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UNCONSTRAINED OPTIMIZATION

1. Consider the problem of maximizing a function f:ún 6 ú within a set A f ún.  Typically, A
might be all of ún,  or the non-negative orthant, or a half-space.  (More complicated sets of
feasible points will be treated explicitly as constraints on the maximization.)  In general, there is
no guarantee that the function f will achieve a maximum on A, but this is guaranteed if A is
compact (i.e., closed and bounded) and f is continuous.  Suppose that f does have a maximum on
A, and denote it xo.  There is no guarantee that this maximum is unique; however, when the set A
is convex and the function f is strictly concave on A (i.e., x,y 0 A, x …y, 0 < 2 < 1 implies
f(2x+(l-2)y) > 2f(x) + (l-2)f(y)), a maximand xo is necessarily unique.

A vector y 0 ún points into A (from a vector x0 0 A) if for all sufficiently small positive
scalars 2, x0 + 2y 0 A.

2. Assume that f is twice continuously differentiable, and that xo achieves the maximum of f on
A.  Then, a Taylor’s expansion gives

(1) f(xo) $ f(xo+2y) = f(xo) + 2fx (xo)@y + ( 22/2)ytfxx(xo)y + R(2 2)

for all y that point into A and sufficiently small scalars 2 > 0, where R(g) is a remainder
satisfying = 0.  Taking 2 sufficiently small so that squared and remainder termslim ) / 

→ε ε ε
0

R(
are negligible, this inequality implies

(2) 0 $ fx(xo)@y for all directions y that point into A.

If xo is in the interior of A, then (1) holds for all y and -y, implying the first-order-condition
(FOC)

(3) 0 = fx(xo).

If A is the non-negative orthant, then a component of fx(xo) is zero if the corresponding
component of xo is positive, and is non-positive if the corresponding component of xo is zero:
fx(xo) # 0 and xo

@fx(xo)= 0.
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For all y …0 that point into A and have fx(xo)@y = 0, (1) implies (taking 2 small) that

(4) 0 $ yNfxx(xo)y.

This is then a necessary second-order condition (SOC) for a maximum; it says that fxx is negative
semi-definite subject to constraint.  If the inequality in (4) is strict, then this second-order
condition is sufficient for xo to be a unique maximum of f within A and some open ball
containing xo.  If xo is interior to A, then (4) must hold for all y (i.e., fxx is negative semidefinite).

3. In the case that f is to be minimized over A, the inequality in (1) is reversed for a minimand xo

implying the FOC

(5) 0 # fx(xo)@y for all y pointing into A,

or fx(xo) = 0 in the case of xo interior to A. The SOC becomes

(6) 0 # yNfxx(xo)y for all y pointing into A such that fx(xo)@y = 0. 

Again, the SOC for an interior minimum is that yNfxx(xo)y # 0 for all y.

CONSTRAINED OPTIMIZATION

4. Consider the problem of maximizing f:ún 6 ú subject to constraints 

gi (x) - bi # 0 for i = 1,..., k

(7) hj (x) - cj = 0 for j = 1,..., m

where k+m < n. One may have either k = 0 yielding a classical equality constrained optimization
problem, m = 0 yielding a mathematical programming problem, or both positive, so there is a
mix of equality and inequality constraints.  If the domain of x is restricted to a set A, as in
paragraph 1, this is incorporated into the constraints rather than being handled directly.  The
system of constraints (7) will often be written in vector notation as

(8) g(x) - b # 0 and h(x) - c = 0
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k×l       k×l    k×l                 m×l         m×l   m×l

The set of xNs satisfying (8) is termed the feasible set.  The functions f, g, and h are all assumed
to be twice continuously differentiable.

The Lagrangian method is useful for solving this constrained optimization problem.
Define a non-negative k-vector p and an unsigned m-vector q of undetermined Lagrange
multipliers.  These are also called shadow prices as the construction below will justify.  Define
the Lagrangian

(9) L(x,p,q) = f(x) - p@[g(x) - b] - q@[h(x) - c];

note that the constraints enter the expression so that when (8) holds, the terms in brackets are
non-positive.  A point (xo,po,qo) is said to be a (global) Lagrangian Critical Point (LCP) if for all 
x 0 ún, q 0 úm and non negative p 0 úk,

(10) L(x,po,qo) # L(xo,po,qo) # L(xo,p,q).

The vector (xo,po,qo) is said to be a local LCP if

(11) Lx(xo,po,qo) = 0, Lq(xo,po,qo) = 0, 

Lp(xo,po,qo) # 0 and p@Lp(xo,po,qo) = 0, and

zN Lxx(xopo,qo)z # 0 if z satisfies (xo)z = 0 and hx(xo)z = 0,g x
*

where g*(x) - b* = 0 denotes the set of inequality constraints that are binding (i.e., hold with
equality) at xo, and g#(x) - b# < 0 denotes the remaining non-binding constraints at xo.  The LCP
conditions are also called the Kuhn-Tucker conditions.

7. The relation of the Lagrangian to the original constrained optimization problem is this:  If
(xo,po,qo) is a global LCP, then xo is a global maximum of f(x) subject to the constraints (8); if it
is a local LCP, then xo is a local maximum.  In the other direction, if xo is a local maximum of
f(x) subject to (8), and a technical condition called a constraint qualification holds, then there
exist (po,qo) such that (xo,po,qo) define a local LCP.  Globally, if the functions g(x) are convex, the
functions h(x) are linear, the function f(x) is concave, xo solves the constrained maximization
problem, and the constraint qualification is satisfied, then there exist (po,qo) such that (xo,po,qo)
defines a global LCP. These last conditions are sufficient for a global LCP, but they are not
necessary:  there are problems where the concavity or convexity assumptions do not hold, but it
is still possible to find Lagrangian multipliers to define a LCP.

The constraint qualification at xo is that the matrix whose rows are the partial derivatives
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of the binding constraints be of full rank; i.e., if there are k1 binding constraints g*(xo) - b* = 0,
plus the equality constraints h(xo) - c = 0, and partial derivatives are denoted  = Mg*/Mxi and higi

*

= Mh/Mxi, then the (k1 + m) ×n matrix

(12) B = g
h

g
h

g
h

n

n

1

1

2

2

* * *...
...











has rank k1 + m. 

8. First, the result that a global LCP solves the constrained maximization problem will be
explained.  Suppose (xo,po,qo) is a global LCP. Writing out the definition of the Lagrangian in
(10), one obtains from the second inequality that

(13) (p - po)@[g(xo) - b] + (q - qo)@[h(xo) - c] # 0.

But this can hold for all q only if h(xo) - c = 0, and can hold for all non-negative p only if g(xo) - b
# 0.  Then, xo satisfies the constraints (8).  Taking p = 0 in (13), and using the inequalities just
established, one has

(14) po
@[g(xo) - b] = 0;

these are called the complementary slackness conditions, and state that if a constraint is not
binding, then its Lagrangian multiplier is zero.  Putting these results together, the Lagrangian at
the LCP satisfies

(15) L(xo, po, qo) = f(xo) - po
@[g(xo) - b] - qo

@[h(xo) - c] =  f(xo). 

Now write out the first inequality in (10), using (15), to get

(16) f(x) - po
@[g(x)- b] - qo

@[h(x) - c] # f(xo).

Then, any x in the feasible set has g(x) - b # 0 and h(x) - c = 0, implying that f(x) # f(xo).  This
establishes that xo is a solution to the optimization problem.

To show that a local LCP (xo, po, qo) yields a local maximum to the constrained
optimization problem, first note that 0 = Lq(xo, po, qo) = h(xo) - c, 0 $ Lp(xo, po, qo) = g(xo) - b, and
0 =  po 

@Lp(xo,po,qo) = po [g(xo) - b], imply that xo is feasible, and that L(xo,po,qo) = f(xo).  A
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Taylor’s expansion of L(xo+2z,po,qo) yields

(17) L(xo+2z,po,qo) = L(xo,po,qo) + 2Lx(xo,po,qo)@z + (22/2)zNLxx(xo,po,qo)z +R(22);

the R(23) term is a residual. Similar expansions could be made separately for the objective
function f and the binding constraints g* and h.  Note that the non-binding constraints stay non-
binding for 2 small.  Writing (17) out, using L(xo,po,qo) = f(xo) and Lx (xo,po,qo) = 0, yields

(18) f(xo +2z) - po [g(xo +2z) - b] - qo [h(xo + 2z) - c] = f(xo) + (22/2)zNLxx(xo,  po, qo)z +R(22)

A point xo + 2z satisfying the constraints, with 2 small, must (by a Taylor’s expansion of these
constraints) satisfy (xo)z = 0 and hx(xo)z = 0.  Then, the negative semidefiniteness of Lxxg x

*

subject to these constraints implies in (18) that

(19) f(xo +2z) # f(xo) + (22/2)zNLxx(xo,po,qo)z +R(22) # f(xo) + R(22).

If Lxx is negative definite subject to these constraints then this SOC is sufficient for xo to be a
local maximum.

9. The result that a local solution to the constrained optimization problem corresponds to a local
LCP, provided a constraint qualification holds, will now be explained.  Suppose xo is a local
solution to the constrained optimization problem, and suppose that at xo the binding constraints
are denoted g* (xo) - b* = 0 and h(xo) - c = 0.  The fact that xo is a local solution to the
optimization problem implies that 0 $ fx(xo)@z for all z satisfying (xo)@z = 0 and hx(xo) z = 0,g x

*

or from (12), Bz = 0.  Assume the constraint qualification, so that B has rank k1 + m.  Then, all
the columns of the matrix I - BN(BBN)-1B, and their negatives, are potential z vectors satisfying
Bz = 0, and hence must satisfy 0 = [ I - BN(BBN)-1B]fx(xo).  Define the Lagrange multipliers

(20) = (BBN)-1 Bfx(xo), p
q

*o

o











and p#o = 0 for the non-binding constraints g#(xo) - b# < 0.  Define the Lagrangian as in equation
(9).  Then,
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(21) Lx(xo,po,qo) = fx(xo) - (xo)Np*o - hx(xo)’qog x
*

= [I - BN (BBN)-1B]fx(xo) = 0.

The construction guarantees that Lq(xo,po,qo) = 0, Lp(xo,po,qo) # 0, and po
@Lp(xo,po,qo) = 0.  Finally,

the Taylor’s expansion (17) of the Lagrangian, written out in the form (18), establishes that
zNLxx(xo,po,qo)z # 0 for all z satisfying (xo) @ z = 0 and hx(xo) @ z = 0.  Therefore, theg x

*

constrained maximum corresponds to a local LCP satisfying (11).

10. Sufficient conditions for a global solution xo to the constrained optimization problem to
correspond to a global LCP are that the objective function f is concave, the inequality constraint
functions g(x) are convex, the equality constraint functions h(x) are linear, and a local constraint
qualification, that the array of derivatives of the binding constraints be of maximum rank, holds. 
Since xo is also a local solution to the optimization problem, it corresponds to a local LCP
(xo,po,qo), with the Lagrangian multipliers given by (20).  The curvature assumptions on f, g, and
h imply

(22) f(xo + z) # f(xo) + fx(xo)  z

g(xo + z) $ g(xo) + gx(xo)  z

h(xo + z) = h(xo) + hx(xo) z.

Substitute these into the definition of the Lagrangian to obtain

(23) L(xo + z,po,qo) # f(xo) +[fx(xo) - po
@gx(xo) - qo

@hx(xo)]z.

From (20), the term in brackets is zero.  Then L(x,po,qo) # L(xo,po,qo).  The properties of po and qo

from the argument for a local LCP imply the inequality L(xo,po,qo) # L(xo,p,q).  Hence, (xo,po,qo)
is a global LCP.

11. Lagrangian multipliers have the following interpretation:  equals the rate of increase inpi
o

the optimized objective function for each unit increase in the constant bi in the constraint gi(xo) -
bi # 0, and equals the rate of change in the objective function for each unit increase of ci inqi

o

the equality constraint hi(x) - ci = 0.  In other words, a Lagrangian multiplier measures the value
of relaxing a corresponding constraint by one unit.  For this reason, Lagrangian multipliers are
sometimes called shadow prices.

To explain this result, recall that the value of the Lagrangian at a LCP equals the value of
the objective function.  These values will in general depend on the levels of the constraints; i.e., b
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and c.  Make this dependence explicit by writing the Lagrangian as L(x,p,q,b,c), a solution to the
constrained optimization problem as xo = X(b,c), and the associated Lagrangian multipliers as po

= P(b,c) and qo = Q(b,c). Consider a change 2ªb in b, where 2 is a small scalar.  Suppose there is
a global LCP when the constraint constant is b, and another when the constraint constant is b +
2ªb  Then, one has the inequality

(24) f(X(b,c)) / L(X(b,c),P(b,c),Q(b,c)) $ L(X(b+2ªb,c),P(b,c),Q(b,c))

 / f(X(b+2ªb)) - P(b,c) [g(X(b+2ªb)) - b] $ f(X(b+2ªb)) - P(b,c) @ [b + 2ªb - b];

the first inequality comes from the LCP property, the identity comes from writing out the
definition of L, and the last inequality comes from the constraint condition g(X(b+2ªb)) # b +
2ªb.  Similarly,

(25) f(X(b+2ªb,c)) / L(X(b+2ªb,c), P(b+2ªb c), Q(b + 2ªb,c)

$ L(X(b,c),P(b+2ªb,c),Q(b+2ªb,c)

/ f(X(b)) - P(b+2ªb, c) @ [g(X(b) - b - 2ªb] $ f(X(b)) - P(b+2ªb, c) [b - b - 2ªb]

The inequalities (24) and (25) imply for 2 > 0 that

(26) P(b+2ªb, c) ªb # # P(b, c) ªb.
f(X(b + f X(b,c))∆ b c, )) −  (

θ

If the Lagrangian multiplier is continuous in b, then taking 2 6 0 in this inequality implies that
Mf(X(b,c))/Mb exists, and that

(27) Mf(X(b,c))/Mb = P(b,c).

A similar argument establishes that Mf(X(b,c))/Mc = Q(b,c) whenever the multiplier is continuous
in c.

Another way to establish the shadow price result is to assume differentiability.  Start from
the identity L(X(b,c),P(b,c),Q(b,c),b,c) / f(X(b,c)).  Differentiate this with respect to b, using the
composite function rule, to obtain

(28) Mf(X(b,c))/Mb / LX(X(b,c),P(b,c),Q(b,c),b,c)@Xb(b,c)

          + Lp(X(b,c),P(b,c),Q(b,c),b,c) Pb(b,c)

          + Lq(X(b,c),P(b,c),Q(b,c),b,c) Qb(b,c)
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          + Lb(X(b,c),P(b,c),Q(b,c),b,c)

The first three terms are zero, from the first-order conditions (11) for a local LCP, plus the fact
that if ML/Mpi < 0, then pi = Pi (b+2ªb, c) = 0 for small 2, so that MPi/Mb 0.  The last term in (26)
equals P(b,c), again establishing (27).  This argument is sometimes called the envelope theorem:
if a function L(x,b) is maximized in x for each b at x = X(b), then the derivative of the
maximized function L(X(b),b) with respect to b is the same as the partial derivative of L(x,b)
with respect to b, with x fixed and then evaluated at X(b).

12. Constrained minimization rather than constrained maximization can be handled simply by
maximizing the negative of the objective function.  Then, all the previous results also apply to
this case.  The usual setup for the minimization problem is

(29) f(x) subject to g(x) - b $ 0 and h(x) - c = 0.min
X

  
The associated Lagrangian is

(30) L(x,p,q,b,c) = f(x) - p@[g(x) - b] - q@[h(x) - c].

A global LCP (xo,po,qo) has po $ 0 and satisfies

(31) L(xo,p,q,b,c) # L(xo,po,qo,b,c) # L(x, po,qo,b,c)

for all x, q, and p $ 0.  A local LCP satisfies

(32) Lx(xo,po,qo,b,c) = 0, Lq(xo,po,qo,b,c) = 0,

Lp(xo,po,qo,b,c) # 0 and p@Lp(xo,po,qo,b,c) = 0, and

zNLxx(xo,po,qo,b,c) z $ 0 if z satisfies (xo)z = 0 and hx(xo)z = 0,gx
*

where g* denotes the inequality constraints that are binding.


