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Econ C103, 2003   Daniel McFadden

THE THEORY OF FIRST-PRICE, SEALED-BID AUCTIONS
1. Within the class of first-price, sealed-bid auctions, there are a number of
possible variations in environment, information, and rules:

 (1) The number of potential bidders is either known, or unknown with a
distribution that is common knowledge.

 (2) There may be no reservation price, so that the item will definitely be
sold, or there may be a reservation price which is announced or
unannounced in advance of the auction.  If there is a reservation price that
is unannounced, then it may be made known after the auction is complete
(e.g., as a losing bid), or the item may simply be withdrawn from the
auction.  If there are ties, there may be a tie-breaking mechanism, or
subsequent rounds of bids between those tied.

 (3) The winning bid may be announced, or may be private information
shared by the winner and seller, so that non-winners have only the
(unverified) information that their bid was lower.  Non-winning bids may be
announced, or may be private information shared by a losing bidder and the
seller.  Finally, a third party acting as an agent for the seller and buyers may
designate a winner (or announce the withdrawal of the item from the
auction) without revealing the amounts of bids to either seller or buyers, or
revealing the reservation price.  Of course, if an item is sold, then the
winning bid is known at least to the buyer and seller.  These information
differences are not germane in a “one-shot” auction, but are relevant if
there is a possibility of resale or re-auction.

 (4) There may or may not be an opportunity for negotiation after the
auction.  One alternative is that bids are binding.  Another is that they may
contain contingencies whose value and prospects for clearing offer players
the opportunity for post-auction negotiation.  If such contingencies are
allowed, then there must be a mechanism for terminating negotiations with
the winning bidder if the contingencies are not satisfied, and negotiating
with a lower bidder or re-starting the auction.  An obvious consequence of
allowing contingencies in bids is that setting contingencies becomes part
of the bidder’s strategy, where a high bid with contingencies offers the
opportunity to engage in bilateral negotiations with less effective
competition from potential rival buyers.  Finally, if one player (not
necessarily a bidder) has a right of first refusal (RFR), then all bidders must
take into account the possibility that this right will be exercised so that the
RFR holder preempts the winning bidder and acquires the item at the
winning bid, and that the item may subsequently be available following the
auction through contracting with the party holding the RFR.  

 (5) If the item is not sold, there may or may not be opportunities for the item
to be re-auctioned.  If the item is sold, there may or may not be
opportunities for resale.
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 (6)  The value placed on the item by a potential buyer may be known to this
buyer, may be unknown with a known distribution, or may be unknown with
a distribution that is not completely known (e.g., in a class known up to
location).  This is also true for the seller.  No player knows the value of any
other player, but each player has beliefs about the distributions from which
other player's values are drawn.  These beliefs might be symmetric among
all buyers, or not, and might be rational or not (rational the sense that each
value is in fact drawn from the distribution that other players believed to
hold).  The distribution of beliefs about a given player may be common to
all other players, or may be specific to each other player.  If there is
uncertainty about values, it may be independent across players, or may
contain common uncertainties (e.g., different buyer's values for oil leases
are influenced by common uncertainties about the future price of oil as well
as individual uncertainty about the capacity of the lease).  The information
situation on buyer's values is critical if there is a possibility that the item will
be withdrawn and subsequently re-auctioned to the same potential buyers.

2.  The simplest, case is J > 1 buyers, with J common knowledge, no reservation
price so the item will definitely be sold to the highest bidder, with ties broken by
random assignment among those tied.  Later when a reservation price is
introduced, assume that in case of ties, all bidders have priority over the seller.
Bids are binding, without contingencies.  There are no resale possibilities.  Buyers
know their own values with certainty.  They do not know the values of other
bidders, but all know that these values are independent draws from a distribution
G(v) that is common knowledge.  Under these assumptions, buyer k will have a
(mixed) strategy, depending on his value v, described by a cumulative distribution
function (CDF) F(b|v) with a support B(v).   If there is a pure strategy, then F(b|v)
has unit mass at the singleton B(v).  When B(v) is a singleton, call it the bid
function.  Define F(b-|v) = supbN<bF(bN|v) to be the probability of a bid strictly less
than b, H(b-) = IF(b-|v)G(dv) to be the expected probability of a bid strictly less
than b, H(b) = IF(b|v)G(dv) to be the expected probability of a bid less than or
equal to b, and h(b) = H(b) - H(b-) to be the point mass at b.  Then, H(b) is the
probability that bidder k will make a bid no larger than b, and h(b) is the probability
that he will make a bid of b.  In the symmetric information case assumed here, this
will describe the strategies of all rivals of bidder k as well.

Since H(b) is non-decreasing, there are at most a countable number of values of
b at which it can have jumps at which h(b) > 0.  Taking account of the tie-breaking
mechanism, the probability of buyer k winning with bid b is

P(b) = H(b-)J-1 + H(b-)J-2h(b)(J-1)/2 + ... 
+ H(b-)J-1-mh(b)m(J-1)!/(m+1)!(J-1-m)! +  ... + h(b)J-1/J

= [H(b)J - H(b-)J]/J[H(b) - H(b-)].

When h(b) = 0, P(b) = H(b)J-1.  This is also the limit of the last formula as H(b-) =
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H(b) - h(b) approaches H(b).  Note that P(b) is always non-decreasing.  It is
continuous at any b where h(b) = 0, and jumps at any b where h(b) > 0.  At a jump,
it is a proper weighted average of its left and right limit, H(b-)J-1 < P(b) < H(b)J-1.
The payoff to buyer k is his expected profit, (v-b)P(b).  In Nash equilibrium, each
b 0 B(v) maximizes this payoff.

The figures below plot P(b) and contours of the form p = A/(v-b) for various A and
v.  B(v) consists of the points of contact of P(b) and the northwest-most contour
p = A/(v-b) which touches P(b).  This has some general implications:  A bid b is in
B(v) only if P(b) is at least as steeply sloped as the tangent contour to the
immediate left of the tangency and no more steeply sloped than the contour to the
immediate right of the tangency.  This rules out the possibility of points in B(v) with
the property that P(bN) = P(b) for bN to the immediate left of b, or the property that
b is a jump point of P.  As v increases, the contours rotate clockwise, and as a
result the contact points will necessarily roll to the right (or remain fixed).  Figure
1 shows a case in which B(v) is a singleton that is increasing in v.

Fig.1

Figure 2 illustrates a case where P(b) has a kink, resulting in B(v) being fixed for
an interval of v.  But there is then a positive probability of a tie at b, and by the
previous analysis, P(b) must then have a jump at b.  Then, the situation in Figure
2 is impossible.  Consequently, P(b) cannot have kinks, and instead must be
differentiable at each b.
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Fig. 2

Figure 3 shows a situation in which B(v) contains an interval for some v.

Fig. 3
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Fig. 4

Figure 4 depicts a situation in which B(v) is not a singleton for some v, containing
isolated points.  When P(b) is sufficiently convex in some regions, this outcome will
typically occur for some v, and the range B* of B(v) will not be an interval.

The following argument formalizes the properties of B(v) that are obvious from the
geometry.  Suppose b,bN are maximizing for v and vN= v+), respectively, with ) >
0.  Then, (v-b)P(b) $ (v-bN)P(bN) and (v+)-bN)P(bN) $ (v+)-b)P(b).  Adding these
inequalities, )"[P(bN)-P(b)] $ 0.  This implies bN $ b.  Therefore, B(v) is
non-decreasing in v.  For every value of v for which B(v) is not a singleton, points
in B(v) bracket an open interval.  Since the number of disjoint open intervals is
countable, there are at most a countable number of v for which B(v) is not a
singleton.  Since G has a bounded density, it follows that B(v) is a singleton with
probability one.  

Next suppose a bid b at which h(b) > 0, and let " = H(b-)/H(b) and $ = h(b)/H(b). 
Then,
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P(b) = H(b)J-1 "J-1-m$m(J-1)!/(m+1)!(J-1-m)!

< H(b)J-1 "J-1-m$m(J-1)!/m!(J-1-m)! = H(b)J-1.

Since the number of b values with h(b) > 0 is countable, there exist bN ̀  b with  P(bN)
= H(bN)J-1 $ H(b)J-1.  Therefore, lim (v-bN)P(bN) > (v-b)P(b).  In this case, a maximum
does not exist.  Nevertheless, it contradicts the supposition of a bid b at which there
is a positive probability of a tie, and hence implies that when a maximum is
achieved, P(b) is differentiable.  Summarizing, B(v) is increasing in v, and is a
singleton, with probability one.  It can jump, so that its range B* is not necessarily
an interval.  It has an inverse v = V(b) that is strictly increasing on B*.  Note that the
results so far could also have been established without the symmetry assumption
of a common probability P(b) of winning.  However, with symmetry,

H(b) = G(V(b)), b 0 B*, or H(B(v)) = G(v).

The preceding results establish that B(v) almost surely satisfies a first-order
condition for maximization of (v-b)H(b)J-1,

0 / -P(B(v)) + (v-B(v))PN(B(v)).

From the condition P(B(v)) / H(B(v))J-1 / G(v)J-1 in the absence of ties, this implies
PN(B(v))BN(v) = (J-1)G(v)J-2GN(v), and hence

G(v)J-1 = (v-B(v))(J-1)G(v)J-2GN(v)/BN(v).

This is a differential equation in B, BN(v)/(v-B(v)) = (J-1)GN(v)/G(v), that has the
solution

B(v) = t(J-1)G(t)J-2GN(t)dt/G(v)J-1.

But this is just the Conditional Second Value (CSV), the expected maximum value
among bidder k's rivals, conditioned on this maximum value being no greater than
bidder k's value v.  This is the primary  result.

How can the seller expect to do in this auction?  The density of the maximum value
among all bidders is JG(v)-1GN(v), and hence the expected revenue from the sale is
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B(v)JG(v)J-1GN(v)dv = t(J-1)G(t)J-2GN(t)dtJGN(v)dv

= tJ(J-1)G(t)J-2GN(t)[1-G(t)]dt.

To illustrate these solutions, consider the concrete case G(v) = v2 for 0 < v < 1,
where 2 is a positive parameter.  In this case, B(v) = v2(J-1)/[1+2(J-1)] is
proportional to v, with a proportion that is closer to one when J and/or 2 are larger.
The expected revenue to the seller is [J2/(1+J2)][(J-1)2/(1+(J-1)2)].  This gets close
to one when J and/or 2 are large.

Question: Are the theoretical results above completely general, or can they fail if the
smoothness of B and connectedness of the range B* of B fail?  Note that a
condition like H(b) concave is sufficient to make B* an interval:  The objective
function (v-b)H(b)J-1 is maximized when (v-b)1/(J-1)H(b) is maximized.  But the term
(v-b)1/(J-1) is positive, concave, and decreasing, so that if H(b) is positive and
increasing, the product is concave.  On the other hand, consider examples like G(v)
= v2 for 0 < v < 1.  Do the B(v) = 2(J-1)v/(1+2(J-1)) and H(b) = b2[(1+2(J-1))/2(J-1)]2

that solve the differential equation also solve the original Nash problem?

3.  There is no difficulty in making J unknown, with a distribution  that is common
knowledge.  This changes the P(b) function to a mixture over the  possible values
of J.  In particular, when the distribution of J is geometric, there is a nice
simplification.   Suppose the event J $ 1, and consider the strategy of buyer 1.  Let
BJ be the unconditional probability of J bidders.  Given the event that there is at
least one bidder, the first bidder sees the conditional probability B*J = BJ/(1- B0) of
J-1 rival bidders.  Each additional potential buyer will have a value v distributed with
the CDF G(v).  The probability that the highest value among other potential buyers
is no greater than v is given by 

Q(v) = G(v)J-1B*J /P(B(v)).

Recall that for fixed J, B(v) is strictly increasing in v.  This followed from the
monotonicity of P(b) and the geometry of the payoff function, and remains true
when P(v) is obtained by the mixture over J given above.  Then, bidder 1 will win the
auction only if his value v1 exceeds the maximum value of all other potential buyers.
The probability of this event is Q(v1) when ties are ruled out.  Substitute this into the
first-order condition 0 / -P(B(v)) + (v-B(v))PN(B(v)) to get

Q(v) = (v-B(v))QN(v)/BN(v).

This has the solution
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B(v) = tQN(t)dt/Q(v).

Then, the optimal strategy for bidder 1 is to bid the expected highest value of all
remaining potential buyers, conditioned on the event that this value is less than the
value of bidder 1, simply taking account the probability of various numbers of
bidders.

The formulas above simplify when the number of potential buyers has a geometric
distribution, Bj = (1-8)8j.  Then, B*J = (1-8)8j-1 and Q(v) = (1-8)/(1-8G(v)).  Note that
when 8 is small, Q(0) is large, and B(v) will be near zero.  As an example, consider
G(v) = v for 0 < v < 1, which in the case of fixed J leads to B(v) = v(J-1)/J.  In this
case, one obtains B(v) = v + log(1-8v)/8.

4.  Suppose that the auction rules are changed to have an announced reservation
price r.  For the analysis of this case, again assume a fixed number of potential
buyers J > 1.  From the standpoint of a potential buyer, it is worth entering the
auction if this buyer has a value greater than r.  With common knowledge on the
distribution of values G(v), this implies there is a probability 1-G(r) that a potential
buyer will enter the auction, and if a buyer enters, he will bid between r and his
value.  Suppose there is a Nash equilibrium at a symmetric bid function B(v) that is
differentiable and invertible, and let V(b) denote its inverse.  Then, as before, the
probability of winning at a bid b > r is P(b) = G(V(b))J-1.  This takes account fully of
the fact that some rivals may not bid at all.  Then, as before, we obtain the
differential equation for B(v), BN(v)/(v-B(v)) = (J-1)GN(v)/G(v).  The one difference is
that we now have the boundary condition that B(r) = r, with a potential buyer not
bidding if his v < r.  The solution with this boundary condition for v > r is

B(v) = max(r,t)(J-1)G(t)J-2GN(t)dt/G(v)J-1.

The seller’s tradeoff in fixing r is that increasing r lowers the probability that the item
will be sold, but raises the expected bid if it is sold.  The probability of no bids above
the reservation price is (1-G(r))J.  The expected revenue to the seller is then

B(v)JG(v)J-1GN(v)dv 

= J(J-1)rG(t)J-2GN(t)GN(v)dvdt +  J(J-1)tG(t)J-2GN(t)GN(v)dvdt 

=  J(J-1)rG(t)J-2GN(t)[1-G(t)]dt +   J(J-1)tG(t)J-2GN(t)[1-G(t)]dt 

= rJG(r)J-1 - r(J-1)G(r)J +   J(J-1)tG(t)J-2GN(t)[1-G(t)]dt.
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An additional issue is whether, in the extensive game where the seller receives the
bids and then declares a winner, he is obligated to stick to his declared reservation
price.  Unless he can by some mechanism as a binding legal contract pre-commit
to this reservation price, he has an incentive in the end game to accept any
maximum bid above his true value for retaining the object.  Then, absent pre-
commitment, potential buyers expect the stated reservation price to be
meaningless, and the de facto reservation price to be the seller’s true value, which
generally would be unknown, but perhaps with a commonly known distribution (see
the next section).  However, when the seller is able to pre-commit to the reservation
price r, then he can choose r to maximize expected revenue.

5.  Suppose the situation is as in 4, but the reservation price is not announced in
advance of the auction.  From the standpoint of potential buyers, the seller in this
case acts just like another buyer, in effect putting in a bid and buying the item back
for himself if his bid exceeds the others that are submitted.  Then, what matters are
the potential buyers’ beliefs about the distribution of reservation prices of the seller,
and whether this is common knowledge.  Assume that the seller’s distribution of
reservation prices is known to be M*(b).  It will be convenient to define a distribution
M(v) = M*(B(v)), the apparent distribution of values for the seller which if he
followings the same bidding strategy as the buyers B(v) produces his actual M*
distribution. The probability that a potential buyer will win at a bid b when all other
buyers are using a bid function B(v) is, absent ties,

P(b) = G(V(b))J-1@M(V(b)).

A bidder will choose b to maximize (v-b)P(b), leading to the first-order condition P(b)
= (v-b)PN(b).  If B(v) is a Nash equilibrium bid function, then

G(v)J-1M(v) = (v-B(v))[(J-1)G(v)J-2GN(v)M(v) + G(v)J-1MN(v)]/BN(v).

This differential equation has the solution

B(v) =  t[(J-1)G(t)J-2M(t)GN(t)+G(t)J-1MN(t)]dt/[G(v)J-1M(v).

Since M(v) = M*(B(v)), this relationship given G and M* defines B(v) implicitly, and
it will not be possible to obtain an explicit form for B(v) in most cases.

6.  Asymmetric auctions.  Consider a first-price sealed bid auction of a single item
with two bidders, B and C.  Suppose that there is an announced reservation price
of 300.   Suppose resale is prohibited.  Bidder B attaches value 400 to the item.
Bidder C attaches value 300 with probability one-half and value 800 with probability
one-half, so his expected value is 550.  Assume a tie-breaking rule that the item
goes among those tied first to bidder B, second to bidder C, and last to the seller.
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7.  In a first-price sealed bid auction with buyer’s values drawn from the same
probability distribution that is common knowledge, we know that Nash equilibrium
strategies are for each buyer to bid his Conditional Second Values (CSV); i.e., given
his own value, find the conditional expectation of the highest value of the remaining
bidders, conditioned on its being less than his value.  In the asymmetric value
auction described above, the CSV of B is the expectation of bidder C's value given
it is less than the value 400 of bidder B.  This CSVB is 300.  The CSVC(vC) of C is
400 at value vC = 800, and is 300 at value vC = 300, the reservation price.  If the
bidders follow CSV strategies, then with probability ½, vC = 800 and C wins with bid
400 and payoff 400, and with probability ½, vC = 300 and B wins with bid 300 and
payoff 100, so that the expected payoff to B is 50, and the expected payoff to C
given vC = 300 is zero and given vC = 800 is 400.  The expected payment to the
seller is 350.  However, these strategies are not a Nash equilibrium (NE):  Since B
bids 300 with probability one, if C bids 300 if vC = 300 and 301 if vC = 800, C’s
expected payoff given vC = 300 is still zero, but C’s expected payoff given vC = 800
improves to 499.  This shows that in an asymmetric auction, CSV bidding is not
necessarily a NE.

8. We claim that the NE strategies for the bidders are mixed, with cumulative
distribution functions

   FB(b) = 450/(800-b) for 300 < b # 350, with probability FB(300) = 0.9 of a bid
at 300.

   FC(b|300) = 1(b$300) when vC = 300
   FC(b|800) = (b-300)/(400-b) for 300 # b # 350 when vC = 800

The forms of these distributions come from the proposition that a mixed strategy is
NE when the strategies of others is given only if the payoff to a player is constant
on the support of the player’s strategy, and no higher outside the support.  Thus, the
payoff to player C if vC = 300 is (300-bC)FB(bC

-)1(bC$300), where the first term is the
difference between value and bid, the product of the second and third terms is the
probability that  the reservation price is reached and the seller will sell, and B will not
win.  This expression is maximized at zero when bC = 300, and is negative for higher
bids.  If vC = 800,  the payoff is (800-bC)FB(bC

-)1(bC$300).  Before considering the
set of points on which this is maximized, form the similar payoff for B, (400-bB)(½
+ ½FC(bB|800))1(bC$300), where the second term is the probability that the item will
be sold and C will not win.  The question is to find a pair FB and FC(@|800) which
make these expressions constant over some intervals, and no larger elsewhere.
But clearly the first expression is constant over an interval only if FB has the form
K1/(800-b) on this interval, where K1 is a constant, and the second expression is
constant over an interval only if ½ + ½FC(b|800) is inversely proportional to 400-b
on this interval, or FC(b|800) has the form K2/(400-b) - 1, where K2  is a constant.
Since C loses ties, it will never assign positive probability to 300 when vC = 800, so
FC(300|800) = 0.  This gives K2 = 100, and hence FC(b|800) = (b-300)/(400-b).
Since FC(b|800) # 1, the upper limit of the support is 350.  Verify that on [300,350],
B has expected payoff 50 from any bid, and that the expected payoff from any bid
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above 350 is less than 50.  Finally, if C’s bids never exceed 350, then B can never
gain from bidding more than 350, and hence K1/(800-b) must be one at b = 350.
This establishes K1 = 450.

We now verify directly our claim that the mixed strategies we have given are a NE.
With these strategies, B always wins if vC = 300, receiving expected payoff 

 (400-b)FB(db) = .9@100 + 450 [(400-b)/(800-b)2]db 

= 50 + 450 ln(10/9) = 97.41223

If vC = 800, then the expected payoff to B is
                         
 (400-b)FC(b|800)FB(db) = 450 [(b-300)/(800-b)2]db = 50 - 450 ln(10/9) =

2.5878.

The expected payoff to B, the average of these payoffs, is 50.  If vC = 800, then the
expected payoff to C is

 (800-b)FB(b)FC(db) = 450 FC(db) = 450.

We now show these mixed strategies are a NE.  Consider C's strategy when vC =
300.  In this case, C knows that B playing FB will always win, so that C's payoff to
any bid between zero and 300 is zero, and to any bid above this is negative.
Hence, the bid of 300 weakly maximizes his payoff.  Next, consider C's strategy
when vC = 800.  Bids at or below 300 never win, and bids above 350 always win, so
the support of C's strategy is contained in (300,350].  If C plays a mixed strategy G,
then its payoff is 

(800-b)FB(b)G(db) = 450 G(db) = 450,

for any G(b) with this support, so that FC(b|800) is weakly maximizing.  
Finally, consider B's strategy.  Bids below 300 never win and bids above 350

always win, so the support of B's strategy is contained in [300,350].  Suppose B
plays a mixed strategy G with this support.  Either vC = 300, so that C’s bid is 300
and B always wins, or vC = 800 and C’s bid has distribution (b-300)/(400-b) for 300
# b # 350.  The expected payoff to B is then

 ½ (400-b)G(db) + ½ (b-300)G(db) = 50 G(db) = 50.
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Then FB(b) which achieves this expected payoff is weakly maximizing.  This proves
that FB, FC are a mixed strategy Nash equilibrium.  Note that a bid of 350 for B wins
with probability one, with payoff 50, and no higher bid can yield a payoff this high;
this is the condition that determines the upper limit 350 of the support.  At the Nash
equilibrium, one has the following properties of the equilibrium bids:

EbB = bFB(db) = 350 - FB(b)db = 350 - 450 ln(10/9) = 302.5878.

E(bC|vC=800) = bFCN(b)db = 350 - FC(b|vC=800)db 

= 300 + 100 ln(2) = 330.6853

EbC = ½(300 + E(bC|vC=800)) = 315.3426

E max(bB,bC) =  ½[EbB + bd(FB(b)FC(b))] 

= ½EbB + ½[350 -  FB(b)FC(b)db]

= ½[350 - 450 ln(10/9)+ 350 - 450 [(b-300)/(800-b)(400-

b)]db] = ½[350 - 450 ln(10/9) + 350 - 450*ln(2) -
(1125/2)*ln(25/9)] = 316.937   

Consider, as an alternative mechanism, a second-value sealed bid auction. 
Suppose C bids his value.  Then, any bid from B from 301 to 799 is equally good,
giving a payoff of 100 with probability ½.  B’s value of 400 is weakly optimal in this
range.  Suppose B bids his value.  Then, C’s optimal response when vC = 800 is to
bid his value, or any bid from 401 to 800, giving a payoff of 400.  Hence, his value
of 800 in this case is weakly optimal.  The expected revenue to the seller is 350.
A completed ascending bid auction with public bidding will start with bids of 300
from B and C.  If C does not bid again, the item goes to B at bid 300, given the tie-
breaking rule.  If C does bid again, say with bid 301, then this establishes that he
has vC = 800, and will continue the bidding until B stops before or at 400.  Then, B
has no incentive to either continue or stop bidding, and the auction could end at the
bid 301, or continue until B bids 400 and C wins with 401.  The final bids 349 for B
and 350 for C are weakly optimal.  Thus, revenue equivalence fails in general, and
the first-price sealed bid auction is for the seller inferior to the second-price auction.



1 The term Nash bargaining solution is a different concept than Nash equilibrium, and is one
proposed solution to a cooperative game between two agents, each of which has a monetary payoff with a
“threat” level that each can achieve if no bargain is made.  Under some plausible axioms on behavior, a
bargain will be struck at a division that maximizes the product of the excess payoffs that a bargain gives
relative to the players’ threat points.
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Summarizing, the optimal bidding strategies in the first-price sealed-bid auction are
asymmetric.   The average bid for B is 302.5878  and the average bid for C is 300
if vC = 300 and 330.6853 if vC = 800, an overall average of 315.3426.   Thus, B bids
higher than its CSV of 300, while C bids substantially less than its CSV of 400 in the
case vC = 800.  The expected revenue to the seller is 316.937 versus the expected
CSV of 350 that it could attain in a second-price sealed-bid auction.  Thus, this
auction fails to meet the hypotheses of the revenue equivalence theorem.  The
first-price sealed bid auction is not efficient, since bidder B wins the auction with a
positive probability when C has value 800. 

9.  Now drop the assumption that no resale is possible.  Suppose that resale of the
item from B to C is possible, but because of the auction rules (e.g., a standstill
agreement by B), resale of the item from C to B is not possible.  Also exclude the
possibility of resale to third parties.  This is justified because if third parties had high
value, they would have incentives similar to C to participate in the primary auction.
Then, the ex ante value of the item to B before the auction is the larger of his own
value for holding the item, and the expected price at which it could be resold in the
event that he wins the auction.  In general, the possibility of profit from resale will
give B some incentive to bid more aggressively, while the possibility of acquiring the
item through resale will give C some incentive to bid less aggressively.  The strength
of these incentives and their impact on bidding will depend substantially on the
bargaining power of the two players in the resale market.  Assume for concreteness
that in the event of a resale from B to C, the item is traded at the average of their
values.  (This is the Nash bargaining solution1 when each player’ own value
establishes its threat point.)  First consider player C’s options.  If vC = 300, C cannot
resell and cannot profit, and consequently will submit the minimum bid of 300.  If vC
= 800,  then the expected profit of C at bid b is

(800 - b)FB(b) + 200(1 - FB(b)) = (600 - b)FB(b) + 200,

where the first term is the expected profit obtained through winning the auction, and
the second term is the expected profit obtained from losing the auction and then
obtaining the item through resale.  The expected profit of B at bid b is the sum of the
probability of vC = 300 times the expected payoff from winning and holding the item,
and the probability of vC = 800 times the probability of winning and reselling at the
average of vB and vC = 800, or  

½(400 - b) + ½(600 - b)FC(b|800) = ½(600 - b)[FC(b|800) + 1] - 100.

In a Nash equilibrium, these payoffs must be constant on a common support, and



14

larger than the payoffs in other bid ranges.  We show that this is satisfied by FB(b)
= 150/(600-b) for 300 # b # 450 and FC(b|300) = 1(b$300) and FC(b|800) = (b-
300)/(600-b) for 300 < b < 450.  First, at this FB, the payoff of C when vC = 800 is
350 for 300 < b < 450, and bids above 450 always win and yield lower payoff.
Second, at this FC(b|800), the payoff of B is 50 for 300 < b < 450, and bids above
450 win with certainty and have an expected payoff less than 50.  Therefore, the
pair above is proven to be a Nash equilibrium.  Note that in this NE, B will with some
probability bid higher than his own value, and hence with some probability will incur
a loss.  Some features of this equilibrium are

EbB = 450 - FB(b)db = 450 - 150 ln(2) = 346.0279.

E(bC|800) = 450 - FC(b)db = 392.0558.

EbC = 369.0428

Emax(bB,bC) = ½( bFB(db) + bd(FB(b)FC(b|800))

= ½(450  - FB(b)db  + 450 - (FB(b)FC(b|800)db) 

=   346.0279/2 +225 - ½ FB(b)FC(b|800)db = 375.  

Then, the payoff to the seller is substantially higher when resale by B is permitted
than in the market where resale was prohibited.  Bidder B gains nothing from the
availability of resale, receiving an expected payoff of 50 as in the previous case, so
that the seller gains all of the rents from resale through its impact on bidding in the
primary auction.  Further, the expected payoff to the seller exceeds the expected
payoff from a second-price sealed bid auction where resale is prohibited, showing
that in the absence of symmetric buyer values, this auction format is not revenue-
maximizing for the seller. 

10. Now suppose resale from B to C, but not from C to B, is possible, due to a
standstill agreement signed by B, and suppose there are no other potential buyers.
So far, this is the same as the previous case.  However, now suppose a third player
D has a right-of-first-refusal (RFR), meaning that this player can supplant the
winning bidder in the primary auction, paying the winning bid to the original seller,
and then either hold the item or sell it to C.  Suppose that D has value zero for
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holding the item, and that it will exercise its RFR if and only if B wins and C agrees
to buy at a price at which D has a positive profit.  From the state in which B wins
with bid b, consider the extensive game in which C offers D a conditional purchase
agreement at price (b+800)/2, the Nash bargaining solution when vC = 800 and D’s
threat point is its cost to exercise the RFR, and D then decides to exercise when
(b+800)/2 > b, or b < 800. Then, C will make a purchase offer if vC = 800 and B wins
at any bid b < 800, the RFR will be exercised, and C will attain a payoff (800-b)/2.
Now, the expected payoff to C from a bid b is 

(800-b)FB(b) + ((800-b)/2)(1-FB(b)) = (800-b)[1+FB(b)]/2.  

On the other hand, bidding 300 is a dominant strategy for B, since it then wins with
maximum payoff 100 if vC = 300, and B in any case receives payoff zero if vC = 800
.  Given this, the optimal strategy for C when vC = 800 is to bid 301, win, and attain
payoff 499.  Thus, there is a NE in which the RFR is not exercised, the expected
payment to the seller is 300.5, B has expected payoff 50, C has expected payoff
zero if vC = 300 and expected payoff 499 if vC = 800, and D has payoff zero.  In this
case, B neither gains nor loses compared to the cases of no resale, or resale
available to B, and the RFR holder does not gain any positive rent.  Nevertheless,
the presence of the RFR holder essentially eliminates the ability of the seller to
utilize its market power to garner rents above its reservation price.

The analysis in cases 3 and 4, where resale is possible, and where in case 4 there
is an RFR holder, depends critically on the solution to the bilateral bargaining game
between C and the winning bidder or the RFR holder.  The solution also depends
critically on what information is available to the RFR holder regarding C’s value and
the outcome of bargaining at the time the RFR must be exercised.  For example, an
assumption at one extreme is that the RFR holder can exercise the RFR and then
make a “take it or leave it” ultimatum to any bidder, winner or loser.  In this case, the
RFR holder will indeed exercise the RFR, make the ultimatum price of 799 to C, and
the ultimatum price of 399 to B if C does not accept.  Then, neither B or C have any
incentive to bid above the 300 level necessary to put the item in play, and the RFR
holder gets essentially all the rents available in the market.  An assumption at the
other extreme is that the RFR holder must decide to exercise or not without knowing
who the winner is or what resale contracts might be possible, say because the
auction rules state that it must submit its own RFR reservation price in advance.
Assume further that it is C as potential buyer that makes an ultimatum “take it or
leave it” offer of p > 0 to the RFR holder when the RFR is exericsed and vC = 800.
Then, by backward recursion, a dominant strategy for the RFR holder is to accept
an offer of p if the RFR is exercised, receiving an expected payoff of p/2 - b, and
hence to not exercise the RFR unless p > 2b.  Then, I claim that primary auction
bids of 300 from B and 300+!(vC = 800) from C, followed if B wins by a repurchase
offer of b+1 from C in case vC = 800, is a subgame perfect NE in which B will win
with maximum payoff if vC = 300, C wins with payoff 499 otherwise, the RFR is not
exercised, and the initial seller expected revenue is 300.5.  In this case, the rents
go essentially to C.
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11. The cases considered are contrasted in the table below:

EbB EbC Emax(bB,bC)

NO RESALE

   Conditional Second Values (not a NE) 300 350 350

   First-Price Sealed Bid 302.5878 315.3426 316.937

   Second-Price Sealed bid 300 350 350  

RESALE FROM B TO C PERMITTED

   First-Price Sealed Bid 346.0279 392.0558 369.0428

RFR HELD BY D, SALE TO C PERMITTED

   First-Price Sealed Bid 300 300 300


