
Analysis and Linear Algebra

Lectures 1-3 on the mathematical 
tools that will be used in C103



Set Notation
 A , B sets
 AcB union
 A1B intersection
 A\B the set of objects in A that are not in B
 N. Empty set
 A f B inclusion (A is contained in B)
. Ac the complement of a set A (which may

be relative to a set B that contains it) 
 a 0 A a is a member of A
 a ó A a is not a member of A.

A family of sets is disjoint if the intersection of each
pair is empty.



Sequences

If ai is a sequence of real numbers indexed by i =
1,2,..., then the sequence is said to have a limit
(equal to ao) if for each g > 0, there exists n such
that *ai - ao* < g for all i $ n; the notation for a limit is
limi64 ai = ao or ai 6 ao.   The Cauchy criterion says
that a sequence ai has a limit if and only if, for each
g > 0, there exists n such that *ai - aj* < g for i,j $ n. 



Functions

A function f:A 6B is a mappingfrom each object a in
the domain A into an object b = f(a) in the range B.
The terms function, mapping, and transformation are
interchangeable.  The symbol f(C), termed the
image of C, is the set of all objects f(a) for a 0 C. 
For D f B, the symbol f-1(D) denotes the inverse
image of D:  the set of all a 0A such that f(a) 0D.



Surjective, Bijective

The function f is onto [surjective] if B = f(A); it is
one-to-one [bijective] if it is onto and if a,c 0 A and 
a … c implies f(a) … f(c).  When f is one-to-one, the
mapping f-1 is a function from B onto A.  If C f A,
define the indicator function for C, denoted 1÷:A 6 ú,
by 1÷(a) = 1 for a 0 C, and 1÷(a) = 0 otherwise.  The
notation 1(a0C) is also used for the indicator
function 1÷.  A function is termed real-valued if its
range is ú.  



Sup, Max, Argmax
sup A The supremum or least upper

bound of a set of real numbers A, 

supc0C f(c)   A typical application, f:C 6 ú and 
A = f(C)

f(d) = maxc0C f(c) supremum is achieved by
an object d 0 C, so f(d) =
 supc0C f(c)

argmaxc0C f(c) set of maximizing elements,
or a selection from this set

Analogous definitions hold for the infimum and
minimum, denoted inf, min, and for argmin.



Limsup

The notation limsup i64 ai means the
limit of the suprema of the sets
{ai,ai+1,...}; because it is
nonincreasing, it always exists (but
may equal +4 or -4).  An analogous
definition holds for liminf. 



Metrics and Metric Spaces

A real-valued function D(a,b) defined for pairs of
objects in a set A is a distance function if it is
non-negative, gives a positive distance between all
distinct points of A, has D(a,b) = D(b,a), and satisfies
the triangle inequality D(a,b) # D(a,c) + D(c,b).  A set
A with a distance function D is termed a metric
space.space.



Topology of Metric Space

A (g-)neighborhoodof a point a in a metric space A
is a set of the form {b0A* D(a,b) < g}.  A set C f A is
open if for each point in C, some neighborhood of
this point is also contained in C.  A set C f A is
closed if its complement is open.  The family of all
the neighborhoods of the form above defines the
metric or strong topology of A, the neighborhoods
that define the standard for judging if points in A are
close.  



Compactness
The closure of a set C is the intersection of all
closed sets that contain C.  The interior of C is the
union of all open sets contained in C; it can be
empty.  A covering of a set C is a family of open sets
whose union contains C.  The set C is said to be
compact if every covering contains a finite
sub-family which is also a covering.



Finite Intersection Property
A family of sets is said to have the finite-intersection
property if every finite sub-family has a non-empty
intersection.  A characterization of a compact set is
that every family of closed subsets with the finite
intersection property has a non-empty intersection.



Sequential Compactness
A metric space A is separable if there exists a
countable subset B such that every neighborhood
contains a member of B.  All of the metric spaces
encountered in economic analysis will be separable. 
A sequence ai in a separable metric space A is
convergent (to a point ao) if the sequence is
eventually contained in each neighborhood of a0; we
write ai 6 ao or limi64 ai = ao to denote a convergent
sequence.  A set C f A is compact if and only if
every sequence in C has a convergent subsequence
(which converges to a cluster point of the original
sequence).



Continuity

Consider separable metric spaces A and B, and a
function f:A 6 B.  The function f is continuous on A if
the inverse image of every open set is open.  
Another characterization of continuity is that for any
sequence satisfying ai 6 ao, one has f(ai) 6 f(ao); the
function is said to be continuous on C f A if this
property holds for each ao 0 C.  Stated another way,
f is continuous on C if for each g > 0  and a 0 C,
there exists * > 0 such that for each b in a
*-neighborhood of a, f(b) is in a g-neighborhood of
f(a).



Sequential Continuity
For real valued functions on separable metric
spaces, the concepts of supremum and limsup
defined earlier for sequences have a natural
extension:  supa0A f(a) denotes the least upper
bound on the set {f(a)*a0A}, and limsupa6b f(a)
denotes the limit as g 6 0 of the suprema of f(a) on
g-neighborhoods of b.  Analogous definitions hold
for inf and liminf.  A real-valued function f is
continuous at b if 

          limsupa6b f(a) = liminfa6b f(a).  



Continuity-Preserving Operations

Continuity of real-valued functions f and g is
preserved by the operations of absolute value *f(a)*,
multiplication f(a)"g(a), addition f(a)+g(a), and
maximization max{f(a),g(a)} and minimization
min{f(a),g(a)}.  min{f(a),g(a)}.  



Uniform Continuity, Lipschitz

The function f is uniformly continuouson C if for
each g > 0, there exists * > 0 such that for all a 0 C
and b 0 A with b in a *-neighborhood of a, one has
f(b) in a g-neighborhood of f(a).  The distinction
between continuity and uniform continuity is that for
the latter a single * > 0 works for all a 0 C.  A
function that is continuous on a compact set is
uniformly continuous.  The function f is Lipschitz on
C if there exist L > 0 and * > 0 such that |f(b) - f(a)|
# L@D(a,b) for all a 0 C and b 0 A with b in a
*-neighborhood of a.



Differentiability
Consider a real-valued function f on ú.  The
derivative of f at ao, denoted fN(ao), Lf(ao), or
df(ao)/da, has the property if it exists that 

*f(b) - f(ao) - fN(ao)(b-ao)* # R(b-ao), 

where limc60 R(c)/c = 0.  The function is continuously
differentiable at ao if fN is a continuous function at ao.



Taylor’s Expansion
If a function is k-times continuously differentiable in
a neighborhood of a point ao, then for b in this
neighborhood it has a Taylor's expansion

    f(b) = f(i)(ao)"  +

" ,

where f(i) denotes the i-th derivative, and 8 is a scalar
between zero and one.

If a function is k-times continuously differentiable in
a neighborhood of a point ao, then for b in this
neighborhood it has a Taylor's expansion

    f(b) = f(i)(ao)"  +

" ,

where f(i) denotes the i-th derivative, and 8 is a scalar
between zero and one.



Linear Spaces, Norms

A set C is termed a linear space if for every pair of
elements a,b 0 C and real numbers ",$, the linear
combination "a+$b 0 C.  For example, the real line
ú is a linear space.  For linear spaces A and B, a
function f:A 6 B is linear if f("a+$b) = "f(a) + $f(b)
for all a,b 0 A and real numbers ",$.  A real-valued
function 2a2 defined for objects in a linear space A is
a norm if 2a-b2 has the properties of a distance
function, and 28a2 = 82a2 for every a 0 A and scalar
8 $ 0.



Finite-Dimensional Linear Space
A finite-dimensional linear space is a set such that
(a) linear combinations of points in the set are
defined and are again in the set, and (b) there is a
finite number of points in the set (a basis) such that
every point in the set is a linear combination of this
finite number of points.  The dimension of the space
is the minimum number of points needed to form a
basis.  A point x in a linear space of dimension n has
a ordinate representation x = (x1,x2,...,xn), given a
basis for the space {b1,...,bn}, where x1,...,xn are real
numbers such that x = x1b1 + ...  + xnbn.  The point x
is called a vector, and x1,...,xn are called its
components.  The notation (x)i will sometimes also
be used for component i of a vector x.



Real Finite-Dimensional Space
In economics, we work mostly with real 
finite-dimensional space.  When this space is of
dimension n, it is denoted ún.  Points in this space
are vectors of real numbers (x1,...,xn); this
corresponds to the previous terminology with the
basis for ún being the unit vectors (1,0,..,0),
(0,1,0,..,0),..., (0,..,0,1).

The coordinate representation of a vector depends
on the particular basis chosen for a space. 
Sometimes this fact can be used to choose bases in
which vectors and transformations have particularly
simple coordinate representations.



Euclidean Space
The Euclidean norm of a vector x is 

2x22 = (x1
2+...+xn

2)½.  

This norm can be used to define the distance
between vectors, or neighborhoods of a vector. 
Other possible norms include 2x21 = *x1*+...+*xn*,
2x2

4
 = max {*x1*,...,*xn*}, or for 1 # p < +4,

2x2p = .  

Each norm defines a topology on the linear space,
based on neighborhoods of a vector that are less
than each positive distance away.  The space ún

with the norm 2x22 and associated topology is called
Euclidean n-space.

The Euclidean norm of a vector x is 

2x22 = (x1
2+...+xn

2)½.  

This norm can be used to define the distance
between vectors, or neighborhoods of a vector. 
Other possible norms include 2x21 = *x1*+...+*xn*,
2x2

4
 = max {*x1*,...,*xn*}, or for 1 # p < +4,

2x2p = .  

Each norm defines a topology on the linear space,
based on neighborhoods of a vector that are less
than each positive distance away.  The space ún

with the norm 2x22 and associated topology is called
Euclidean n-space.



Vector Products

The vector product of x and y in ún is defined as x"y
= x1y1+...+xnyn.  Other notations for vector products
are <x,y> or (when x and y are interpreted as row
vectors) xyN or (when x and y are interpreted as
column vectors) xNy.



Linear Subspaces

A linear subspace of a linear space such as ún is a
subset that has the property that all linear
combinations of its members remain in the subset. 
Examples of linear subspaces in ú3 are the plane
{(a,b,c)*b = 0} and the line {(a,b,c)*a = b = 2"c}.  The
linear subspace spanned by a set of vectors
{x1,...,xJ} is the set of all linear combinations of these
vectors, L = {x1"1+...+xJ"J*("1,...,"J) 0 úJ}. 



Linear Independence

The vectors {x1,...,xJ} are linearly independent if and
only if none can be written as a linear combination of
the remainder.  The linear subspace that is spanned
by a set of J linearly independent vectors is said to
be of dimension J.  Conversely, each linear space of
dimension J can be represented as the set of linear
combinations of J linearly independent vectors,
which are in fact a basis for the subspace. 



Orthogonality
A linear subspace of dimension one is a line
(through the origin), and a linear subspace of
dimension (n-1) is a hyperplane (through the origin). 
If L is a subspace, then Lz = {x0ún* x"y = 0 for all
y0L} is termed the complementary subspace. 
Subspaces L and M with the property that x"y = 0 for
all y 0 L and x 0 M are termed orthogonal, and
denoted LzM.  The angle 2 between subspaces L
and M is defined by 

cos 2 = Min {x"y* y 0 L, 2y22 = 1, x 0 M, 2x22 = 1}. 

Then, the angle between orthogonal subspaces is
B/2, and the angle between subspaces that have a
nonzero point in common is zero. 



Affine Subspaces
A subspace that is translated by adding a nonzero
vector c to all points in the subspace is termed an
affine subspace.  A hyperplane is a set H =
{x0ún|p@x="}, where p is a vector that is not
identically zero and " is a scalar.  It is an affine
subspace, and is a level set of the linear function f(x)
= p@x.  The vector p is called a direction or normal
vector for H.  The sets H- = {x0ún|p@x<"} and H+ =
{x0ún|p@x>"} are called, respectively, the open lower
and upper half-spaces bounded by H; the closures
of these sets are called the closed lower and upper
half-spaces. 



Separating Hyperplanes
Two sets A and B are said to be separated by a
hyperplane H if one is entirely contained in the lower
closed half-space bounded by H and the other is
entirely contained in the upper closed half-space. 
They are said to be strictly separated by H if one is
contained in an open half-space bounded by H.  The
affine subspace spanned by a set A is the set of all
finite linear combinations of points in A.  A point x is
in the relative interior of a set A if there is a
neighborhood of x whose intersection with the affine
subspace spanned by A is contained in A.  When A
spans the entire space, then its interior and relative
interior coincide.



Convex Sets
If {x1,...,xm} are points in a linear vector space C,
then "1x1+...+"mxm, where "j $0 for j = 1,...,m and
"1+,,,+"m = 1, is termed a convex combination of
these points.  A set A in a normed linear vector
space C is convex if every convex combination of
points from A is contained in A.  If A and B are
convex, then A1B, "A for a scalar ", and A+B =
{z0C| z=x+y , x0A,y0B} are also convex. The
cartesian product of two vector spaces C and D is
defined as C×D = {(x,y)|x0C,y0D}.  If A f C and B f
D are convex, then A×B is convex.  



Separating Hyperplane Theorem
The relative interior of a convex set is always non-
empty.  The convex hull of any set A 0 C is the
intersection of all convex sets that contain it, or
equivalently the set formed from all convex
combinations of points in A.  If A is compact, its
convex hull is compact.  The closure of a convex set
is convex, and its relative interior is convex.  Two
convex sets A and B can be separated by a linear
function (i.e., there exists p … 0 such that p@x $ p@z
for all x 0 A, z 0 B) if and only if their relative interiors
are disjoint; this is called the separating hyperplane
theorem.  If A and B are disjoint and convex, and
either (1) A is open or (2) A is compact and B is
closed, then they can be strictly separated (i.e.,
there exists p such that p@x > p@z for all x 0 A, z 0 B) 



Linear Transformations
A mapping A from one linear space (its domain) into
another (its range) is a linear transformation if it
satisfies A(x+z) = A(x) + A(z) for any x and z in the
domain.  When the domain and range are
finite-dimensional linear spaces, a linear
transformation can be represented as a matrix. 
Specifically, a linear transformation A from ún into
ú

m can be represented by a m×n array A with
elements aij for 1 # i # m and 1 # j # n, with y = A(x)

having components yi = aijxj for 1 # i # m.  In

matrix notation, this is written y = Ax.

A mapping A from one linear space (its domain) into
another (its range) is a linear transformation if it
satisfies A(x+z) = A(x) + A(z) for any x and z in the
domain.  When the domain and range are
finite-dimensional linear spaces, a linear
transformation can be represented as a matrix. 
Specifically, a linear transformation A from ún into
ú

m can be represented by a m×n array A with
elements aij for 1 # i # m and 1 # j # n, with y = A(x)

having components yi = aijxj for 1 # i # m.  In

matrix notation, this is written y = Ax.



The set ùùùù = {x0ún*Ax = 0} is termed the null space
of the transformation A.  The subspace ùùùùz

containing all linear combinations of the column
vectors of A is termed the column space of A; it is
the complementary subspace to ùùùù.

If A denotes a m×n matrix, then AN denotes its n×m
transpose (rows become columns and vice versa). 
The identity matrix of dimension n is n×n with one's
down the diagonal, zero's elsewhere, and is denoted
In, or I if the dimension is clear from the context.  A
matrix of zeros is denoted 0, and a n×1 vector of
ones is denoted 1n.  A permutation matrix is
obtained by permuting the columns of an identity
matrix. 



If A is a m×n matrix and B is a n×p matrix, then the
matrix product C = AB is of dimension m×p with

elements cik / aijbjk for 1 # i # m and 1 # k #p.  

For the matrix product to be defined, the number of
columns in A must equal the number of rows in B
(i.e., the matrices must be commensurate).

If A is a m×n matrix and B is a n×p matrix, then the
matrix product C = AB is of dimension m×p with

elements cik / aijbjk for 1 # i # m and 1 # k #p.  

For the matrix product to be defined, the number of
columns in A must equal the number of rows in B
(i.e., the matrices must be commensurate).



A matrix A is square if it has the same number of
rows and columns.  A square matrix A is symmetric
if A = AN, diagonal if all off-diagonal elements are
zero, upper (lower) triangular if all its elements
below (above) the diagonal are zero, and
idempotent if it is symmetric and A2 = A.  A matrix A
is column orthonormal if ANA = I; simply orthonormal
if it is both square and column orthonormal.



Each column of a n×m matrix A is a vector in ún. 
The rank of A, denoted r = D(A), is the largest
number of columns that are linearly independent. 
Then A is of rank m if and only if x = 0 is the only
solution to Ax = 0. If A is of rank r, then
orthonormalization applied to the linearly
independent columns of A can be interpreted as
defining a r×m lower triangular matrix U such that
AUN is column orthonormal.   A n×m matrix A is of
full rank if D(A) = min(n,m).   A n×n matrix A of full
rank is termed nonsingular.  A nonsingular n×n
matrix A  has an inverse matrix A-1 such that both
AA-1 and A-1A equal the identity matrix In.  An
orthonormal matrix A satisfies ANA = In, implying that
AN = A-1, and hence ANA = AAN = In.  The trace tr(A)
of a square matrix A is the sum of its diagonal
elements.



TABLE 2.1.  BASIC OPERATIONS
   Name  Notation       Definition

1. Matrix Product
 
C = AB

For m×n A and n×p

B:  cik = aijbjk

2. Scalar
Multiplication

 C = bA cij = baij for scalar b

3. Matrix Sum  C = A+B cij = aij + bij for A
and B m×n

4. Transpose  C = AN cij = aji for m×n A:  
5. Matrix Inverse  C = A-1 AA-1 = Im for A n×n

nonsingular  

6. Trace
 
c = tr(A) c = aii for n×n

A  
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The determinant of a n×n matrix A is denoted *A*or
det(A), and has a geometric interpretation as the
volume of the parallelepiped formed by the column
vectors of A.  The matrix A is nonsingular if and only
if det(A) … 0.  A minor of a matrix A (of order r) is the
determinant of a submatrix formed by striking out n-r
rows and columns.  A principal minor is formed by
striking out symmetric rows and columns of A.  A
leading principal minor (of order r) is formed by
striking out the last n-r rows and columns.



The minor of an element aij of A is the determinant of
the submatrix Aij formed by striking out row i and
column j of A.  Determinants satisfy the recursion
relation 

  det(A) = (-1)i+jaijdet(Aij) = (-1)i+jaijdet(Aij),

with the first equality holding for any j and the
second holding for any i.  This formula can be used
as a recursive definition of determinants, starting
from the result that the determinant of a scalar is the
scalar.  A useful related formula is

   (-1)i+jaikdet(Aij)/det(A) = *kj,

where *kj is one if k = j and zero otherwise.

The minor of an element aij of A is the determinant of
the submatrix Aij formed by striking out row i and
column j of A.  Determinants satisfy the recursion
relation 

  det(A) = (-1)i+jaijdet(Aij) = (-1)i+jaijdet(Aij),

with the first equality holding for any j and the
second holding for any i.  This formula can be used
as a recursive definition of determinants, starting
from the result that the determinant of a scalar is the
scalar.  A useful related formula is

   (-1)i+jaikdet(Aij)/det(A) = *kj,

where *kj is one if k = j and zero otherwise.



Elementary Properties of Matrices

(1) (AN)N = A.
(2) If A-1 exists, then (A-1)-1 = A.
(3) If A-1 exists, then (AN)-1 = (A-1)N.
(4) (AB)N = BNAN.
(5) If A,B are square, nonsingular, and
commensurate, then (AB)-1 = B-1A-1.
(6) If A is m×n, then Min {m,n} $ D(A) = D(AN) =
D(ANA) = D(AAN).
(7) If A is m×n and B is m×r, then D(AB) #
min(D(A),D(B)).
(8) If A is m×n with D(A) = m, and B is m×r, then
D(AB) = D(B).



(9) D(A+B) # D(A) + D(B).
(10) If A is n×n, then det(A) … 0 if and only if D(A) =
n.
(11) If B and C are nonsingular and commensurate
with A, then D(BAC) = D(A).
(12) If A, B are n×n, then D(AB) $ D(A) + D(B) - n.
(13) det(AB) = det(A)"det(B).
(14) If c is a scalar and A is n×n, then det(cA) =
cndet(A)
(15) The determinant of a matrix is unchanged if a
scalar times one column (row) is added to another
column (row).  
(16) If A is n×n and diagonal or triangular, then
det(A) is the product of the diagonal elements.
(17) det(A-1) = 1/det(A).
(18) If A is n×n and B = A-1, then 
bij = (-1)i+jdet(Aij)/det(A).



(19) The determinant of an orthonormal matrix is +1
or -1.
(20) If A is m×n and B is n×m, then tr(AB) = tr(BA).
(21) tr(In) = n.
(22) tr(A+B) = tr(A) + tr(B).
(23) A permutation matrix P is orthonormal; hence,
PN = P-1.
(24) The inverse of a (upper) triangular matrix is
(upper) triangular, and the inverse of a diagonal
matrix D is diagonal, with (D-1)ii = 1/Dii. 
(25) The product of orthonormal matrices is
orthonormal, and the product of permutation
matrices is a permutation matrix.



Concave Functions
A real-valued function f:A 6úon a convex set A in a
vector space C is concave if for every x,y 0 A and
scalar " with 0 < " < 1, f("x+(1-")y) $ "f(x)+(1-
")f(y).  Equivalently, a function f is concave if the set
{(8,x)0ú×A| 8#f(x)}, called the epigraph of f, is
convex.  Concave functions are shaped like
overturned bowls. A function f is strictly concave if
for every x,y 0 A with x … y and scalar " with 0 < " <
1, f("x+(1-")y) > "f(x) + (1-")f(y).  



Convex Functions
The function f on the convex set A is convex if for
every x,y 0 A and scalar " with 0 < " < 1, f("x+(1-
")y) # "f(x) + (1-")f(y), or the epigraph {(8,x)0ú×A|
8$f(x)} is convex.  Convex functions are shaped like
upright bowls. 

A function on a convex set is concave if and only if
its negative is convex, and strictly concave if and
only if its negative is strictly convex.  Sums and
maxima of collections of convex functions are again
convex, while sums and minima of collections of
concave functions are again concave.



Correspondences

The concept of a real-valued function on a set A in a
finite-dimensional Euclidean vector space C can be
generalized to mappings from A into a family of
subsets of A; e.g., the family of non-empty closed
subsets of A.  This is called a set-valued function or
correspondence, and can be  written f:A 6 2A.  A
correspondence f is upper hemicontinuous at x 0A if
for every open neighborhood N of f(x), there exists
an open neighborhood M of x such that f(y) f N for
all y 0 M.



Maximand Correspondence

Consider a real-valued function g:A×D 6 ú, where A and D
are subsets of finite-dimensional Euclidean spaces with A
compact, and g is continuous on A×D .  Let f:D 6 2A denote
the set of maximands over x 0 B of g(x,y), where B is a
non-empty closed subset of A.  This is also written f(y) =
argmaxx0Bg(x,y).  Then f is a upper hemicontinuous
correspondence on D whose images are non-empty
compact sets.  If in addition, A is convex and g is a
concave function in x for each y 0 D, then f is a convex-
valued correspondence.


