; �0 + 'nh)1(yi � g(xi; � + u=n))�(�0 + 'nh)dh:

This de�nes the Bayes estimator as minimizing posterior expected loss, where the posterior dis-

tribution is with respect to the local parameter h. There is, of course, an equivalent de�nition in

terms of the original parameter �.

We assume the following six conditions on the model.

Assumption 1 (yi; xi) is i.i.d. on Y � X , where Y � R and X � R
d . Assume X is compact. x

has marginal distribution Px. y has a conditional density with respect to Lebesgue measure of the

form:

f(yijxi; 
; �)1(yi � g(xi; �));

where 
 2 � � R
k , � 2 � � R

m , ��� is compact and convex.

Assumption 2 f(yjx; �) is continuous in y and twice continuously di�erentiable in � for all y

and x, g(x; �) is continuously di�erentiable in � for all x. Also, for � in some open neighborhood

(�0), f(yjx; �) > 0 and f(yjx; �) <1 uniformly in y; x.

Assumption 3 Z Z
sup
�2N

kr�f(yjx; �)k1(y � g(x; �))dydPx(x) <1
Z Z

sup
~�;�2N

jjr�f(yjx; ~�)jj2
f(yjx; ~�)2 1(y � g(x; �))f(yjx; �)dydPx(x) <1
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Z Z
sup
~�;�2N

kr��f(yjx; ~�)k1+Æ
f(yjx; ~�) 1(y � g(x; �))f(yjx; �)dydPx(x) <1

for some Æ > 0.

Assumption 4 The function J

ij (�) = E�[r
i lnf(yjx; �)r
j ln f(yjx; �)] and similarly de�ned

J
�ij and J��ij are continuous in �. For each i, j, J

ij (�) has a majorant that is a product of a

polynomial in k�k and exponential in k
k. Also for each �, there exists an open neighborhood N

of � such that J
�ij and J��ij are bounded on N and the minimum eigenvalue of I
 is bounded away

from zero on N , where I
 is the matrix with elements J

ij .

Assumption 5

Ex[ sup
�2N

kr�g(x; �)k] <1

Assumption 6 There exists " > 0 such that

inf
�;~�2N

Pr�(y � g(x; ~�)) � "

and

inf
kwk=1

E�

�
f(g(x; �)jx; �)jr�g(x; �)

0wj� � ":

We also make the following assumptions about the loss function and the prior.

Assumption 7 The loss function l : Rk+d ! [0;1) satis�es

(a) l is continuous and not identically 0.

(b) l(0) = 0, l(x) = l(�x) for all x 2 Rk+d .

(c) l has a polynomial majorant:

l(x) � B0(1 + jjxjjb)

for some B0; b > 0, all x 2 Rk+d .

(d) There exist numbers H0; � > 0 such that for all H � H0,

supfl(x) : x � H�g � inffl(x) : x � Hg � 0:

Assumption 8 The prior � is continuous and positive at �0, with a polynomial majorant.
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The assumptions on the loss function and the prior are fairly weak, and allow for most choices

of prior and loss of which we are aware.

Recall that Theorem 2, given in the previous section, shows that under Assumptions 1-6, the

�nite-dimensional distributions of the likelihood ratio process

Zn;�+'nh0(h) �
dP n

h

dP n
h0

(Y n;Xn);

converge in distribution to a particular process. Let us denote the limiting process as Zh0(h).

The next result is the main result of the paper. It strengthens the �nite-dimensional convergence

of the likelihood ratio process to convergence in distribution of the Bayes estimator, and then shows

that the Bayes estimator is local asymptotic minmax.

Theorem 3 Suppose Assumptions 1-8 hold. Also, suppose  h0(s; t) =
R
l(s�u; t�v)�h0(u; v)dudv

attains its minimum at a unique point, � , where �h0(u; v) = Zh0(u; v)=
R
Zh0(s; t)dsdt. Then

(n(~�n � �0);
p
n(~
n � 
0)); �:

Moreover, ~�n is asymptotically eÆcient at �0 with respect to loss l.

Remarks: We do not require that the covariates have �nite support in this result. In order to

obtain a general eÆciency result, we use a risk-continuity argument as in Ibragimov and Hasminskii

(1981).

5 Conclusion

We have studied optimal estimation of models where the support depends on parameters and

covariates. Under the local asympototic minmax criterion, Bayes estimators are eÆcient in these

models. We provided intuition for this result by �rst examining the Uniform[0; �] model. Then we

considered a general model with discrete covariates. For this model, we provided further intuition

for eÆciency of Bayes, by showing that the limit experiment had a group structure that implied

minimaxity of 
at prior Bayes. Finally, we extended the result to continuous covariates using a

risk-continuity argument.
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Throughout the paper we have focused on point estimation under a given loss function. However,

the limits of experiments theory can also be informative about optimal testing (see, for example,

Ploberger (1998)), and other aspects of inference such as construction of con�dence intervals and

predictive intervals. We leave such topics for future work.
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A Generalized Exponential Shift Model

In this section we examine the exponential shift model in further detail. Consider the experiment

fPu : u 2 R
mg, which consists of observing a random vector W = (W1; : : : ;WL), for L � m,

where Pu speci�es that the components Wj are independently distribution with shifted exponential

densities

fj(wj ju) = exp
��(wj �H 0

ju)=�j
�
1(wj > H 0

ju)=�j :

We assume that the �j and Hj are known, with �j > 0, and that the L�m matrix

H :=

2
64
H 0
1
...
H 0
L

3
75

has full column rank.

Let the loss function l(u; a) for estimating u have the form l(u; a) = l(u � a), with l(0) = 0,

l � 0, and l continuous and strictly convex. l nonnegative and continuous. Assume that for every

real number � , the set

fa : l(u� a) � �g

is compact for all u 2 Rm . Let ~u be the generalized Bayes estimator corresponding to the 
at prior

for u: ~u solves

min
~u

Z
l(u� ~u)

LY
j=1

fj(Wj ju)du:

Assume ~u exists and is unique. Then we claim that ~u is minmax for loss l. To provide a formal

justi�cation for this claim, we set up the experiment as a group family. On the sample space RL ,

de�ne the group of transformations G = fgc : c 2 Rmg, where

gcw = w +Hc:

We can regard G as the Euclidean space Rm with the usual topology. The composition operator is

gc Æ gd = gc+d, and the identity element is e = g0. The inverse is g
�1
c = g�c. We de�ne associated

18



groups G and ~G on the parameter space and action space respectively. Here G = fgc : c 2 R
mg,

with

gcu = u+ c

and ~G = G. All three groups are abelian: gcÆgd = gdÆgc. It can be readily seen that the experiment

fPu : u 2 Rmg is equivariant under the action of G and G, and that the loss (since it is of the form

l(u� a)) is equivariant under ~G.
Next, we will show that the generalized Bayes estimator with respect to the right Haar measure

associated with group G and given loss l, is the minimum risk equivariant (MRE) estimator. This

can be veri�ed using Theorem 6.59 of Schervish (1995). To apply that result we need to verify the

following conditions:

1. The experiment is invariant under the action of G;G.

2. The left Haar measure � and the right Haar measure � exist.

3. (a) G is a topological group.

(b) � is �-�nite and not identically 0.

(c) The function f : G � G ! G de�ned by f(g; h) = g�1 Æ h is continuous.

4. The mapping � : G ! G de�ned by �(g) = g is a group isomorphism.

5. There is a bimeasurable (measurable, one-to-one and onto, with measurable inverse) mapping

� : Rm ! G which satis�es g Æ �(u) = �(gu) for all g 2 G and all u 2 Rm .

6. There exists a bimeasurable function t : RL ! G � Y for some space Y (where we write

t(w) = (h; y)) such that, for every g 2 G and w 2 RL ,

t(w) = (h; y) =) t(gw) = (g Æ h; y):

7. For every u, the distribution of on G � Y induced from Pu by t has a density with respect to

�� v, where v is some measure on Y.
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Condition 1 is immediate from the de�nition of the groups and the translation nature of the

experiment. Since G is the translation group on Rm it can be readily seen that Lebesgue measure

is both a left and right Haar measure, verifying condition 2. For condition 3, note that G = R
m

and hence it is a topological space. Lebesgue measure is �-�nite and not identically 0. Also note

that f(gc; gd) = g�1c Æ gd = gd�c which is easily seen to be continuous.

To verify condition 4, write

�(gc Æ gd) = �(gc+d)

= gc+d

= gc Æ gd

= �(gc) Æ �(gd)

So � is a group homomorphism, and since it is clearly one-to-one and onto, is a group isomorphism.

To verify condition 5, let �(u) = gu: This is clearly bimeasurable. We have

gc Æ �(u) = gc Æ gu

= gc+u

= �(c+ u)

= �(gcu):

To verify conditions 6 and 7, we need to construct a maximal invariant (a statistic that identi�es

orbits of G). By assumption H has full column rank and hence row rank of m. Thus there are m

linearly independent rows of H. Reorder the elements of W (and the corresponding rows of H) so

that the �rst m elements correspond to the m linearly independent rows of H. Then de�ne

~H =

2
64
H 0
1
...
H 0
m

3
75 :

t(w) =

0
B@ ~H�1

0
B@

w1
...
wm

1
CA ;

0
B@

wm+1
...
wL

1
CA�

0
B@

H 0
m+1
...
H 0
L

1
CA ~H�1

0
B@

w1
...
wm

1
CA
1
CA :
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It can be seen that t satis�es the requirements of condition 6 and that the distribution of t has a

density with respect to the product of Lebesgue measures on R
m and R

L�m . (If L = m (so that

there is only a single orbit) we can modify the argument by having Y be an arbitrary singleton set

with counting measure.)

Therefore we conclude that ~u is the MRE.

Next, we want to show that the MRE is in fact minmax over all possible estimators. To apply

the generalized version of the Hunt-Stein theorem due to Wesler (1959), we need to verify the

following conditions:

1. The distributions Pu are dominated by a �-�nite measure.

2. The action space is a separable metric space, and for each u 2 Rm , l(u; a) is nonnegative and

continuous in a, and for every real number � , the set

fa : l(u; a) � �g

is compact.

3. G satis�es a condition known as amenability (see Bondar and Milnes (1981) for various equiv-

alent conditions for amenability).

4. G is a locally compact, �-compact topological group with its Borel �-algebra generated by

the compact subsets of G.

The �rst two conditions are immediate. To show amenability, note that Bondar and Milnes

(1981) point out that if a locally compact group is abelian, then it is amenable. The group G is a

Euclidean space and hence satis�es condition 4.

B Proofs of Theorems
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