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Abstract

We present methods to estimate marginal utility and marginal product functions that are
nonadditive in the unobservable random terms, using observations from a single hedonic equilibrium
market. We show that nonadditive marginal utility and nonadditive marginal product functions are
capable of generating equilibria that exhibit bunching, as well as other types of equilibria. We
provide conditions under which these types of utility and production functions are nonparametrically
identified, and we propose nonparametric estimators for them. The estimators are shown to be
consistent and asymptotically normal.

We are grateful to participants of seminars at Northwestern University, Universidad de San Andres , the 2002
Workshop on Characteristics Models: Theory and Applications (University of Copenhagen), and the 2002 Workshop on
Mathematical Economics (IMPA), for their useful comments. Rosa L. Matzkin is grateful for conversations with Daniel
McFadden and her colleagues at Northwestern.

1



1. INTRODUCTION

In hedonic models, the price of a product is a function of the vector of attributes characterizing
the product. These models are used to study the price of a large variety of attributes, such as job
safety, size of a house, school quality, distance of a house from an environmental hazard, and others.

In a seminal paper, Sherwin Rosen (1974) pioneered the study of hedonic models in perfectly
competitive settings. An economy in these models is specified by a distribution of consumers and a
distribution of firms. In equilibrium, consumers are matched with firms. In these models, each
consumer is characterized by a utility function that depends on the attributes characterizing the
product, as well as on some individual characteristics. Each firm is characterized by a production
function that depends on the attributes characterizing the product, as well as on some characteristics
of the firm. Given a price function for the attributes, each consumer demands the vector of attributes
that maximizes his utility, and each firm supplies the vector of attributes that maximizes its profit.
The equilibrium price function is such that the distribution of demand equals the distribution of
supply, for all values of the attributes.

Rosen (1974) suggested a method to estimate hedonic models. First, estimate the price function.
Second, use the equations for the first order conditions of the optimization of the consumers and
firms to estimate the utility and production functions. When the utility and production functions are
quadratic and the heterogeneity variables are normal, the model has a closed form solution, where
the equilibrium marginal price function is linear in the attributes. (This particular specification was
first studied by Tinbergen (1956).)

The influential papers by James Brown and Harvey Rosen (1982) and Brown (1983) strongly
criticized the method of identification proposed by Rosen. (See also Epple (1987) and Kahn and
Lang (1988).) Using the linear-quadratic model as an approximation, Brown and Rosen argued that
hedonic models are not identified. They claimed that sorting implies that within a single market,
there are no natural exclusion restrictions.

Recently, Ekeland, Heckman, and Nesheim (2002,2003), building on previous work by Heckman
(1991,1995,1999), analyzed Brown and Rosen’s claim, and concluded that the nonidentification is
specific to the linear case. Moreover, they showed that the linear case is nongeneric. Ekeland,
Heckman, and Nesheim (2002,2003) considered a model with additive marginal utility and additive
marginal product function and showed that is identified from single market data. In the specification,
the marginal utility was the sum of an unobservable random term, a nonparametric function of the
attribute, and a nonparametric function of an observable individual characteristic. The marginal
product function was specified in a similar way. The equilibrium price function as well as the
conditional distributions of the attribute given the observable characteristics were assumed to be
given. They presented two methods for recovering the functions. One was based on extensions of
average derivative models (Powell, Stock, and Stoker (1989)) and transformation models (Horowitz
(1996, 1998)). The other was based on nonparametric instrumental variables (Darolles, Florens, and
Renault (2001), Blundell and Powell (2000), Newey and Powell (2000). The performance of those
estimators and the ones presented in this paper are studied in Heckman, Matzkin, and Nesheim
(2002).

Inspired by the positive identification result in Ekeland, Heckman, and Nesheim (2002,2003), we
investigate in this paper the possibility of relaxing the additive structure, which was used in that
paper, for the marginal utility and the marginal product functions. The importance of such a study is
not only to allow more flexibility in the specification of the utility and marginal product functions in
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the model, but, more importantly, to specify economies that can generate a wider variety of
equilibrium price functions.

In this paper, we consider hedonic equilibrium models where the marginal utility and marginal
product functions are nonadditive in the unobserved heterogeneity variables. We show that these
more general economies are capable of generating equilibria with bunching, in the sense that a
positive mass of consumers and firms locate at a common location. (See Nesheim (2001) for
analyses of various types of equilibrium price functions; also Wilson (1993).)

We provide conditions under which the nonadditive marginal utility and nonadditive marginal
production function are identified from the equilibrium price function, the distribution of demanded
attributes conditional on the observable characteristics of the consumers, and the distribution of
supplied attributes conditional on the observable characteristics of the firms. The identification
proceeds as follows. First, using the methods in Matzkin (2002a), we show that from the conditional
distributions we can identify the demand and supply functions, which are nonparametric, nonadditive
functions of the observable and unobservable characteristics of, respectively, the consumers and
firms. Second, we use the demand and supply functions, together with the equilibrium price function,
and the restrictions imposed by the first order conditions to recover the marginal utility and marginal
product functions. This last step requires making an assumption on the marginal utility and marginal
product functions, which reduces by one the dimension of the domain of these functions.

We propose nonparametric estimators for the marginal utility and marginal product functions,
and show that they are consistent and asymptotically normal.

Estimation of demand models generated by random utility functions have been studied in the
past using parametric assumptions (Heckman (1974), McFadden (1974), Heckman and Willis
(1977)), semiparametric assumptions (Manski (1975,1985), Cosslett (1983), Matzkin (1991),
Horowitz (1992), Klein and Spady (1993), Ichimura and Thompson (1994), among others), and more
recently, using nonparametric assumptions (Matzkin (1992,1993), Briesch, Chintagunta and Matzkin
(1997), Brown and Matzkin (1998), Horowitz (2001), McFadden and Train (2000), among others).
McElroy (1981,1987), Brown and Walker (1985,1995) and Lewbel (1996) considered inference of
random utility and random production functions in perfectly competitive, non-hedonic situations.

Estimation of nonparametric models with nonadditive random terms has been previously studied
in Olley and Pakes (1996), Altonji and Ichimura (1997), Altonji and Matzkin (1997, 2001), Briesch,
Chintagunta and Matzkin (1997), Brown and Matzkin (1998), Heckman and Vytlacil (1999, 2001),
Matzkin (1999, 2002), Vytlacil (2000), Blundell and Powell (2000), and, more recently, by Bajari
and Benkard (2001), Chesher (2001), Hong and Shum (2001), and Imbens and Newey (2001). Bajari
and Benkard (2001) consider hedonic price functions where some of the attributes are unobservable.

The outline of the paper is as follows. In the next section, we describe the hedonic model, for a
univariate attribute. We provide two simple analytic examples of hedonic equilibria generated by
nonadditive functions, one without bunching and the other with bunching. In Section 3, we study the
identification of nonadditive marginal utility and nonadditive marginal product function. In Section
4, we present nonparametric estimators and their asymptotic properties.

2. THE HEDONIC EQUILIBRIUMMODEL

To describe the hedonic model, we will consider, for simplicity a labor market setting.
Consumers (workers) match to single worker firms. Let z denote an attribute vector, characterizing
jobs, assumed to be a disamenity for the consumers and an input for the firms. We will assume that z
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is unidimensional. Each consumer has a utility function U∗(c, z,x,ε) where c is consumption, x is a
vector of observable characteristics of the consumer and ε is an unobservable heterogeneity
term. Each firm has a production function Γ(z,y,η) where y is a vector of observable characteristics
of the firm and η is an unobservable heterogeneity term. The function U∗ will be assumed to be
twice differentiable with respect to its first two arguments. The function Γ will be assumed to be
twice differentiable with respect to z. The unobservable random terms, ε and η, will be assumed to
be statistically independent of the vectors of observable characteristics, x and y.

Each consumer chooses (c, z) to maximize the utility function U∗(c, z,x,ε) subject to the
constraint

c = P(z) + R

where R denotes unearned income. Substituting the constraint into the utility function, we can
describe the consumer’s problem as the choice of z that maximizes the value of the function

U∗(P(z) + R, z,x,ε)

The first order condition for this maximization is

Uc∗(P(z) + R,x, z,ε)Pz(z) + Uz∗(P(z) + R, z,x,ε) = 0

where Uc∗ and Uz∗ denote the partial derivatives of U∗ with respect to, respectively, its first and
second arguments. This can be expressed as

Pz(z) = v(P(z) + R, z,x,ε)

where

v(P(z) + R, z,x,ε)) ≡ −Uz∗(P(z) + R, z,x,ε)
Uc∗(P(z) + R,x, z,ε)

For simplicity, we will restrict our analysis to the case where

Uc∗ ≡ 1

so that

v(P(z) + R, z,x,ε) = −Uz∗(P(z) + R, z,x,ε)

We will further assume, also for simplicity, that R = 0. Define

Uz(z,x,ε) ≡ −Uz∗(z,x,ε)

Then, the first and second order conditions for maximization of U∗ over z become

FOC: Pz(z) − Uz(z,x,ε) = 0

SOC: Pzz(z) − Uzz(z,x,ε) < 0

By the Implicit Function Theorem and the SOC, there exists a function z = s(x,ε) such that

Pz(s(x,ε)) − Uz(s(x,ε),x,ε) = 0
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Moreover

∂s(x,ε)
∂ε = Uzε(s(x,ε),x,ε)

Pzz(s(x,ε)) − Uzz(s(x,ε),x,ε)

Hence,

∂s(x,ε)
∂ε > 0 if Uzε < 0

Let !s (z,x) denote the inverse of s with respect to ε. Then,

Pz(z) − Uz(z,x,!s (z,x)) = 0

∂!s (z,x)
∂z = Pzz(z) − Uzz(z,x,!s (z,x))

Uzε(z,x,!s (z,x))

and

∂!s (z,x)
∂z > 0 if Uzε < 0

From the other side of the market, each firm chooses z to maximize the profit function

Γ(z,y,η) − P(z)

The first and second order conditions of this optimization problem are

FOC: Γz(z,y,η) − Pz(z) = 0

SOC: Γzz(z,y,η) − Pzz(z) < 0

By the Implicit Function Theorem and SOC there exists a function z = d(y,η) such that

Γz(d(y,η),y,η) − Pz(d(y,η)) = 0

Moreover

∂d(y,η)
∂η =

Γzη(d(y,η),y,η)
Pzz(d(y,η)) − Γzz(d(y,η),y,η)

Hence,

∂d(y,η)
∂η > 0 if Γzη > 0

Let
!
d(z,y) denote the inverse of d with respect to η. Then,

Γz(z,y,
!
d(z,y)) − Pz(z) = 0
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∂
!
d(z,y)
∂z = Pzz(z) − Γzz(z,y,

!
d(z,y))

Γzη(z,y,
!
d(z,y))

and

∂
!
d(z,y)
∂z > 0 if Γzη > 0

We will assume that Uzε < 0 and Γzη > 0. In equilibrium, the density of the demanded z must
equal the density of the supplied z for all values of z. To express this condition in terms of the
primitive functions, consider the transformation

z = s(x,ε) & x = x

The inverse of this transformation is

ε = !s (z,x) & x = x

and the Jacobian determinant is

∂!s (z,x)
∂z

∂!s (z,x)
∂x

0 1
= ∂!s (z,x)

∂z = ∂!s (z,x)
∂z

Let fx and fε denote the densities of the vector of observable and unobservable characteristics of the
consumers. Let X denote the support of x. Then, the density of the supplied z is

∫X fε(
!s (z,x)) fx(x)

∂!s (z,x)
∂z dx

To obtain the density of the demanded z, consider the transformation

z = d(y,η) & y = y

The inverse of this transformation is

η =
!
d(z,y) & y = y

and the Jacobian determinant is

∂
!
d(z,y)
∂z

∂
!
d(z,y)
∂y

0 1
= ∂

!
d(z,y)
∂z = ∂

!
d(z,y)
∂z

Let fy and fη denote the densities of the vector of observable and unobservable characteristics of the
firms. Let

!
Y denote the support of y. Then, the density of the demanded z is

∫!Y fη
!
d(z,y) fy(y)

∂
!
d(z,y)
∂z dy

The equilibrium condition is that the density of the demand equals the density of the supply, for
all values of z ::
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∫X fε(
!s (z,x)) fx(x)

∂!s (z,x)
∂z dx = ∫!Y fη

!
d(z,y) fy(y)

∂
!
d(z,y)
∂z dy

From the FOC of the consumer and firm, the functions !s and
!
d depend on the function Pz. Their

derivatives depend then on Pz and Pzz. The equilibrium condition determines then a function Pz as a
solution to a first order differential equation. This function will be the derivative of an equilibrium
price function if the SOC of the consumer and firm are satisfied. To determine the conditions under
which the SOC are satisfied, we substitute in the equilibrium equation the expression for the
derivatives of the functions !s and

!
d, to get

∫X fε(
!s (z,x))fx(x)

Pzz(z) − Uzz(z,x,!s (z,x))
Uzε(z,x,!s (z,x))

dx

= ∫!Y fη
!
d(z,y) fy(y)

Pzz(z) − Γzz(z,y,
!
d(z,y))

Γzη(z,y,
!
d(z,y))

dy

or

∫X ∫!Y
fεPzzΓzη − fεUzzΓzη − fηUzεPzz + fηUzεΓzz

Uzε Γzη
fx(x) fy(y) dx dy = 0

or

∫X ∫!Y
Pzz(fεΓzη − fηUzε ) − fεUzzΓzη + fηUzεΓzz

Uzε Γzη
fx(x) fy(y) dx dy = 0

So that

Pzz ∫X ∫!Y
fεΓzη − fηUzε
Uzε Γzη

fx(x) fy(y) dx dy = ∫X ∫!Y
fεUzzΓzη − fηUzεΓzz

Uzε Γzη
fx(x) fy(y) dx dy

or

Pzz =
∫X ∫!Y

fεUzzΓzη−fηUzεΓzz
Uzε Γzη

fx(x) fy(y) dx dy

∫X ∫!Y
fεΓzη−fηUzε
Uzε Γzη

fx(x) fy(y) dx dy

The SOC of the consumer are satisfied if

Pzz(z) − Uzz(z,x,!s (z,x)) < 0

Substituting Pzz we get that the SOC of the consumer are satisfied when

∫X ∫!Y
fεUzzΓzη−fηUzεΓzz

Uzε Γzη
fx(x) fy(y) dx dy

∫X ∫!Y
fεΓzη−fηUzε
Uzε Γzη

fx(x) fy(y) dx dy
− Uzz(z,x,!s (z,x)) < 0

Similarly, for the firm, the SOC are satisfied when
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Γzz(z,y,
!
d(z,y)) −

∫X ∫!Y
fεUzzΓzη−fηUzεΓzz

Uzε Γzη
fx(x) fy(y) dx dy

∫X ∫!Y
fεΓzη−fηUzε
Uzε Γzη

fx(x) fy(y) dx dy
< 0

A necessary condition for the SOC of the consumer and firm to be satisfied for all z is that

Γzz(z,y,
!
d(z,y)) < Uzz(z,x,!s (z,x))

It is easy to verify that when there is only one heterogeneity variable, η, for the firm and only one
heterogeneity variable, ε, for the consumer, the condition

Γzz(z,
!
d(z)) < Uzz(z,!s (z))

is necessary and sufficient for the SOC of both the firm and the consumer to be satisfied.

Consider, as a special case, the specification studied in Ekeland, Heckman, and Nesheim (2001)
where, for some functions mw, nw, mf, and nf,

Uz(z,x,ε) = mw(z) + nw(x) − ε

Γz(z,y,η) = mf(z) + nf(y) + η

In this case,

Γzη = 1 Uzε = −1 Uzz = mw! (z) and Γzz = mf!(z)

!s (z,x) = mw(z) − Pz(z) + nw(x) and
!
d(z,y) = Pz(z) − mf(z) − nf(y)

Then,

Pzz =
∫X ∫!Y fε(

!s (z,x))mw! (z) + fη
!
d(z,y) mf!(z) fx(x) fy(y) dx dy

∫X ∫!Y fε(
!s (z,x)) + fη

!
d(z,y) fx(x) fy(y) dx dy

or

Pzz =
mw! (z) ∫X fε(

!s (z,x))fx(x)dx + mf!(z) ∫!Y fη
!
d(z,y) fy(y)dy

∫X fε(
!s (z,x))fx(x)dx + ∫!Y fη

!
d(z,y) fy(y)dy

Hence, the SOC of the consumer is satisfied when

mw! (z) ∫X fε(
!s (z,x))fx(x)dx + mf!(z) ∫!Y fη

!
d(z,y) fy(y)dy

∫X fε(
!s (z,x))fx(x)dx + ∫!Y fη

!
d(z,y) fy(y)dy

< mw! (z)

Since the denominator is positive, this is equivalent to

mf!(z) < mw! (z)

Similarly, the SOC of the firm are satisfied when
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mf!(z) <
mw! (z) ∫X fε(

!s (z,x))fx(x)dx + mf!(z) ∫!Y fη
!
d(z,y) fy(y)dy

∫X fε(
!s (z,x))fx(x)dx + ∫!Y fη

!
d(z,y) fy(y)dy

which is also equivalent to

mf!(z) < mw! (z)

Hence, the SOC in the additive model are satisfied at any z if and only if

mf!(z) < mw! (z)

Clearly, the nonadditive model can generate a wider class of equilibria, since the condition for
the SOC to be satisfied depends on the heterogeneity variables. In contrast, in the additive model,
satisfaction of the SOC depends solely on a function of z. In Section 2.2, we present a nonadditive
economy whose equilibrium exhibits bunching.

A different way of expressing the equilibrium condition is by using distribution functions instead
of density functions. Let Zw denote the supplied z and Zf denote the demanded z. The equilibrium
condition is that for all values z,

Pr(Zw ≤ z) = Pr(Zf ≤ z)

Assume that Uzε < 0 and Γzη > 0. Then, for the consumer (worker),

Pr(Zw ≤ z) = Pr(s(X,ε) ≤ z)

= ∫X Pr(s(X,ε) ≤ z|X = x)fx(x)dx

= ∫X Pr(ε ≤
!s (z,x)|X = x) fx(x)dx

= ∫X Pr(ε ≤
!s (z,x)) fx(x)dx

= ∫X Fε(
!s (z,x)) fx(x)dx

while for the firm

Pr(Zf ≤ z) = Pr(d(Y,η) ≤ z)

= ∫X Pr(d(Y,η) ≤ z|Y = y)fy(y)dy

= ∫X Pr η ≤
!
d(z,y)|Y = y fy(y)dy

= ∫X Pr η ≤
!
d(z,y) fy(y)dy

= ∫X Fη
!
d(z,y) fy(y)dy
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Hence, the equilibrium condition becomes

∫X Fε(
!s (z,x)) fx(x)dx = ∫X Fη

!
d(z,y) fy(y)dy

which is a functional equation in Pz. If it were the case that Γzη < 0, the equilibrium condition
would be

∫X Fε(
!s (z,x)) fx(x)dx = ∫X 1 − Fη

!
d(z,y) fy(y)dy

while if it were the case that Uzε > 0, the equilibrium condition would be

∫X[1 − Fε(
!s (z,x)) fx(x)dx] = ∫X Fη

!
d(z,y) fy(y)dy

2.1. AN ANALYTIC EXAMPLE

To provide a very simple analytic example of a nonadditive economy, suppose that all the
heterogeneity across firms is represented by a scalar variable η and all the heterogeneity across
consumers is represented by a scalar variable ε. Suppose that the consumer problem is

Maxz P(z) − zβ
ε

and the firm problem is

Maxz zαη − P(z).

Suppose that ε is distributed U(εl,εu), η is distributed U(ηl,ηu), εl = ηl, and εu = ηu. Then, the
first and second order conditions for the consumer’s problem are

FOC: Pz − β zβ−1
ε = 0

SOC: Pzz − β(β−1) zβ−2
ε < 0

The first and second order conditions for the firm’s problem are

FOC: α zα−1η − Pz = 0

SOC: α(α − 1) zα−2η − Pzz < 0.

The inverse supply and demand functions are

ε = !s (z) = β zβ−1
Pz

and η =
!
d(z) = Pz

α zα−1

The equilibrium condition is
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Fε
β zβ−1
Pz(z)

= Fη
Pz(z)
α zα−1

which, using the assumption about the distributions of ε and η becomes

β zβ−1
Pz(z)

= Pz(z) z1−α
α

for all z such that εl ≤ β zβ−1

P!(z)
≤ εu. Hence, the equilibrium price function is

Pz(z) = (αβ zα+β−2 )1/2

for all z such that εl
2
β−α α

β

1
β−α ≤ z ≤ εu

2
β−α α

β

1
β−α . Substituting this equation into the first order

conditions of the consumer and firm, it is easy to verify that the supply function of the consumer is

z = α
β

1
β−α
ε

2
β−α

for εl ≤ ε ≤ εu, and the demand function of the firm is

z = α
β

1
β−α
η

2
β−α

for ηl ≤ η ≤ ηu. Hence, in equilibrium, for each t between εl = ηl and εu = ηu, each consumer
with ε = t gets matched with a firm with η = t. Using these equations and Pzz into the SOC of the
consumer and firm, it is easy to verify that the SOC’s are satisfied if and only if

α < β

2.2. AN EXAMPLE OF AN EQUILIBRIUMWITH
BUNCHING

Hedonic equilibrium models where the heterogeneity enters into the marginal utility and
marginal product functions in nonadditive ways are capable of generating different types of
equilibrium. In the simple example presented in the previous section, the heterogeneity variables of
the consumer and the firm were continuously distributed and the resulting equilibrium z was also
continuously distributed. We next present an example where the resulting equilibrium z is a mixed,
continuous-discrete, random variable, even though the heterogeneity variables of the consumer and
the firm are continuously distributed.

Suppose that each firm has a production function

Γ(z,η) = zα η

where α =. 5 and η is distributed U(0,1). Each firm’s problem is then
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Maxz zα η − P(z)

FOC: α zα−1η − Pz(z) = 0

SOC: α(α − 1)zα−2η − Pzz(z) < 0

The FOC implies

η(z) = Pz(z) z1−α
α

Suppose that each consumer has a disutility of z given by

V(z,ε) = zε

where ε is a random variable distributed U(. 25, . 75). Each consumer’s problem is then

Maxz P(z) − V(z,ε)

FOC: Pz(z) − ε zε−1 = 0

SOC: Pzz(z) − ε (ε − 1) zε−2 < 0.

Applying the results from the previous section, we get that the SOC of the consumer and firm are
satisfied if and only if

Γzz(z,η(z)) < Vzz(z,ε(z))

or, equivalently, when

Γzz(z(η),η) < Vzz(z(ε),ε) & z(η) = z(ε) = z

Hence, in the given specification, the SOC are satisfied if and only if

α(α − 1)zα−2η < ε(ε − 1) zε−2

Using the FOC of the firm and the consumer, this last condition becomes

(α − 1)z−1Pz(z) < (ε − 1) z−1Pz(z)

which is satisfied when

α < ε

Since Pr(ε > α) =. 5, a positive proportion of the market will locate at corner solutions. More
specifically, in an equilibrium, a typical consumer with ε ∈ (α, 32 α] will supply

z = 1 − α
2ε

1
ε−α

and will get matched with a firm η such that
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η = ε
α 1 − α

2ε

Firms with η <. 5 and ε <. 5 will locate at z = 0.

3. IDENTIFICATION

In this section, we analyze the identification of the random marginal utility and marginal
production functions in hedonic equilibrium models. We assume that the equilibrium price function
and the distributions of (z,x) and (z,y) are given, where z denotes the observed location, x denotes the
vector of observable characteristics of a typical consumer, and ydenotes the vector of observable
characteristics of a typical firm. We will consider here the identification of the marginal product
function, Γz(z,y,η), and of the distribution of η. The identification of the utilty U∗(z,x,ε) and of the
distribution of ε can be established in an analogous way, and is therefore omitted. We will consider
the cases that require the minimal number of coordinates of y.

The key to establishing the identification of Γz is to note that for those values of z that satisfy the
first order conditions, the value of the marginal product Γz is known, since it must equal the marginal
price function. The values of z that satisfy the first order conditions for any given values of (y,η) are
given by the demand function d(y,η). This nonadditive demand function can be identified
nonparametrically from the conditional distribution of z given y, using the analysis introduced in
Matzkin (1999), and further extended in Matzkin (2002a). Then, the new identification problem
presented in our setup is the one of identifying the function Γz, which satisfies:

Γz(d(y,η),y,η) = Pz(d(y,η))

where the functions d and Pz are known.
As it is clear from the above expression, without any further restrictions it is not possible to

identify the function Γz, since given any arbitrary values for the last two coordinates, y and η, of Γz,
the value of the first coordinate, d(y,η), is uniquely determined by them. To deal with this, we
introduce an assumption that has the effect of reducing the number of arguments of Γz by one.
Specifically, we will assume that Γz depends on two of its arguments through a known function,
q : R2 → R, of them. This reduces the dimensionality of the domain of Γz, and, as we show below,
allows us to identify Γz.

Besides the domain reduction, Γz will have to satisfy some other properties, to guarantee that the
function d(y,η) is identifed. One may impose a normalization on either the function Γz or the
distribution of Γz, which translates into a normalization on the function d or on the distribution of
the function d, respectively. Alternatively, one can impose a shape restriction on Γz that translates
into a shape restriction on d, which allows to identify d and the distribution of d.

The next theorem shows that Γz and the distribution of Γz are identified, when the vector of
observable characteristics, y, has at least two coordinates, y1 and y2, and Γz is, in addition, weakely
separable into known functions q1(z,y1) and q2(z,y2). We consider the case where y = (y1,y2). The
case where y contains more coordinates is easily dealt with, using more notation.
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Theorem 3.1: Let y = (y1,y2) ∈ R2. Suppose that for some unknown differentiable function
m : R2 → R, which is strictly increasing in its second argument, and some known differentiable
functions q1 : R2 → R and q2 : R2 → R

(2) Γz(z,y1,y2,η) = m(q1(z,y1),q2(y2,η))

where q2 is strictly increasing in its arguments. Normalize the function m, fixing its value at one
point, so that for some values z of z, y 1 of y1, and α ∈ R,

(3) m(q1( z , y 1),α)= Pz( z )

Let [t2l , t2u ] denote the support of q2(y2,η), and for any t2 ∈ [t2l , t2u ], let [t1l (t2), t1u(t2)] denote the
support of q1(d(y1,y2,η),y1 ) conditional on q2(y2,η) = t2. Then, for any (z,y1,y2,η) such that
q2(y2,η) ∈ [t2l , t2u ] and q1(z,y1) ∈ [t1l (t2), t1u(t2)]

Γz(z,y1,y2,η) is identified

The poof of Theorem 3.1 is presented in the Appendix. Roughly, the argument follows by first
noticing that (2) implies that the demand function d(y1,y2,η) is weakly separable into q2(y2,η), (3)
implies that the demand function is known at one point, and the strict monotonicity of m and q2 in
their second arguments implies that the demand function is strictly increasing in η. These guarantee
that the demand function d and the distribution of η are identified. To identify the value of m(t1, t2)
at an arbitrary vector (t1, t2), we first find values y1∗,y2∗, and η∗ such that when z = d(y1∗,y2∗,η∗),
q1(z,y1∗) = t1 and q(y2∗,η∗) = t2. Then, since such a z satisfies the FOC, it follows that
m(t1, t2) = Pz(z) = Pz(d(y1∗,y2∗,η∗)).

The statement and the proof of Theorem 3.1 can be easily modified to show that the function Γz
is also identified when it can be expressed as a function m(t1,y1), where t1 = q1(z, t2) and
t2 = q2(y2,η). To see this, suppose that for some unknown function m : R2 → R and some known
functions q1 : R2 → R and q2 : R2 → R, such that m is strictly increasing in its first argument, q1
is strictly increasing in its second argument, and q2 is strictly increasing in its arguments

(4) Γz(z,y1,y2,η) = m q1(z,q2(y2,η)) , y1

Normalize the function m, fixing its value at one point, so that for some values z of z, y 1 of y1,
and α ∈ R,

(5) m(q1( z ,α), y 1 ) = Pz( z )

Then, as in the proof of Theorem 3.1, it can be shown that, by (4), the demand function, d(y1,y2,η)
is weakly separable into q2(y2,η), by (5), the value of d is fixed at one point, and by the
monotonicity of m and q1, d is strictly increasing in q2. These properties guarantee the identification
of d and of the distribution of η. To identify the value of m(t1, t2) at an arbitrary vector (t1, t2), let
y1∗ = t2, and find y2∗, and η∗ such that when z = d(y1∗,y2∗,η∗), q1(z,q2(y2∗,η∗)) = t1. Then, as in the
above argument, m(t1, t2) = Pz(z) = Pz(d(y1∗,y2∗,η∗)).

In the above results, the role of requiring that Γz is weakly separable into a function of (y2,η)
was to allow us to identify at the same time the demand function d(y1,y2,η) and the distribution of
η. Instead of that, we could just use a normalization on either the demand function or the distribution
of η. Suppose, for example, that we specify the distribution of η. Then, we have the following
theorem:
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Theorem 3.2: Suppose that for some unknown differentiable function m : R2 → R, which is
strictly increasing in its second argument, and some known differentiable function q : R2 → R,

(6) Γz(z,y,η) = m(q(z,y),η)

Assume that Fη is known. For any η, let (ql(η),qu(η)) denote the support of q(d(y,η),y). Then,
for all η and all y such that q(d(y,η),y) ∈ (ql(η),qu(η))

Γz(z,y,η) is identified

A similar result can be obtained if instead of requiring that Γz be a function of q(z,y), we require
that Γz be a function of q(z,η). Specifically, suppose that that for some unknown function
m : R2 → R, which is strictly increasing in its first argument, and some known function
q : R2 → R, which is strictly increasing in its second argument

(7) Γz(z,y,η) = m(q(z,η),y)

Assume that Fη is known. For any y, let (ql(y),qu(y)) denote the support of q(d(y,η),η). Then, for
all y and all η such that q(d(y,η),η) ∈ (ql(y),qu(y))

Γz(z,y,η) is identified

The argument follows the same lines as in the proof of Theorem 3.2.
We could impose also a normalization on the function d, instead of on the distribution of η.

Along these lines, we can obtain the following theorem:

Theorem 3.3: Let y ∈ R. Suppose that for some unknown, differentiable function m : R2 → R,
which is strictly increasing in its last coordinate, and some known, differentiable function
q : R2 → R,

(8) Γz(z,y,η) = m(q(z,y),η)

Use the function Pz to fix the value of the unknown function Γz at one value y of y, and on the
45 degree line on the (z,η) space, by requiring that for all t,

(9) Γz(t, y , t) = Pz(t)

Let η be given. Let q ∈ (ql(η),qu(η)), the support of q(d(y,η),y). Then, for y such that
q(d(y,η),y) ∈ (ql(η),qu(η))

Γz(z,y,η) is identified

The result can be easily modified for the case where Γz(z,y,η) = m(q(z,η),y). Specifically,
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suppose that for some unknown function m : R2 → R, which is strictly increasing in its first
coordinate and some known function q : R2 → R, which is strictly increasing in its second
coordinate

(10) Γz(z,y,η) = m(q(z,η),y)

Suppose that (9) is satisfied. Then, Γz(z,y,η) is identified on an appropriate set. Suppose, for
example, that

Γz(z,y,η) = m(z " η,y)

for an unknown function m. Then the normalization (9) is imposed by fixing the values of m when
y = y , by

m(t2, y ) = Pz(t)

4. ESTIMATION

The proofs of Theorems 3.1-3.3 provide ways of nonparametrically estimating the distribution of
η, the demand function d, and the marginal product function Γ. Suppose, for example, that the
assumptions in Theorem 3.1 are satisfied, so that the demand function has the form
v(y1,q2(y,η)). To obtain an estimator for Γz, first estimate the distribution of η and the demand
function v using the conditional cdf of z given (y1,y2), as described in Matzkin (2002b). Then, use
the estimated function #v and the known function q1 to calculate the value y1∗ that satisfies

q1(#v(y1∗, t2),y1∗) = t1

The estimator m(t1, t2) of m(t1, t2), is then given by the equation

(11) m(t1, t2) = Pz(#v(y1∗(t1, t2), t2))

A similar procedure can be described using the steps in the proofs of Theorems 3.2 and 3.3.

To describe the estimators suppose that the equilibrium price function is known, and that the
available data is {Zi,Yi} for each of N1 firms, and {Zi,Xi} for each of N2 consumers. For simplicity,
we will concentrate on the estimation of the marginal product function for the case where the
assumptions in Theorem 3.1 are satisfied. Let f(z,y1,y2)and F(z,y1,y2)denote, respectively, the joint
pdf and cdf of (Z,Y1,Y2). Let f"(z,y1,y2) and F" (z,y1,y2) denote the corresponding kernel estimators.
Let f"Z|Y=(y1,y2)(z) and F" Z|Y=(y1,y2)(z) denote the kernel estimators of, respectively, the conditional pdf and
conditional cdf of Z given Y = (y1,y2). Then,

f"(z,y1,y2) = 1
NσN3

∑i=1
N K( z−Ziσ ,

y−Yi
σ ) ,
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F" (z,y1,y2) = ∫−∞
z
∫−∞
y f"N(s,y) ds dy,

f"Z|Y=y(z) = f"N(z,y)

∫−∞
∞

f"N(s,y) ds
, and

F" Z|Y=y(z) =
∫−∞
z
f"N(s,y) ds

∫−∞
∞

f"N(s,y) ds

where y = (y1,y2), and where K : R × RL → R is a kernel function and σN is the bandwidth.
Analogous equations hold when Y is substituted with X and y = (y1,y2) is substituted with
x = (x1,x2). The above estimator for F(z,y) was proposed in Nadaraya (1964). When
K(s,y) = k1(s)k2(y) for some kernel functions k1 : R → R and k2 : R2 → R,

F" Z|Y=y(z) =
∫−∞
z f"N(s,y) ds

∫−∞
∞ f"N(s,y) ds

= ∑i=1
N !
k 1( z−z

i
σ ) k2( y−Y

i

σ )

∑i=1
N k2( y−Y

i

σ )

where
!
k 1(u) = ∫−∞

u k1(s)ds. Note that the estimator for the conditional cdf of Z given Y is different
from the Nadaraya-Watson estimator for FZ|Y=y(z). The latter is the kernel estimator for the
conditional expectation ofW ≡ 1[Z ≤ z] given Y = y. For any t and y, F" Z|Y=y−1 (t) will denote the set of
values of Y for which F" Z|Y=y(z) = t. When the kernel function k1 is everywhere positive, this set of
values will contain a unique point.

Suppose that the marginal product function is such that for some unknown function m

Γz(z,y1,y2,η) = m(q1(z,y1),q2(y2,η))

where q2 : R2 → R is some known function. Normalize the value of the function m at one point by
requiring that at some values z of z, y 1 of y1, and α ∈ R,

m(q1( z , y 1),α) = Pz( z )

Let d(y1,y2,η) be the function that satisfies, for each (y1,y2,η), the FOC of the firm. Then, as argued
in the proof of Theorem 3.1,

d(y1,y2,η) = v(y1,q2(y2,η))

for some unknown function v, which is strictly increasing in its second coordinate and is such that

v( y 1,α) = d( y 1,y2,η) = z

Using Matzkin (2002b) it follows that for any e

Fη(e) = FZ|Y=( y 1,w(α,e))( z )

where w∗ = w(α,e) is such that q2(w∗,e) = α, and that for any !y 1,
!y 2,

!e
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#v(!y 1,q2(
!y 2,

!e)) = FZ|Y=(!y 1,!y 2)
−1

Fη(!e)

As described above, to obtain an estimator for m(t1, t2), we first calculate #y 1
∗ such that

(12) q(#v(#y 1
∗, t2),#y 1

∗) = t1

and then let

m(t1, t2) = Pz(#v(#y 1
∗, t2))

We will establish the asymptotic properties of this estimator for the case where the function
q1(z,y1) = z " y1 and the function q2(y2,η) = y2 + η. Similar results can be obtained for other
specifications of the functions q1 and q2. We will make the following assumptions:

Assumption A.1: The sequence {Zi,Yi} is i.i.d.

Assumption A.2: f(Z,Y) has compact support Θ ⊂ R3 and is twice continuously differentiable.

Assumption A.3: The kernel function K(", ") is Lipschitz, vanishes outside a compact set, integrates
to 1, and is of order 2.

Assumption A.4: As N → ∞, ln(N)/NσN3 → 0 and σN2 NσN4 → 0

Assumption A.5: 0 < f(y1,y2), f( y 1,α + e) < ∞; there exist δ,ξ > 0 such that
∀s ∈ N(v(y1∗,y2 + e),ξ), f(s,y) ≥ δ; there exist δ!,ξ! > 0 such that
∀(s,y1) ∈ N((v(y1∗,y2 + e),y1∗ ),ξ! ) f(s,y) ≥ δ, ∂v(y1∗, t2) ≠ 0, FZ|Y=(y1∗,y2)(v(y1

∗,y2 + e)) ≠ 0 .

Assumption A.6: t2 = y2 + e for some y2 in the interior of the support of Y2 and some e in the
interior of the support of η; t1 belongs to the interior of the support of q(d(y1,y2,η),y1 ) conditional
on Y2 = y2 and η = e.

Let ∫K(z)2 = ∫ ∫K(s,y) ds
2dy, where s ∈ R. When assumptions A.1-A.5 are satisfied, Theorems

1 and 2 in Matzkin (2002a) imply that for any e and (y1! ,y2! ),

sup
e∈R

Fη(e) − Fη(e) → 0 & #v(y1! ,y2! + e) → v(y1! ,y2! + e) in probability

N σ Fη(e) − Fη(e) → N(0,VF ) &

and

N σN(#v(y1! ,y2! + e) − v(y1! ,y2! + e)) → N(0,Vv)

where
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VF = ∫K(z)2 Fη(e) (1 − Fη(e) 1
f( y 1,α + e)

and

Vn = ∫K(z)2
Fη(e) (1 − Fη(e))
fZ|Y=y(v(y1! ,y2! + e))2

1
f( y 1,e + α)

+ 1
f(y1! ,y2! )

The next theorem uses assumptions A.1-A.6 to establish the asymptotic properties of m(t1, t2). Let
y = (y1∗,y2) and v∗ = v(y1∗,y2 + e) for y2 and e such that y2 + e = t2. Let

!y = ( y 1,α + e). Define the
constant C by

C = 1
fZ|Y=y(v∗ )

1 +
y1∗

∂FZ|Y=y(v∗)
∂y1

fZ|Y=y(v∗ )
∂q(v(y1∗,t2),y1∗)

∂y1

Theorem 4.1: Suppose that Assumptions A.1-A.6 are satisfied. Then, m(t1, t2) converges in
probability to m(t1, t2) and

Nσ4 m(t1, t2) − m(t1, t2) → N(0,Vm) in distribution, where

Vm= ∫K(z)2 [C]2(Pzz(v∗ ))2 1
f(!y) +

1
f(y)

(FZ|Y=!y( z )(1 − FZ|Y=!y( z )))

The proof of this Theorem is presented in the Appendix.

5. SUMMARY

We have considered hedonic equilibrium models where the marginal utility of each consumer
and the marginal product of each firm are both nonadditive functions of the attribute and a random
vector of individual characteristics, which are different for the consumers and firms. We have
demonstrated that this type of specification is capable of generating equilibria of different types, with
and without bunching. We have shown that when the vector of individual characteristics contains an
observable characteristic, it is possible to identify the nonadditive random marginal utility and
nonadditive random marginal product. We have provided nonparametric estimators for these
functions and have shown that they are consistent and asymptotically normal.
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6. APPENDIX

Proof of Theorem 3.1: Since Γz is weakly separable in q2(y2,η), the function z = d(y1,y2,η),
which satisfies the FOC is also weakly separable in q2(y2,η). Hence, for some unknown function v

(a. 1) d(y1,y2,η) = v(y1,q2(y2,η))

Let y2 and η be such that q2(y2,η) = α. Then, by (2) and (3) in the statement of the theorem

(a. 2) Γz( z , y 1,y2,η) = Pz( z )

Hence, z satisfies the FOC when y1 = y 1 and q2(y2,η) = α. It then follows that

(a. 3) v( y 1,α) = d( y 1,y2,η) = z

By the FOC and by (2) in the statement of the theorem it follows that

m q1(v(y1,q2(y2,η)),y1) , q2(y2,η) = Pz v(y1,q2(y2,η))

Hence, since the SOC are satisfied

∂m
∂q1

∂q1
∂z

∂v
∂q2

+ ∂m
∂q2

= Pzz ∂v∂q2

Hence,

(a. 4) ∂v
∂q2

=
− ∂m

∂q2
∂m
∂q1

∂q1
∂z − Pzz

Since by the SOC of the firm,

∂m
∂q1

∂q1
∂z − Pzz < 0

it follows by the strict monotonicity of m in its second coordinate that the function v is strictly
increasing in its second argument.

Summarizing, the unknown function v that relates y1, y2, and η to the value of z that satisfies the
FOC is such that

(a. 5) z = v(y1,q2(y2,η)), v is strictly increasing in its second argument & v( y 1,α) = z

It then follows by the results in Matzkin (2002b) that the function v and the distribution of η are
identified from the conditional distribution of Z given Y = (Y1,Y2).

Next, to show that the function m is identified, let (t1, t2) be any vector such that t2 ∈ [t2l , t2u ] and
t1 ∈ [t1l (t2), t1u(t2)]. Let y1∗ denote a solution to
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(a. 6) q1(v(y1∗, t2),y1∗) = t1

Since q1 is a known function and v can be recovered from the conditional cdf of z given (y1,y2), the
only unknown in (a.6) is y1∗. Since t2 ∈ [t2l , t2u ] and t1 ∈ [t1l (t2), t1u(t2)], y1∗ exists. Since v(y1∗, t2)
satisfies the FOC,

(a. 7) m(t1, t2) = m(q1(v(y1∗, t2),y1∗ ), t2 )
= Pz(v(y1∗, t2))
= Pz(d(y1∗,y2∗,η∗))

for any y2∗ and η such that q2(y2∗,η) = α. In (a.7), the first equality follows because
q(v(y1∗, t2),y1∗) = t1; the second equality follows because when z is substituted by the value that
satisfies the first order conditions, the value of the marginal product function m equals the value of
the marginal price function at the particular value of z that satisfies the first order conditions. The
third equality follows by the restriction on the function d. Since the function Pz is known and the
function d can be recovered without knowledge of m, (a. 7) implies that the function m is identified..
This completes the proof of Theorem 3.1.

Proof of Theorem 3.2: Let d(y,η) denote the demand function of a firm with characteristics
(y,η). By (6) and the first order conditions

m(q(d(y,η),η) = Pz(d(y,η))

By the second order conditions

∂m
∂q

∂q
∂z − Pzz < 0

Hence,

∂m
∂q

∂q
∂z

∂d
∂η + ∂m

∂η = Pzz ∂d∂η

By the monotonicity of m,

∂d
∂η =

− ∂m
∂η

∂m
∂q

∂q
∂z − Pzz

> 0

Hence, d is a nonadditive function in η which is strictly increasing in η. Since η is independent
of Y, it follows by Matzkin (1999) that

d(y,η) = FZ|Y−1 (Fη(η))

Since Fη is given, d is identified. Let (t1, t2) be such that t1 ∈ (ql(t2),qu(t2)). Find y∗ such that

q(d(y∗, t2), t2 ) = t1

Then,
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m(t1, t2) = Pz(d(y∗, t2))

Proof of Theorem 3.3: By (9), in the statement of the theorem, it follows that the value of z that
satisfies the FOC when y = y and η = t is z = t. Hence, the demand function, d(y,η), satisfies

(c. 1) d( y ,η) = η

By the SOC and the monotonicity assumption on m

(c. 2) ∂d
∂η =

− ∂m
∂η

∂m
∂q

∂q
∂z − Pzz

> 0

Then, by Matzkin (1999)

(c. 3) Fη(e) = FZ|Y= y (e)

and

(c. 4) d(!y ,e) = FZ|Y=!y−1 (Fη(e))

Next, to see that the function m is identified, let y∗ denote the solution to

(c. 5) q(d(y∗, t2),y∗ ) = t1

Hence,

(c. 6) m(t1, t2) = m(q(d(y∗, t2),y∗ ), t2 )

and from the FOC

(c. 7) m(t1, t2) = Pz(d(y∗, t2))

Proof of Theorem 4.1: We use a Delta Method, like the ones developed in Ait-Sahalia (1994)
and Newey (1994). Let F(z,y) denote the distribution function (cdf) of the vector of observable
variables (Z,Y), f(z,y) denote its probability density function (pdf), f(y) denote the marginal pdf of Y,
and FZ|Y=y denote the conditional cdf of Z given Y = y. Let L = 3. For any function G : R1+L → R,
define g(z,y) = ∂LG(z,y)/∂z∂y, g(y) = ∫g(z,y) dz, g(y) = ∫g(z,y)dz , GZ|Y=y!(z!) =
∫−∞
z ! g(z,y !)dz /g(y !), and GZ(z,y) = ∫

z g(s,y)ds = ∫1[s ≤ z] g(s,y) ds where 1["] = 1 if ["] is true,
and it equals zero otherwise. Let C denote a compact set in RL that strictly includes Θ. Let D denote
the set of all functions G : RL → R such that g(z,y) vanishes outside C. Let D denote the set of all
functions GZ that are derived from some G in D. Since there is a 1-1 relationship between functions
in D and functions in D, we can define a functional on D or on D without altering its definition. Let
#G# denote the sup norm of g(z,y). Then, if H ∈D, there exists ρ1 > 0such that if #H# ≤ ρ1 then,
for some 0 < a,b < ∞, all y and all s ∈ N(v(y1,y2 − e),ξ),
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(1) |h(y)| ≤ a#H#, ∫−∞
y h(s,y)ds ≤ a#H#,

|f(y) + h(y)| ≥ b|f(y)|, and f(s,y) + h(s,y) ≥ b|f(s,y)|.

Let !z = z , !y = ( y 1,e + α) and v∗ = v(y1∗, t2).Let y2 and e be such that y + e = α. Define the
functionals

κ(G) = y1 such that v(y1, t) " y1 = t1

Φ(G) = v(y1∗, t) = GZ|Y=(y1∗,t)
−1 GZ|Y=!y−1 (!z )

Λ(G) = v(κ(G), t) = GZ|Y=(κ(G),t)−1 (GZ|Y=!y(!z ))

δ(G) = Λ(G) " κ(G)

β(G) = t1

η(G) = GZ|Y=(κ(G),t)(Λ(G))

ν(G) = GZ|Y=!y(!z )

Then, v(y1∗, t2) = FZ|Y=(y1∗,y2)
−1 (FZ|Y=!y(!e)) and η(G) = ν(G) for all G.

η(F + H) − η(F) = ∫
Λ(F+H)

f(s,κ(F+H),y2 )+h(s,κ(F+H),y2 )

f(κ(F+H),y2 )+h(κ(F+H),y2 )
− ∫

Λ(F)
f(s,κ(F),y2 )

f(κ(F),y2 )

=
f(κ(F),y2 ) ∫

Λ(F+H)
f(s,κ(F+H),y2 )ds+f(κ(F),y2 ) ∫

Λ(F+H)
h(s,κ(F+H),y2 )ds

f(κ(F+H),y2 )(f(κ(F+H),y2 )+h(κ(F+H),y2 ))

−
f(κ(F+H),y2 ) ∫

Λ(F)
f(s,κ(F),y2 )+h(κ(F+H),y2 ) ∫

Λ(F)
f(s,κ(F),y2 )

f(κ(F+H),y2 )(f(κ(F+H),y2 )+h(κ(F+H),y2 ))

By the Mean Value Theorem

f(κ(F + H),y2 ) = f(κ(F),y2 ) +
∂f(!y 1,y2 )
∂y1

(κ(F + H) − κ(F))

h(κ(F + H),y2 ) = h(κ(F),y2 ) +
∂h(!y 1

a,y2 )
∂y1

(κ(F + H) − κ(F))

f(s,κ(F + H),y2 ) = f(s,κ(F),y2 ) +
∂f s,!y 1! (s),y2

∂y1
(κ(F + H) − κ(F))

and h(s,κ(F + H),y2 ) = h(s,κ(F),y2 ) +
∂h s,!y 1!!(s),y2

∂y1
(κ(F + H) − κ(F))

for some !y 1,
!y 1
a, !y 1

! (s), and !y 1
!!(s) between κ(F + H) and κ(F). Hence,
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η(F + H) − η(F) =
f(κ(F),y2 ) ∫

Λ(F+H)
f(s,κ(F),y2 )ds+f(κ(F),y2 )(κ(F+H)−κ(F)) ∫

Λ(F+H) ∂f s,!y1
! (s),y2
∂y1

ds

f(κ(F),y2 )(f(κ(F+H),y2 )+h(κ(F+H),y2 ))

+
f(κ(F),y2 ) ∫

Λ(F+H)
h(s,κ(F),y2 )ds+f(κ(F),y2 )(κ(F+H)−κ(F)) ∫

Λ(F+H) ∂h s,!y1
!!(s),y2
∂y1

ds

f(κ(F),y2 )(f(κ(F+H),y2 )+h(κ(F+H),y2 ))

−
f(κ(F),y2 ) ∫

Λ(F)
f(s,κ(F),y2 )ds+

∂f(!y1,y2 )
∂y1

(κ(F+H)−κ(F)) ∫
Λ(F)

f(s,κ(F),y2 )ds

f(κ(F),y2 )(f(κ(F+H),y2 )+h(κ(F+H),y2 ))

−
h(κ(F),y2 ) ∫

Λ(F)
f(s,κ(F),y2 )ds+

∂h !y1
a,y2
∂y1

(κ(F+H)−κ(F)) ∫
Λ(F)

f(s,κ(F),y2 )ds

f(κ(F),y2 )(f(κ(F+H),y2 )+h(κ(F+H),y2 ))

Also by the Mean Value Theorem,

∫
Λ(F+H) f(s,κ(F),y2 )ds = ∫

Λ(F) f(s,κ(F),y2 )ds + f(v,κ(F),y2 )(Λ(F + H) − Λ(F))

∫
Λ(F+H) h(s,κ(F),y2 )ds = ∫

Λ(F) h(s,κ(F),y2 )ds + h(v !,κ(F),y2 )(Λ(F + H) − Λ(F))

∫
Λ(F+H) ∂f s,!y 1! (s),y2

∂y1
ds = ∫

Λ(F) ∂f s,!y 1! (s),y2
∂y1

ds + ∂f v!!,!y 1! (v!!),y2
∂y1

(Λ(F + H) − Λ(F))

and

∫
Λ(F+H) ∂h s,!y 1!!(s),y2

∂y1
ds = ∫

Λ(F) ∂h s,!y 1!!(s),y2
∂y1

ds + ∂h va,!y 1! (va),y2
∂y1

(Λ(F + H) − Λ(F))

for some v,v !,v !!,va between Λ(F + H) and Λ(F). Hence,

η(F + H) − η(F)

=
f(κ(F),y2 ) ∫

Λ(F)
f(s,κ(F),y2 )ds+f(κ(F),y2 )(Λ(F+H)−Λ(F))f(v,κ(F),y2 )ds

f(κ(F),y2 )(f(κ(F+H),y2 )+h(κ(F+H),y2 ))

+
f(κ(F),y2 )(κ(F+H)−κ(F)) ∫

Λ(F) ∂f s,!y1
! (s),y2
∂y1

ds+f(κ(F),y2 )(κ(F+H)−κ(F))(Λ(F+H)−Λ(F))
∂f v!!,!y1

! (v!!),y2
∂y1

f(κ(F),y2 )(f(κ(F+H),y2 )+h(κ(F+H),y2 ))

+
f(κ(F),y2 ) ∫

Λ(F)
h(s,κ(F),y2 )ds+f(κ(F),y2 )(Λ(F+H)−Λ(F))h(v!,κ(F),y2 )

f(κ(F),y2 )(f(κ(F+H),y2 )+h(κ(F+H),y2 ))

+
f(κ(F),y2 )(κ(F+H)−κ(F)) ∫

Λ(F) ∂h s,!y1
!!(s),y2
∂y1

ds+f(κ(F),y2 )(κ(F+H)−κ(F))(Λ(F+H)−Λ(F))
∂h va,!y1

! (va),y2
∂y1

f(κ(F),y2 )(f(κ(F+H),y2 )+h(κ(F+H),y2 ))

−
f(κ(F),y2 ) ∫

Λ(F)
f(s,κ(F),y2 )ds+

∂f(!y1,y2 )
∂y1

(κ(F+H)−κ(F)) ∫
Λ(F)

f(s,κ(F),y2 )ds

f(κ(F),y2 )(f(κ(F+H),y2 )+h(κ(F+H),y2 ))

−
h(κ(F),y2 ) ∫

Λ(F)
f(s,κ(F),y2 )ds+

∂h !y1
a,y2
∂y1

(κ(F+H)−κ(F)) ∫
Λ(F)

f(s,κ(F),y2 )ds

f(κ(F),y2 )(f(κ(F+H),y2 )+h(κ(F+H),y2 ))
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= f(κ(F),y2 )(Λ(F+H)−Λ(F))f(v,κ(F),y2 )ds
f(κ(F),y2 )(f(κ(F+H),y2 )+h(κ(F+H),y2 ))

+
f(κ(F),y2 )(κ(F+H)−κ(F)) ∫

Λ(F) ∂f s,!y1
! (s),y2
∂y1

ds+f(κ(F),y2 )(κ(F+H)−κ(F))(Λ(F+H)−Λ(F))
∂f v!!,!y1

! (v!!),y2
∂y1

f(κ(F),y2 )(f(κ(F+H),y2 )+h(κ(F+H),y2 ))

+
f(κ(F),y2 ) ∫

Λ(F)
h(s,κ(F),y2 )ds+f(κ(F),y2 )(Λ(F+H)−Λ(F))h(v!,κ(F),y2 )

f(κ(F),y2 )(f(κ(F+H),y2 )+h(κ(F+H),y2 ))

+
f(κ(F),y2 )(κ(F+H)−κ(F)) ∫

Λ(F) ∂h s,!y1
!!(s),y2
∂y1

ds+f(κ(F),y2 )(κ(F+H)−κ(F))(Λ(F+H)−Λ(F))
∂h va,!y1

! (va),y2
∂y1

f(κ(F),y2 )(f(κ(F+H),y2 )+h(κ(F+H),y2 ))

−
∂f(!y1,y2 )
∂y1

(κ(F+H)−κ(F)) ∫
Λ(F)

f(s,κ(F),y2 )ds

f(κ(F),y2 )(f(κ(F+H),y2 )+h(κ(F+H),y2 ))

−
h(κ(F),y2 ) ∫

Λ(F)
f(s,κ(F),y2 )ds+

∂h !y1
a,y2
∂y1

(κ(F+H)−κ(F)) ∫
Λ(F)

f(s,κ(F),y2 )ds

f(κ(F),y2 )(f(κ(F+H),y2 )+h(κ(F+H),y2 ))

We next obtain an expression for κ(F + H) − κ(F). By the definition of κ, for all G,

GZ|Y=(κ(G),y2 )
−1 (GZ|Y=!y(!z )) κ(G) = t1

Denote (F + H)Z|Y=(κ(F+H),y2 )
−1 ((F + H)Z|Y=!y(!z )) by FK !

! , (F)Z|Y=(κ(F+H),y2 )
−1 (F)Z|Y=!y(!z )) by FK ! ,

(F)Z|Y=(κ(F),y2 )
−1 (F)Z|Y=!y(!z )) by FK, κ(F + H) by K!, and κ(F) by K. Then, since

β(F + H) − β(F) = 0,

FK !
! " K! − FK " K = 0.

Hence

(*) 2 " (FK !
! − FK ! ) " (K! − K) + (FK !

! − FK ! ) " K

+ FK " (K! − K) + (FK ! − FK ) " K = 0

By the proof of Theorem 2 in Matzkin (1999), it follows that, for y = (y1∗,y2)

FK! − FK = Φ(F + H) − Φ(F) = DΦ + RΦ

where

DΦ = f(y)
f(!y)2f(Φ(F),w)

A!y − f(y)
f(y)2f(Φ(F),y)

Ay,

A!y = f(!y) ∫
!z h(s,!y)ds − h(!y) ∫

!z f(s,!y)ds

Ay = f(y) ∫
Φ(F) h(s,y)ds − h(y) ∫

Φ(F) f(s,y)ds
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and where for some large enough constants a4 and a6

|RΦ(F,H)| ≤ a4#H#2 and |DΦ(F,H| ≤ a6#H#.

Using similar arguments, it is easy to show that for some reminder R that is bounded by a constant
times #H#2

FK !
! − FK !

= (F + H)Z|Y=(κ(F+H),t)−1 ((F + H)Z|Y=!y(!z )) − (F)Z|Y=(κ(F+H),t)−1 ((F)Z|Y=!y(!z ))

= f(y)
f(!y)2 f(v∗,y)

f(!y) ∫
!z h(s,!y)ds − h(!y) ∫

!z f(s,!y)ds

− f(y)
f(y)2 f(v∗,y)

f(y) ∫
v∗ h(s,y)ds − h(y) ∫

v∗ f(s,y)ds + R

where the first two terms are bounded by the multiplication of a constant multiplied by #H#. This
together with the assumption that FK ≠ 0 and the expression in (*) imply that

#K! − K# ≤ a#H#

for some positive constant a. By the Mean Value Theorem, there exists c between κ(F + H) and
κ(F) such that

FK ! − FK

= (F)Z|Y=(κ(F+H),t)−1 ((F)Z|Y=!y(!z )) − (F)Z|Y=(κ(F),t)−1 ((F)Z|Y=!y(!z ))

= v(K(F + H), t2 ) − v(K(F), t2 )

= ∂v(c,t2)
∂y1

(κ(F + H) − κ(F))

Hence, for some reminder term R that is bounded by a scalar times #H#2,

f(y)
f(!y)2 f(v∗,y)

f(!y) ∫
!z h(s,!y)ds − h(!y) ∫

!z f(s,!y)ds " y1∗

− f(y)
f(y)2 f(v∗,y)

f(y) ∫
v∗ h(s,y)ds − h(y) ∫

v∗ f(s,y)ds " y1∗

+ v∗ " (κ(F + H) − κ(F)) + y1∗
∂v(c,t2)
∂y1

(κ(F + H) − κ(F)) + R = 0

It follows that, for some R such that for some a > 0, |R| ≤ a#H#2

κ(F + H) − κ(F)
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=
(Ay−A!y )

y1
∗

fZ|Y=y(v
∗ )
"

v∗+y1∗
∂v(c,t2)
∂y1

+ R

Substituting this into the expression for η(F + H) − η(F), rewriting the resulting expression, and
putting all terms of order less than #H#2 into the term R, we get that

η(F + H) − η(F)

= fZ|Y=y(v∗ )(Λ(F + H) − Λ(F)) + R

+Ay

+
f(y) ∫

v∗ ∂f(s,y)
∂y1

ds− ∂f(
!y1,y2 )
∂y1 ∫

v∗
f(s,y)ds

f(y)2

(Ay−A!y )
y1
∗

fZ|Y=y(v
∗ )

"

v∗+y1∗
∂v(c,t2)
∂y1

By the definition of ν,

ν(F + H) − ν(F) = (F + H)Z|Y=!y(!z ) − FZ|Y=!y(!z )

= ∫
!z
f(s,!y) ds+∫

!z
h(s,!y) ds

f(!y)+h(!y) − ∫
!z
f(s,!y) ds

f(!y)

=
f(!y) ∫

!z
h(s,!y) ds−h(!y) ∫

!z
f(s,!y) ds

f(!y)2
+ R4

= A!y + R4

where R4 is of order #H#2. Hence, since

η(F + H) − η(F) = ν(F + H) − ν(F),

fZ|Y=y(v∗ )(Λ(F + H) − Λ(F)) + R

+Ay

+
f(y) ∫

v∗ ∂f(s,y)
∂y1

ds− ∂f(
!y1,y2 )
∂y1 ∫

v∗
f(s,y)ds

f(y)2

(Ay−A!y )
y1
∗

fZ|Y=y(v
∗ )

"

v∗+y1∗
∂v(c,t2)
∂y1

= A!y + R5

Hence,
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Λ(F + H) − Λ(F)

= (A!y − Ay) 1 +
f(y) ∫

v∗ ∂f(s,y)
∂y1

ds− ∂f(
!y1,y2 )
∂y1 ∫

v∗
f(s,y)ds

f(y)2

y1
∗

fZ|Y=y(v
∗ )

2 "

v∗+y1∗
∂v(c,t2)
∂y1

+ R5

for some R5 of order #H#2. Note that

∂FZ|Y=y(v∗)
∂y1

=
f(y) ∫

v∗ ∂f(s,y)
∂y1

ds− ∂f(
!y1,y2 )
∂y1 ∫

v∗
f(s,y)ds

f(y)2

and that

∂q(v(y1∗,t2),y1∗)
∂y1

= v∗ + y1∗
∂v(c,t2)
∂y1

Hence,

Λ(F + H) − Λ(F)

= (A!y−Ay)
fZ|Y=y(v∗ )

1 +

∂FZ|Y=y(v
∗)

∂y1

y1
∗

fZ|Y=y(v
∗ )

v∗+y1∗
∂v(c,t2)
∂y1

+ R5

It follows that

Λ(F + H) − Λ(F) = D∆(F;H) + R∆(F;H)

where for some scalar b,

|D∆(F;H)| ≤ b#H#, |R∆(F;H)| ≤ b#H#2 and

D∆(F;H) = (A!y − Ay) 1
fZ|Y=y(v∗ )

1 +

∂FZ|Y=y(v
∗)

∂y1

y1
∗

fZ|Y=y(v
∗ )

v∗+y1∗
∂v(c,t2)
∂y1

Let h(s,!y) =
#
f (s,!y) − f(s,!y) and h(!y) =

#
f (!y) − f(!y), then

f(!y) ∫
!z
h(s,!y)ds−h(!y) ∫

!z
f(s,!y)ds

f(!y)2
= ∫

1(s≤!z )−FZ|!Y=!y (
!z )

f(!y)

#
f (s,!y) − f(s,!y) ds

and
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f(y) ∫
v∗
h(s,y)ds−h(y) ∫

v∗
f(s,y)ds

f(y)2
= ∫

1(s≤v∗)−FZ|Y=y(v∗)
f(y)

#
f (s,y) − f(s,y) ds

so that

D∆(F;F − F)

= C ∫
1(s≤!z )−FZ|!Y=!y (

!z )

f(!y)

#
f (s,!y) − f(s,!y) ds + C ∫

1(s≤v∗)−FZ|Y=y(v∗)
f(y)

#
f (s,y) − f(s,y) ds

where

C = 1
fZ|Y=y(v∗ )

1 +

∂FZ|Y=y(v
∗)

∂y1

y1
∗

fZ|Y=y(v
∗ )

v∗+y1∗
∂v(c,t2)
∂y1

Following the same arguments as in Matzkin (1999), it is easy to show that this implies that

#v(y1∗, t2) − v(y1∗, t2) converges in probability to 0 and that

Nσ4 (#v(y1∗, t2) − v(y1∗, t2)) → N(0,Vv) in distribution where

Vv = {∫K(z)2}[C]2 1
f(!y) +

1
f(y) (FZ|Y=!y(!z )(1 − FZ|Y=!y(!z )))

Since

m(t1, t2) = Pz(#v(y1∗, t2))

it follows by the delta method that

Nσ4 m(t1, t2) − m(t1, t2) → N(0,Vm)

in distribution where

Vm = {∫K(z)2}[C]2(Pzz(v(y1∗, t2)))2 1
f(!y) +

1
f(y) (FZ|Y=!y(!z )(1 − FZ|Y=!y(!z )))
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